

Polarized Neutrons

Ross Stewart

Oxford School on Neutron Scattering - 2024

Polarized neutrons can be used to enhance almost any neutron scattering experiment, either by

- 1. Separating and providing additional information on the **sources of scattering** (nuclear, magnetic, incoherent)
- 2. Improving the **resolution**

Outline

Definitions

Neutron spin, magnetic moment, precession Polarization, flipping ratio, polarizers, flippers

Polarized neutron scattering

Polarized neutrons interaction with matter

Separation of sources of scattering

Neutron spin-echo

Principle of NSE - using the neutron spin as measuring tool

Definitions: Neutron magnetic moment

Particles with spin are experimentally observed to possess a magnetic moment

 $ec{\mu}=\gammaec{s}$ where, $ec{s}\equiv\pm s_z=\pm 1/2\hbar$ and $\gamma=-183$ MHz / T for neutrons

Quarks also have s = $\frac{1}{2}$ quantum number, therefore if the up and down quarks are antiparallel, the neutron also has s = $\frac{1}{2}$

The magnetic moment calculation is tricky – but can be measured accurately

Often we see the neutron magnetic moment given in terms of **nuclear magnetons**

$$\mu_n = -1.913 imes \mu_N$$
 where, $\mu_N = rac{e\hbar}{2m_p}$

What does the minus mean?

Boothroyd – Sec 1.2 (p 4)

Definitions: Neutron spin-1/2

spin-¹/₂ particles

 $S = \frac{1}{2}$ $m_s = -s to + s in integer steps$ - only two choices

Describes an intrinsic angular momentum, \vec{s} , that the neutron possesses, with

$$\begin{split} |\vec{s}|^2 &= s(s+1)\hbar^2 = \frac{3}{4}\hbar^2\\ s_z &= m_s\hbar \end{split}$$

Muon Source

11/10

R www.isis.stfc.ac.uk SIS Neutron and 87 (0) @isisneutronmuon im uk.linkedin.com/showcase/isis-neutron-and-muon-source

Definitions: Larmor Precession

Magnetic moments in a field experience a **torque** defined as the rate of change of angular momentum

$$\vec{\tau} = \vec{\mu} \times \vec{B}$$
$$\Rightarrow \frac{d\vec{s}}{dt} = \vec{\mu} \times \vec{B}$$
$$\Rightarrow \frac{d\vec{\mu}}{dt} = \gamma \vec{\mu} \times \vec{B}$$

 $d\vec{\mu}$ always in direction perpendicular to both \vec{B} and $\vec{\mu}$ therefore, $\vec{\mu}$ precesses around \vec{B} maintaining the angle θ

From definition of the cross product

Definitions: Larmor precession frequency

The angular frequency of the moment vector is defined as the rate of change of the rotation angle ϕ around the field axis

$$\omega = \frac{d\phi}{dt} \Rightarrow d\phi = \omega dt$$

From the figure, $d\phi\,$ can also be written as the arc-length $d\vec{\mu}\,$ divided by component of $\vec{\mu}\,$ in the plane of rotation

$$\begin{split} d\phi &= \frac{|d\vec{\mu}|}{\mu\sin\theta} = \omega dt\\ \text{Rearranging this we get} \quad \frac{|d\vec{\mu}|}{dt} = \omega\mu\sin\theta = \gamma\mu B\sin\theta\\ &\Rightarrow \omega = \gamma B \end{split}$$

This is the Larmor precession frequency, $\,\omega_L$ and $\,\gamma$ is known as the gyromagnetic ratio

∰ www.isis.stfc.ac.uk ∑ (○) @isisneutronmuon
Im uk.linkedin.com/showcase/isis-neutron-and-muon-source

Muon Source

12 < 1)

Alvarez and Bloch, Physical Review 57, 111 (1940)

Measuring the neutron magnetic moment: The first ever Neutron Polarization Analysis Experiment

