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High energy neutrons (by our standards)

e High energy neutron scattering is one of the ‘newer’ experimental
techniques.

e Spallation sources produce an intense flux of high energy neutrons which
we can generally describe as fast or epithermal

* Broadly we characterize fast neutrons as those with energies >1MeV, and.
Epithermal neutrons >0.5eV. From a scattering perspective, we are
interested in the eV-keV range.



The kind of things we measure...




High Energy Concepts

» What difference does high incident energy make to neutron scattering?
* First consider an imaginary diffraction experiment for E; = 1 eV (blackboard).

* High energies — large K; = high Q (particularly inelastic processes)
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For epithermal neutron scattering, all scattering
Is single atom scattering = incoherent.




Correlation Functions

e Some reminders from previous lectures:
* Within spectroscopy we (generally) express measurements in terms of the
response function S(Q, w)
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* We can also express this as the time Fourier transform of the intermediate

response function, I(Q, t)
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Correlation Functions

* When we look at high energy neutrons, we need to be careful with how we
deal with 1(Q, t)

1(Q,t) = I;;(Q, t) = (exp|—iQ - F;(0)| exp|iQ - F;(¢)])
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* Forlow energy incoherent scattering (QENS)
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Quantum vs Classical

* High energy neutron scattering can’t be considered as classical
* Neutron energies are ‘high’ (wrt ...?)
* Neutron wavelengths are ‘small’ (wrt ...?)

* In general, I;(0) and 1j(t) don’t commute
* Heisenberg operators contain the Hamiltonian

(exp[~iQ - §(0)] exp[iQ - ()]} # (exp[-iQ - {§(0) ~ F(®)}])

1
= <eXp[—iQ {50) - 5(0)}] exp [5 [,0), rA,-(t)]]>
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The Impulse Approximation

* We still need to have an idea of what 1 (t) is for epithermal scattering

* Forthis we use the Impulse Approximation

 The energy transfer and Q are sufficiently high that only the
shortest times need to be considered.

» A particle travels freely for a sufficiently short time.
e Equivalently: the final state of the system s irrelevant.
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We have expressed [j(t) in terms of 1;(0) and the particle
momentum operator, p;.



The Impulse Approximation

* Let’s plug thisinto [;;(Q, t):

1;;(Q,t) = (exp|—iQ - £ (0)] exp|iQ - F(t)])
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The Impulse Approximation

it ihtQ?
[;;(Q,t) =|{exp [ﬁQ'pj] exp( M )
J J

Weighted average of the exponential term
taken over all p for the particle.

t
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Expressed in terms of the momentum distribution n(p;)
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The Impulse Approximation

e Let’s FT to the scattering function, S(Q, w):
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S(Q, w) in eV Scattering

h202 h
5(Q w) =jn(p,-)5<flw— Q-p,-)dp

2M; M,
Recoil Energy Spectroscopic
broadening

* eV neutron scattering gives us access to atomic
momentum distributions, n(p;), with each unique

mass contributing to S(Q,w) as a single peak
centred on its (stationary) recoil energy.

* The peak width is determined by Q and p;.




Forward vs Backwards Scattering
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* The neutron is slightly heavier than the proton

 No proton signal in backscattering, but we see deuteron scattering in both forward
and backscattering.

» Recoil energies rapidly converge for M>7amu

* backscattering usually involves trying to decompose a broad feature into its
component mass signals.



The silly bit.

* Unfortunately, we don’twork in S(Q, w)... This annoys other spectroscopists.
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counts

The silly bit.
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Why do we care about n(p)?

* A particle in a harmonic potential
has a gaussian n(p).

A more tightly bound system has a
broader n(p).

* n(p) examines the zero-point
motion of the particle, unlike
conventional INS.

* The shape of n(p) reflects
anharmonicity in the potential.
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Example: Harmonic Solid LiF

* For an atom harmonic potential/Gaussian J(y;,) there is a simple relationship
between the gaussian width,a,,, and the atomic kinetic energy: Eg.
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Example: Nuclear Quantum Effects

* The proton is light, and sometimes we need to look beyond a harmonic model,
or for situations where H/D behave differently (an extreme being proton
delocalisation).

» The shape of J(y) is sensitive to any anharmonicity, but is an even function.

* We can take a set of orthogonal polynomial functions and expand
the gaussian term to account for kurtosis etc.

1 YM [ Cr ( Ym )]
= expl—=—=] |1+ Z H

 We rarely need to go over C, terms (a simple kurtosis).




