

18th Oxford School on Neutron Scattering 13th September 2024

Neutrons in Engineering

Dr Anastasia Vasileiou anastasia.vasileiou@manchester.ac.uk The University of Manchester, UK

Outline

- Neutron diffraction in engineering
- Stress, strain and residual stress
- Bragg's Law
- Set-up of Engineering Instrument
- Diffraction methods available
- Residual stress measurement techniques
- Case Studies
- Conclusions on neutrons pros/cons

Introduction Problem setting

Neutrons in Engineering

Neutron diffraction (ND) in <u>engineering</u> is typically used for:

- measuring residual stress (RS) in materials,
- assessing crystal structure alterations or damage caused by exposure to severe conditions (e.g., high temperature, pressure, or radiation),
- studying **deformation heterogeneity**, such as variations in strain or stress distribution within a material.

But first...back to basic concepts and principles.

Stress, Strain Basic Engineering Principles

What is Stress?

https://en.wikipedia.org/wiki/Stress_%28mechanics%29

$$\sigma = rac{F}{A}$$

Where:

 σ = stress (Pascals, Pa, or N/m²) F = force (Newtons, N) A = cross-sectional area over which the force is applied (in square meters, m²)

Stress Types & Components

 $\sigma_x \, / \, \sigma_y \, / \, \sigma_z$:

- Normal stress acting in the x/y/z direction.
- Acts on plane perpendicular to the x/y/z direction.

Convention

- ✓ positive values \rightarrow tensile stress
- ✓ negative values \rightarrow compressive.

$$\tau_{xy} / \tau_{xz} / \tau_{yz}$$

- **shear** stress
- Acts on plane parallel to the x/y/z planes.

Can we measure Stress?

.... we can measure Strain!

What is Strain?

Engineering strain is captured by:

$$e = \frac{l_f - l_o}{l_o}$$

True strain is captured by its rate of change:

$$d\varepsilon = \frac{dl}{l}$$
$$\varepsilon = \int_{l_o}^{l} \frac{dl}{l} = \ln\left(\frac{l_f - l_o}{l_o} + 1\right)$$
$$\varepsilon = \ln(e+1)$$

From Strain to Stress

- Hooke's Law
- σ = $E\varepsilon$

(simple uniaxial tension/compression)

3D equation (tensor form)

Where: σ = stress (Pa) *E*= Young's modulus or modulus of elasticity (Pa), which measures the material's stiffness ε = strain (dimensionless)

Assuming isotropic material

Bragg's Law! Diffraction Basic Principles

The Braggs

W.H. Bragg (1862-1942)

W.L. Bragg (1890-1971)

Nobel Prize in Physics (1915)

Unit cell, d spacing, lattice parameter α

It has one atom at each lattice point, and the cell comprises one atom.

The unit cell is the smallest repeating unit in a crystal structure.

(2020, M.J. Roy) Materials 1, Teaching material, The University of Manchester

Bragg's Law

- λ : the wavelength of the incident radiation (fixed in most diffractometers)
- dhki : the distance between the (hkl) planes (geometric function of the size and shape of the unit cell)
- θ : the incident angle (the angle between the planes and the incident beam)
- n : the diffraction order (integer)

Residual Stress Definition

What is Residual Stress?

Residual stresses: Stresses that **remain** in a solid material after the original cause of the stresses has been removed.

Occur through various mechanisms:

- Plastic deformations
- Temperature gradients (thermal cycle)
- Structural changes (phase
 - transformations)

Examples of Residual Stress

Shot peening process

Residual Stress Types

> TYPE I (long range over multiple grains, macrostresses)

> TYPE II (intergranular, vary between grains, microstresses)

Macro

Meso

> TYPE III (atomic level)

Micro

Effects of Residual Stress

- Positive Effects: <u>Compressive</u> residual stress on the surface of a material can increase its
 - fatigue strength,
 - wear resistance, and even
 - resistance to crack propagation.
- Negative Effects: <u>Tensile</u> residual stress, on the other hand, can weaken the material, making it more
 - susceptible to crack initiation and growth,
 - susceptible to corrosion, and
 - failure under lower loads.

<u>Managing</u> residual stress is crucial in many engineering applications to ensure the durability and performance of components.