 ISIS Neutron and

 ⊕ www.isis.stfc.ac.uk
 ∑
 ○
 @isisneutronmuon
 Muon Source

 ↓
 Muon Source

 ⓑ uk.linkedin.com/showcase/isis-neutron-and-muon-source

Definitions: Flipping Ratio

Instead of "polarization" of the beam, experimentalists often talk in terms of the **neutron flipping ratio**

This can refer to a device – polarizer or analyser – but also to the sample under investigation

$$\Phi = rac{N_{|\uparrow
angle}}{N_{|\downarrow
angle}}$$

where, *N* is the number of neutrons transmitted or scattered.

$$P = \frac{N_{|\uparrow\rangle} - N_{|\downarrow\rangle}}{N_{|\uparrow\rangle} + N_{|\downarrow\rangle}} = \frac{\Delta N}{N} = \frac{\Phi - 1}{\Phi + 1} \quad \text{and} \quad \Phi = \frac{1 + P}{1 - P}$$

This description of a polarized beam is OK for experiments in which a single quantisation axis is defined: **Longitudinal Polarization Analysis**

Worked example: Alvarez and Bloch

In the figure on the right, Alvarez and Bloch plot the polarization of their beam as a function of current in their resonance coil – which then gives the resonant frequency. What was the flipping ratio, and polarizing efficiency of the polarizer and analyser (P_p and P_a) assuming they are the same?

The polarization on resonance is, $P=\Delta I/I=-0.015$

Therefore,

$$\Phi = \frac{1 + (-0.015)}{1 - (-0.015)} = \frac{0.985}{1.015} \simeq 0.97$$

The measured polarization is just the product of the individual efficiencies

$$P = P_p \times P_a = P_{p/a}^2$$
$$\Rightarrow P_{p/a} = \sqrt{|P|} \simeq 0.122$$

AL III

FIG. 5. Neutron resonance dip. The magnet current in arbitrary used is plotted against the fractional change $(\Delta I/I)$ of the intensity of the neutron beam.

 ISIS Neutron and
 Image: www.isis.stfc.ac.uk
 Image: mage: ma

Nuclear scattering

Nuclear Spin-Dependent Scattering

The scattering length depends on the whether the neutron spin is parallel or antiparallel to the nuclear spin

- b_+ neutron/nuclear spins add
- b_- neutron/nuclear spins subtract

$$b_{\rm coh} = \bar{b} = \frac{b_+(I+1) + b_-I}{2I+1}$$
$$b_{\rm inc} = \sqrt{\bar{b}^2 - \bar{b}^2} = \frac{b_+ - b_-}{2I+1}\sqrt{(I(I+1))}$$

Boothroyd – Sec 4.1.2 (p 100)

 b_{\perp}

Boothroyd – Sec 4.2 (p 103)

 $\vec{B}(\vec{r}) = \frac{1}{\sqrt{2\pi^3}} \int \vec{B}(\vec{Q}) \exp(i\vec{Q}.\vec{r}) d\vec{Q}$ $\Rightarrow \nabla.\vec{B}(\vec{r}) = \frac{1}{\sqrt{2\pi^3}} \int i\vec{Q}.\vec{B}(\vec{Q}) \exp(i\vec{Q}.\vec{r}) d\vec{Q} = 0$ $\Rightarrow \vec{Q}.\vec{B}(\vec{Q}) = 0$

Reminder: Magnetic scattering

Magnetic scattering

Muon Source

The magnetic scattering is a vector interaction – $V_m = -\vec{\mu}_n . \vec{B}(r)$

Since the magnetic field in the sample is divergence-free ($\nabla . \vec{B}(r) = 0$) after taking the Fourier transform we get,

$$V_{m}(Q) = -\vec{\mu_{n}} \cdot \vec{B_{\perp}}(Q)$$

= $-\mu_{0}\vec{\mu_{n}} \cdot \vec{M_{\perp}}(Q)$
where, $\vec{M_{\perp}}(Q) = \vec{M}(Q) - (\vec{M}(Q) \cdot \hat{Q})\hat{Q}$
 $\vec{M_{\perp}}(Q)$
 $\vec{M_{\perp}}(Q)$