Example: Water Weak Quantum Fluid

* The neutron community is delightfully obsessed with water, for which there is
no shame and has in no way diverted attention from other interesting scientific
problems.

Hhe-communityhas howreachedconsensus

* The stronger a hydrogen bond is, the less harmonic the potential and the less
Gaussianis n(p).

* DINS gives a direct experimental probe as to how important nuclear quantum
effects are, so is water a quantum liquid?



Example: Water Weak Quantum Fluid

D, like H, is separable from other masses in forward scattering, meaning we
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can compare measurements on H,0O and D,0.
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e Sophisticated path integral molecular
dynamics simulations reproduce well

experimental n(p) for both D and O.

 Growing evidence exits that on melting the
(Er) perpendicular and parallel to the OD
bond change in opposing directions.



Example: Water Weak Quantum Fluid

e There are some contentious

contentious supercritical) water.

results on supercooled (and even more

« The proton radial momentum distribution 4mp?n(p) shows an inflection. This
can only happenin the case of a spatially delocalised proton.
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* No theoretical models can qualitatively
reproduce this behaviour



Example: Water Less Weak Quantum Fluid

 There are not many DINS measurements on single crystal/aligned samples.
Why is this?

e Co-aligning crystals of Beryl with 1D water channels in it allowed for
identification of proton delocalisation perpendicular to the chain.

e This was backed up with the appearance of tunnelling peaks in INS
measurements, and qualitatively with some ab initio work...
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Example: Lambda Transition in He

* There is a transition in liquid “He at 2.17 K called the lambda point, below
which it is a superfluid.

* In the superfluid phase “He behaves as two liquids, one ‘normal’ and one
frictionless (a Bose-Einstein condensate fraction).

e The condensate fraction should enter a zero-momentum state which should,
in turn, reduce the average Ey.
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Example: Lambda Transition in He

e Of course we don’t need to just look at Bose fluids, we can also look at a Fermi
fluid 3He, or even mixes of Fermi-Bose systems 3He-*He... yay backscattering!

' ' — 1 ' T e 3He is interesting because it is
tremendously absorbing of thermal
neutrons (not so much epithermal...), so
there is little data otherthan DINS!

e [t is an open question as to why DINS
reproduces theoretical n(p) lineshapes
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Instrumentation: VESUVIO

* Production of intense epithermal neutrons at spallation sources is only part of
the epithermal story...

* We need to be able to fix E; (direct geometry) or Ef (indirect geometry).
* We need to be able to detect high energy neutrons with suitable resolution.

® S2  Transmitted beam monitor

* eV spectrometers (present and planned) are indirect
geometry, for example the VESUVIO spectrometer at
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Instrumentation: E;

* Without an analyser, all scattered neutron energies are detected.

Detector




Instrumentation: E;

A thin foil of Au uses a nuclear (n,y)resonance at 4.9 eV to filter neutrons of

this energy, the so called resonance filter method
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Instrumentation: E;

* A more modern implementation is to use y-detectors instead of neutron
detectors, the resonance detector technique. These detect the gamma

cascade directly, and using a secondary foil still enables background removal.
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Neutron Transmission

* The epithermal region is also of interest in neutron transmission.

* With the exception of y-sources (resonances) neutron absorption drops off at
high energies, so elements which absorb thermal neutrons such as Cd are not

too problematic. e
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Neutron Transmission

* The epithermal region is also of interest in neutron transmission.

* The plateau at high energies is also a function of the number of atoms in the
sample, so you can track things like changes in density across a glass
transition.
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Current Frontiers

* Epithermal scattering has moved towards more complex samples or
problems in recent years.
* Kinetic energies of M>4 amu in functional materials
* Confined water or water in extreme environments (pressure in particular)
 Low dimensional systems

» There are still open questions such as the shape of n(p) for *He or 3He,
supercooled water and quantum delocalized protons.

e Can we take n(p) and ‘invert’ it to extract V(r)?
* Probably, assuming inversion symmetry and a few other approximations.

 The current epithermal instrument(s) were not designed for this, but to test
things like y-scaling and extract light mass (E)



Summary of Epithermal Scattering

DINS/NCS measures (Ex) and n(p) of single atoms.

It is a direct probe of nuclear quantum effects and zero-point energy.

It is a mass-selective technique which is unique to neutron scattering.

Long runtimes and broadband measurements mean that complementary
techniques can be done at the same time

e Neutron diffraction
 NRA/PGAA
e Neutron transmission