Why care about Residual Stress?

- Play a significant role in affecting the long-term structural performance.
- Can contribute to the driving force for crack growth.
- Can activate degradation mechanisms such a creep and stress-corrosion cracking, even in the absence of operating stresses.
- Cause deformation (distortion, dimensional accuracy).

Diffraction for Measuring Residual Stress

Overview

Effect of elastic strain on diffraction signal

- When measuring residual stress, we actually measure residual STRAIN!! (stress is strain energy density)
- Diffraction measures elastic lattice strain as peak shifts
- Uses the poly-crystalline lattice planes as internal strain gauges

Data Analysis Workflow

Measured strains have to be converted into stresses! (Hooke's law) $\varepsilon = \frac{a - a_0}{a_0} = \frac{d - d_0}{d_0}$

 a_0

Data Analysis Workflow

• Measured strains have to be converted into stresses! (Hooke's law) $\varepsilon = \frac{a - a_0}{a_0} = \frac{d - d_0}{d_0}$

e.g. isotropic triaxial along principal directions:

$$\varepsilon_{11} = \frac{1}{E} \left[\sigma_{11} - \upsilon (\sigma_{22} + \sigma_{33}) \right]$$
$$\varepsilon_{22} = \frac{1}{E} \left[\sigma_{22} - \upsilon (\sigma_{33} + \sigma_{11}) \right]$$
$$\varepsilon_{33} = \frac{1}{E} \left[\sigma_{33} - \upsilon (\sigma_{11} + \sigma_{22}) \right]$$

To calculate a stress direction:

$$\sigma_{11} = \frac{E}{(1+\nu)(1-2\nu)} [(1-\nu)\varepsilon_{11} + \nu(\varepsilon_{22} + \varepsilon_{33})]$$

(Attention: not always this simple!)

Oxford School on Neutron Scattering

Types of neutron sources Overview, set-up, typical examples

Reactor-based (steady state/continuous)

Slow neutron capture of 235 U

Neutron Sources

- Constant wavelength/Single Peak
- Fission source

Short-pulse spallation (pulsed)

- Nuclei bombarded with high energy particles
- Accelerator Sources
- Time-of-flight (ToF) / Full Spectra / Riet

Monochromatic vs ToF

Monochromatic (CW)

- Fix wavelength and scan detector angle
- Multiple 2θ required to cover Q(d) spacing range
- Q(d) spacing limit $4\pi/\lambda$ ($2\pi/d$)
- Instrumental count rate factors: Source power, monochromator reflectivity, detector coverage and efficiency, etc

Time of Flight (ToF)

- Fix detector angle and scan wavelength
- Single 2θ covers range of Q(d) space
- Q(d range) determined by λmax , λmin and θ
- Instrumental count rate factors: Source power, moderator performance, beam transport efficiency, detector coverage and efficiency, etc

Set-up of Engineering Instrument: Reactor-based

Neutron Beam Instruments

https://nucleus.iaea.org/sites/accelerators/Pages/Interactive-Map-of-NB-Instruments.aspx

Total Instruments: Total Countries:

13/09/2024

372

26

Neutron Strain Scanners

https://nucleus.iaea.org/sites/accelerators/Pages/Interactive-Map-of-NB-Instruments.aspx

> Neutron Scattering > Diffractometer > Strain Scanner

Facility Name	Instrument type	Instrument Name
China Advanced Rese	Strain Scanner	END
China Mianyang Rese	Strain Scanner	RSND
HANARO reactor	Strain Scanner	RSI
HFIR reactor	Strain Scanner	HB-2B NRSF2
IBR-2 M Pulsed React	Strain Scanner	EPSILON-MDS FSD FSS
ILL Grenoble (HFR)	Strain scanner	SALSA
ISIS Spallation Source	Strain Scanner	ENGIN-X
J-PARC	Strain Scanner	BL19 - TAKUMI
JRR-3 reactor	Strain Scanner	T2-1 RESA-1
NBSR reactor	Strain Scanner	DARTS
OPAL reactor	Strain Scanner	KOWARI
PARR-1 reactor	Strain Scanner	2
Reactor IR-8	Strain Scanner	HC-3 STRESS
Research Reactor LV	Strain scanner	HK4 SPN-100 HK9 TKSN-400
RSG-GAS Batan	Strain Scanner	DN1
SAFARI-1 Research R	Strain Scanner	MPISI
SINQ Spallation Source	Strain Scanner	POLDI
Spallation Neutron S	Strain Scanner	BL-7 VULCAN