Neutron probes component of the magnetization perpendicular to Q

∰ www.isis.stfc.ac.uk ∑ (O) @isisneutronmuon
Im uk.linkedin.com/showcase/isis-neutron-and-muon-source

Magnetic Spin-dependent Scattering (classical)

Magnetic scattering has complex spin-dependence

 $\vec{\tau} = \vec{\mu} \times \vec{B}$

There will be a classical torque on the neutron moment if there are components of the field perpendicular to it

Muon Source

Non-Spin-Flip Spin-flip $U^{\downarrow\uparrow}$ $U^{\uparrow\downarrow}$ $U^{\downarrow\downarrow}$ • if $\vec{\mu}$ parallel to \vec{B} \vec{Q} No torque – so all scattering is non-spin-flip • if $\vec{\mu}$ perpendicular to \vec{B} Neutron spin can precess in the field - spin-flip scattering @isisneutronmuon Science and

www.isis.stfc.ac.uk

www.isis

Moon, Riste and Koehler, Physical Review 181, 920 (1969)

Polarized neutron scattering

The polarization-dependent scattering cross-sections can be calculated from the following **Moon-Riste-Koehler** equations

11 \

$$\begin{pmatrix} \frac{d\sigma}{d\Omega} \end{pmatrix}_{ss'} = |\sum_{n} U_{n}^{ss'} \exp\left(i\vec{Q}.\vec{r}_{n}\right)|^{2}$$

$$U^{\uparrow\uparrow} = \bar{b} - pM_{\perp z} + BI_{z} \\ U^{\downarrow\downarrow} = \bar{b} + pM_{\perp z} - BI_{z} \end{pmatrix} U^{\text{NSF}}$$

$$\overline{b} = \frac{(I+1)b_{+} + B}{2I+1} \\ B = \frac{b_{+} - b_{-}}{2I+1} \\ B = \frac{b_{+} - b_{-}}{2I+1} \\ U^{\uparrow\downarrow} = -p\left(M_{\perp x} + iM_{\perp y}\right) + B\left(I_{x} + iI_{y}\right) \\ U^{\downarrow\uparrow} = -p\left(M_{\perp x} - iM_{\perp y}\right) + B\left(I_{x} - iI_{y}\right) \end{pmatrix} U^{\text{SF}}$$

$$p = 1.913 \frac{\mu_{0}}{4\pi} \frac{e^{2}}{m_{e}}$$

where,

- The z-direction is along the direction of the neutron polarization
- *I* is the nuclear spin quantum number and *I_x*, *I_y* and *I_z* are the components of the nuclear spin angular momentum
- $M_{\perp x}$, $M_{\perp y}$, and $M_{\perp z}$ are the components of the magnetic field perpendicular to the scattering vector

Boothroyd - Sec 4.4 (p 110)

 b_{-}

Coherent (nuclear) Scattering

Assuming no magnetism in the sample – we can work out the **coherent** (see A Boothroyd lectures) nuclear scattering, just by taking the average of the amplitudes

$$\overline{U^{\rm NSF}} = \overline{\overline{b}} \pm \overline{BI_z}$$
$$\overline{U^{\rm SF}} = \overline{BI_x \pm BiI_y}$$

Now, if the nuclear spins are randomly oriented, then the average over any one component of I is zero. Therefore

$$\overline{U^{\rm NSF}} = \overline{b}$$
$$\overline{U^{\rm SF}} = 0$$

All the nuclear coherent scattering appears in the Non-Spin-Flip measurements

Boothroyd – Sec 4.5.1 (p 112)

Incoherent (nuclear) Scattering

Again, assuming no magnetism we can work out the **incoherent** scattering which (from A Boothroyd's lectures), is given by the variance in the scattering amplitudes

$$\overline{U^2} - \overline{U}^2$$

Applying this to the NSF amplitudes, we get

$$\overline{(\overline{b} + BI_z)^2} - \overline{(\overline{b} + BI_z)}^2$$
$$= \overline{b^2} + \overline{B^2 I_z^2} + 2\overline{bBI_z} - \overline{(b + BI_z)}^2$$

 $B^{2}I_{z}^{2}$

Again, we assume that the nuclei are randomly oriented

Nuclear isotope incoherent

Nuclear spin incoherent

Note that $\mathbf{I}^2 = I(I+1) = I_x^2 + I_y^2 + I_z^2$, so for isotropic nuclear spins $I_x^2 = I_y^2 = I_z^2 = 1/3 I(I+1)$

$$\left(\overline{U^2} - \overline{U}^2\right)^{\text{NSF}} = \overline{b^2} - \overline{b}^2 + \frac{1}{3}B^2I(I+1)$$

 $b^{\overline{2}}-\overline{b}^{2}$

 ISIS Neutron and
 www.isis.stfc.ac.uk
 Isis neutronmuon

 Muon Source
 Imuk.linkedin.com/showcase/isis-neutron-and-muon-source

Boothroyd – Sec 4.5.1 (p 112)

Incoherent (nuclear) Scattering

Again, assuming no magnetism we can work out the **incoherent** scattering which (from A Boothroyd's lectures), is given by the variance in the scattering amplitudes

$$\overline{U^2} - \overline{U}^2$$

Applying this to the SF amplitudes, we get

$$\overline{B^2(I_x + iI_y)^2} - \left(\overline{B(I_x + iI_y)}\right)^2$$
$$= \overline{B^2(I_x^2 + I_y^2)}$$

So assuming randomly oriented nuclear spins again, we get

$$\left(\overline{U^2} - \overline{U}^2\right)^{\rm SF} = \frac{2}{3}B^2I(I+1)$$

which is exactly twice the non-spin-flip spin-incoherent scattering

Boothroyd – Sec 4.5.1 (p 112)

Non-magnetic polarization analysis

$$\left(\frac{d\sigma}{d\Omega}\right)^{\rm NSF} = \left(\frac{d\sigma}{d\Omega}\right)_{\rm coh} + \left(\frac{d\sigma}{d\Omega}\right)_{\rm II} + \frac{1}{3}\left(\frac{d\sigma}{d\Omega}\right)_{\rm SI}$$
$$\left(\frac{d\sigma}{d\Omega}\right)^{\rm SF} = \frac{2}{3}\left(\frac{d\sigma}{d\Omega}\right)_{\rm SI}$$

- if the scattering is fully coherent/isotope incoherent then the scattered polarization is preserved
- if the scattering is fully spin-incoherent then,

$$\vec{P}' = -1/3\vec{P}$$

Alles Zun

Arbe et al., Phys Rev Res 2, 022015 (2020)

Example 1 – Water (D_2O) at 295 K

Measured on LET at ISIS Single-particle (incoherent) and structural (coherent) dynamics are **separated**

An the Section

www.isis.stfc.ac.uk ∑√ ② @isisneutronmuon
 www.isis.com/showcase/isis-neutron-and-muon-source

SIS Neutron and

Muon Source

Nidriche et al., PRX Life **2**, 013005 (2024)

Example 2 – deuterated Green fluorescent protein

New experiments challenging assumptions about "dominant" scattering on deuteration

Boothroyd – Sec 7.3.2 (p 233)

Scattering from Ferromagnets

Assuming no spin-incoherent scattering in a ferromagnetic material, and assuming that the magnetization is along the polarization direction – we only need to look at the $U^{\uparrow\uparrow}$ and $U^{\downarrow\downarrow}$ amplitudes