The gauge-volume

ND set-up & gauge volume

The schematic drawing of the neutron diffraction geometry, the positions of measuring points on the D plane (along the weld centerline, see Fig. 2(a)), and the gauge volume depicting a random number of grains satisfying the diffraction condition (black grains

General Overview: Diffracting Gauge Volume

Volume element of the material in which the recorded scattering takes place

- Results in averaged d-spacing (powder diffraction many grains)
- Defines the minimum spatial resolution of the method (around 1mm³ minimum gauge volume when using neutron diffraction)
- and type of residual stress resolved (macro-stress or type-I usually. Type-II for two phase materials).
- Use the largest possible gauge volume for your specific issue in order to minimise counting time

The d0 specimen

d0 samples

- Comb
- Pins
- Slice

d0 samples

- Comb
- Pins
- Slice

Figure 4

(a) The cutting plan for extraction of reference specimens from the A6, TG6 specimen (Ohms *et al.*, 2015). (b) The A6 specimen after extraction of the stress-free pins and slices. (c) The exact locations of the extracted pins used as stress-free reference samples.

d0 variation

Accurate strain analysis relies on accurate determination of d_o

Example of d₀ variation across a tubular Nickel weld

The Vegard Law Example: Nb in Zr

Near surface

Near surface measurements

THE EUROPEAN NEUTRON SOURCE

Neutrons vs Other measurement techniques

ND vs other diffraction methods

ND vs Other Residual stress measurement techniques

The Contour Method

Case Studies

Challenges, considerations and implications

Case study: Cross process comparison – NNUMAN welds

NG-SAW (18 passes, 2 passes per layer)

Narrow-Gap Laser Weld (autogenous root pass, 8 filling passes)

NG-GTAW (25 passes, one weaved pass per layer)

(2018, J. Balakrishnan et al.) doi:10.1016/j.ijpvp.2018.03.004

ND vs CM

Case study: EB welds

https://doi.org/10.1016/j.matdes.2021.109924 https://doi.org/10.1016/j.ijpvp.2019.03.035 https://doi.org/10.1016/j.nucengdes.2017.03.040

Oxford School on Neutron Scattering

Case study: EB welds

 Challenge: short characteristic length of residual stress distribution

Y (2)

30 mm

Z (3)

X (1)

300 mm

Case study: EB welds

• ND vs FE weld modelling predictions

Case study: the NeT network

Network on Neutron Techniques Standarization for Structural Integrity

- Mission of the Network: to develop experimental and numerical techniques and standards for the reliable characterization of residual stresses in structural welds.
- https://www.net-network.eu
- ISO Draft International Standard 21432:2018

Case study: NeT-TG4

• Repeatability and standardization

Case study: NeT-TG6

- Dissimilar metals
 - Alloy 600 parent plate
 - Alloy 82 filler wire
- Implication
 - Interfaces: how to properly process the data? [Considering that the gauge volume includes both]
 - **Misalignments** get critical

(2020, V. Akrivos et al.)

Case study: in-situ PWHT

- In-situ post-weld heat treatment
- Considerations: count time vs evolution of phenomenon

Case study: Irradiation damage

- Lattice defects introduced by irradiation
 - dislocations
 - crystallographic changes
 - changes to secondary phases in the material (amorphisation, dissolution, change in type of particles)

• All these changes can be assessed by diffraction techniques!

Concluding remarks

Neutrons:

- Non-destructive, full stress analysis
- Good penetration depth due to neutrality
- Big bulky sample with low stress gradients
- Variety of materials can be measured (Steels, aluminium, nickel, copper zinc or related)

Not-so good (handle with care): near surface or thin materials, texture (titanium, boron cadmium), highspatial resolution/steep gradients, high instrumental resolution

The University of Manchester

Questions?

anastasia.vasileiou@manchester.ac.uk