 $egin{aligned} |U^{\uparrow\uparrow}|^2 &= b^2(Q) + p^2 M_{\perp}^2(Q) - 2b(Q) p M_{\perp}(Q) \ |U^{\downarrow\downarrow}|^2 &= b^2(Q) + p^2 M_{\perp}^2(Q) + 2b(Q) p M_{\perp}(Q) \end{aligned}$

Writing this in terms of cross-sections and structure factors

 $\left(\frac{d\sigma}{d\Omega}\right)^{\uparrow\uparrow} \propto |F_N - F_M|^2$ Leading to a flipping ratio of $\left(\frac{d\sigma}{d\Omega}\right)^{\downarrow\downarrow} \propto |F_N + F_M|^2$ $\Phi = \left(\frac{1-\phi}{1+\phi}\right)^2$ where, $\phi = \frac{F_M}{F_N}$

 ISIS Neutron and
 ∰ www.isis.stfc.ac.uk
 ∑ ♂ @isisneutronmuon

 Muon Source
 Im uk.linkedin.com/showcase/isis-neutron-and-muon-source

Example 3 – Heusler alloy, Cu₂MnAl

• Cubic ferromagnet

Muon Source

• Used as a neutron polarizer

If the (111) Bragg peak from Cu_2 MnAl produces a polarization, P = -0.99, what is the ratio of the magnetic and nuclear (111) structure factors?

We can write the ratio of the structure factors, ϕ , as a function of the flipping ratio

$$\Phi = \frac{1+P}{1-P} = \left(\frac{1-\phi}{1+\phi}\right)^2$$
$$\Rightarrow \phi = \frac{1-\sqrt{\Phi}}{1+\sqrt{\Phi}}$$
The flipping ratio is,
$$\Phi = \frac{1+(-0.99)}{1-(-0.99)} \simeq 0.005$$
Therefore
$$\phi = \frac{1-0.071}{1+0.071} \simeq 0.87$$

So F_N and F_M don't have to be that close to get a good polarization

Alles Sun

Example 4 – nickel

In nickel, the ratio of the magnetic and nuclear structure factors for the (400) Bragg peak is $\phi = 6 \times 10^{-4}$. What is the flipping ratio? Compare that with the extra magnetic intensity which would be seen in an unpolarized experiment

$$\phi = 6 \times 10^{-4} \Rightarrow \Phi = \left(\frac{1 - 6 \times 10^{-4}}{1 + 6 \times 10^{-4}}\right)^2 = 0.997$$

The ratio of the magnetic and nuclear intensities in an unpolarized experiment is

$$\frac{F_M^2}{F_N^2} = \phi^2 = 3.6 \times 10^{-7} \Rightarrow \frac{\Delta I}{I} = \frac{F_N^2 + F_M^2}{F_N^2} = 1 + \phi^2 = 1.00000036$$

So – magnetic structure factors much easier to measure using polarized neutrons (also, much less sensitive to systematic errors)

Alles Sum

Scattering from disordered magnets

\$ ~~ \$ ~~ \$ ~~ ~~ the of by of the

Paramagnetic scattering

$$\left(\frac{d\sigma}{d\Omega}\right)^{\rm NSF} = \frac{1}{2} \left[1 - \left(\hat{P} \cdot \hat{Q}\right)^2\right] \left(\frac{d\sigma}{d\Omega}\right)_{\rm mag}$$
$$\left(\frac{d\sigma}{d\Omega}\right)^{\rm SF} = \frac{1}{2} \left[1 + \left(\hat{P} \cdot \hat{Q}\right)^2\right] \left(\frac{d\sigma}{d\Omega}\right)_{\rm mag}$$

We can therefore write the polarization as *H*

as
$$P = \frac{\left[1 - \left(\hat{P} \cdot \hat{Q}\right)^2\right] - \left[1 + \left(\hat{P} \cdot \hat{Q}\right)^2\right]}{\left[1 - \left(\hat{P} \cdot \hat{Q}\right)^2\right] + \left[1 + \left(\hat{P} \cdot \hat{Q}\right)^2\right]}$$

This is easily simplified to give **the Halpern-Johnson Equation** $\vec{P}' = -(\vec{P} \cdot \hat{Q})\hat{Q}$

"Planar multidetector" – XYZ Polarization Analysis

Paramagnetic scattering

$$\left(\frac{d\sigma}{d\Omega}\right)^{\rm NSF} = \frac{1}{2} \left[1 - \left(\hat{P} \cdot \hat{Q}\right)^2\right] \left(\frac{d\sigma}{d\Omega}\right)_{\rm mag} \qquad \left(\frac{d\sigma}{d\Omega}\right)^{\rm SF} = \frac{1}{2} \left[1 + \left(\hat{P} \cdot \hat{Q}\right)^2\right] \left(\frac{d\sigma}{d\Omega}\right)_{\rm mag}$$

XYZ polarization analysis – paramagnetic scattering

Polarization along x-direction: $\left(\hat{P}_x \cdot \hat{Q}\right)^2 = \begin{bmatrix} \begin{pmatrix} 1\\0\\0 \end{pmatrix} \cdot \begin{pmatrix} \cos \alpha\\\sin \alpha\\0 \end{bmatrix} \end{bmatrix}^2 = \cos^2 \alpha \quad \begin{cases} \Rightarrow \left(\frac{d\sigma}{d\Omega}\right)_x^{\text{NSF}} = \frac{1 - \cos^2 \alpha}{2} \left(\frac{d\sigma}{d\Omega}\right)_{\text{mag}} = \frac{\sin^2 \alpha}{2} \left(\frac{d\sigma}{d\Omega}\right)_{\text{mag}} \\ \Rightarrow \left(\frac{d\sigma}{d\Omega}\right)^{\text{SF}} = \frac{1 + \cos^2 \alpha}{2} \left(\frac{d\sigma}{d\Omega}\right)_{\text{mag}} \end{cases}$ $\begin{array}{l} \text{arization along y-direction:} \\ \left(\hat{P}_{y}\cdot\hat{Q}\right)^{2} = \left[\begin{pmatrix}0\\1\\0\end{pmatrix}\cdot\begin{pmatrix}\cos\alpha\\\sin\alpha\\0\end{pmatrix}\right]^{2} = \sin^{2}\alpha \quad \begin{cases} \Rightarrow \left(\frac{d\sigma}{d\Omega}\right)_{y}^{\text{NSF}} = \frac{1-\sin^{2}\alpha}{2}\left(\frac{d\sigma}{d\Omega}\right)_{\text{mag}} = \frac{\cos^{2}\alpha}{2}\left(\frac{d\sigma}{d\Omega}\right)_{\text{mag}} \\ \Rightarrow \left(\frac{d\sigma}{d\Omega}\right)^{\text{SF}} = \frac{1+\sin^{2}\alpha}{2}\left(\frac{d\sigma}{d\Omega}\right)_{\text{mag}} \end{cases}$ Polarization along y-direction: arization along z-direction: $\left(\hat{P}_{y} \cdot \hat{Q}\right)^{2} = \begin{bmatrix} \begin{pmatrix} 0\\0\\1 \end{pmatrix} \cdot \begin{pmatrix} \cos \alpha\\\sin \alpha\\0 \end{bmatrix} \end{bmatrix}^{2} = 0 \qquad \begin{cases} \Rightarrow \left(\frac{d\sigma}{d\Omega}\right)_{z}^{\text{NSF}} = \frac{1}{2} \left(\frac{d\sigma}{d\Omega}\right)_{\text{mag}} \\ \Rightarrow \left(\frac{d\sigma}{d\Omega}\right)^{\text{SF}} = \frac{1}{2} \left(\frac{d\sigma}{d\Omega}\right)_{\text{mag}} \end{cases}$ Polarization along z-direction:

ISIS Neutron and R www.isis.stfc.ac.uk [√] (○) @isisneutronmuon m uk.linkedin.com/showcase/isis-neutron-and-muon-source

Muon Source

Schärpf and Capellmann, Phys. Stat. Sol. (a) 135 359 (1993)

Boothroyd – Sec 4.6 (p 118)

XYZ Polarization analysis – Schärpf Equations

$$\begin{split} \left(\frac{d\sigma}{d\Omega}\right)_{x}^{\text{NSF}} &= \left(\frac{d\sigma}{d\Omega}\right)_{\text{coh+II}} + \frac{1}{3}\left(\frac{d\sigma}{d\Omega}\right)_{\text{SI}} + \frac{\sin^{2}\alpha}{2}\left(\frac{d\sigma}{d\Omega}\right)_{\text{mag}} \\ \left(\frac{d\sigma}{d\Omega}\right)_{y}^{\text{NSF}} &= \left(\frac{d\sigma}{d\Omega}\right)_{\text{coh+II}} + \frac{1}{3}\left(\frac{d\sigma}{d\Omega}\right)_{\text{SI}} + \frac{\cos^{2}\alpha}{2}\left(\frac{d\sigma}{d\Omega}\right)_{\text{mag}} \\ \left(\frac{d\sigma}{d\Omega}\right)_{z}^{\text{NSF}} &= \left(\frac{d\sigma}{d\Omega}\right)_{\text{coh+II}} + \frac{1}{3}\left(\frac{d\sigma}{d\Omega}\right)_{\text{SI}} + \frac{1}{2}\left(\frac{d\sigma}{d\Omega}\right)_{\text{mag}} \\ \left(\frac{d\sigma}{d\Omega}\right)_{x}^{\text{SF}} &= \frac{2}{3}\left(\frac{d\sigma}{d\Omega}\right)_{\text{SI}} + \frac{1 + \cos^{2}\alpha}{2}\left(\frac{d\sigma}{d\Omega}\right)_{\text{mag}} \\ \left(\frac{d\sigma}{d\Omega}\right)_{y}^{\text{SF}} &= \frac{2}{3}\left(\frac{d\sigma}{d\Omega}\right)_{\text{SI}} + \frac{1 + \sin^{2}\alpha}{2}\left(\frac{d\sigma}{d\Omega}\right)_{\text{mag}} \\ \left(\frac{d\sigma}{d\Omega}\right)_{z}^{\text{SF}} &= \frac{2}{3}\left(\frac{d\sigma}{d\Omega}\right)_{\text{SI}} + \frac{1}{2}\left(\frac{d\sigma}{d\Omega}\right)_{\text{mag}} \end{split}$$

Otto Schärpf (1929-2019)

- 6 equations
- 4 unknowns
- α known as the Schärpf Angle

SIS Neutron and

Muon Source

11/10

XYZ Polarization analysis – Schärpf Equations

Coherent (+II) nuclear scattering

$$\left(\frac{d\sigma}{d\Omega}\right)_{\rm coh+II} = \frac{1}{6} \left[2 \left(\frac{d\sigma}{d\Omega}\right)^{\rm TNSF} - \left(\frac{d\sigma}{d\Omega}\right)^{\rm TSF} \right]$$

where TNSF and TSF refer to the total non-spin-flip and spin-flip scattering respectively

Magnetic scattering - can be independently calculated in two ways

$$\left(\frac{d\sigma}{d\Omega}\right)_{\rm mag} = 2\left(\frac{d\sigma}{d\Omega}\right)_{x}^{\rm SF} + 2\left(\frac{d\sigma}{d\Omega}\right)_{y}^{\rm SF} - 4\left(\frac{d\sigma}{d\Omega}\right)_{z}^{\rm SF} \left(\frac{d\sigma}{d\Omega}\right)_{\rm mag} = 4\left(\frac{d\sigma}{d\Omega}\right)_{z}^{\rm NSF} - 2\left(\frac{d\sigma}{d\Omega}\right)_{x}^{\rm NSF} - 2\left(\frac{d\sigma}{d\Omega}\right)_{y}^{\rm NSF}$$

can take the average of these

Spin-incoherent scattering

$$\left(\frac{d\sigma}{d\Omega}\right)_{\rm SI} = \frac{1}{2} \left(\frac{d\sigma}{d\Omega}\right)^{\rm TSF} - \left(\frac{d\sigma}{d\Omega}\right)_{\rm mag}$$

Stewart, et al., J. Appl. Phys 42, 69 (2009) Why is this necessary?

Reminder – Rules for Polarized Neutron Scattering

- 1. The nuclear coherent and isotope incoherent scattering is always NSF
- 2. The spin-incoherent scattering is always 1/3 NSF and 2/3 SF
- 3. Magnetism: must be in a direction perpendicular to \vec{Q} and:
 - NSF if parallel to \vec{P}
 - SF if perpendicular to \vec{P}

 ISIS Neutron and Muon Source
 Isis Neutron and Im uk.linkedin.com/showcase/isis-neutron-and-muon-source

Neutron Spin-Echo

Precession field Precession field Polarizer Analyzer B_2L_2 B_1L_1 π $\pi/2$ $\pi/2$ flippers Detector \mathbf{P} Number of radians precessed in each arm: $\phi_L = \omega t = \omega \times \frac{L}{v} = \frac{\gamma BL}{v}$ If $B_1L_1 = B_2L_2$, and $v_1 = v_2$ then the neutron spins will all re-align: $\Delta \phi_L = \frac{\gamma B_1 L_1}{\gamma B_2 L_2} = 0$

Boothroyd - Sec 5.9 (p 176)

ISIS Neutron and Muon Source www.isis.stfc.ac.uk 57 (2) @isisneutronmuon

Neutron Spin-Echo

(assumes that the sample doesn't depolarize the beam)

Alles Sun

im uk.linkedin.com/showcase/isis-neutron-and-muon-source

NSE Resolution – Spin-Echo Time

Neutron energy is $E = \frac{1}{2}m_n v^2 \Rightarrow \Delta E = m_n v \Delta v$

In NSE we measure a phase shift $\phi = \frac{\gamma BL}{v} \Rightarrow \Delta \phi = \frac{\gamma BL}{v^2} \Delta v = \frac{\gamma BL \Delta E}{m_n v^3}$

Since we know that $\Delta E = \hbar \omega$ and that the phase shift $\phi = \omega t$ we can identify the Spin-Echo time

$$t = \frac{\gamma B L \hbar}{m_n v^3} = \frac{\gamma B L m_n^2 \lambda^3}{2\pi h^2}$$

Putting in numbers: BL = 0.27~ Tm on WASP at ILL, and $\lambda = 1~$ nm we find a Spin-Echo time, t = 18~ns

This is equivalent to $\omega = 2\pi/t = 0.35\,{
m GHz}$, or 0.08 $\mu{
m eV}$

Much higher energy resolution than on a conventional spectrometer

Alles Sum

Arbe et al., J. Chem. Phys. **158** (2023) 184502 **Example 6 — dynamics in van der Waals liquid**

Tetrahydrofuran – THF, C₄H₈O

LET at ISIS

SIS Neutron and

Muon Source

Coherent and incoherent scattering in deuterated dTHF

Fit is a model consisting of diffusion (incoherent) and structural relaxation (coherent) – too complicated to disentangle without polarized neutrons – and which requires NSE for the resolution at low Q

www.isis.stfc.ac.uk

www.isis

WASP at ILL

A les Sun

Mostly incoherent scattering in protonated pTHF

Polarized neutrons can be used to enhance almost any neutron scattering experiment, either by

- 1. Separating and providing additional information on the **sources of scattering** (nuclear, magnetic, incoherent)
- 2. Improving the **resolution**

