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Electron’s magnetic moment

The classical moment from a current loop
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Electron’s magnetic moment

The quantum moment: dimensionless g-factor
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Atom’s magnetic moment

U U _
Bo=—g;7’s m=-g71 gs~2, gi1=1
S=Zsi L=Zli
[ [
HUp Up

Hs = —0s3°S Ho=—g15 L



Magnetic Diffraction

Atom’s magnetic moment

Hs = —95%5 Hy = _QL%L gs~2, gp=1

From LS couplingJ =L + S, and
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Neutron’s magnetic moment

From experiment |u,| = —1.913uy

eh

where puy = —— = 5.051 x 107*’JT™* is the nuclear magneton
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Neutron’s magnetic moment

From experiment |u,| = —1.913uy

where iy = % = 5.051 x 10727]JT 1 is the nuclear magneton

p

U
= —gn7 1

(I) = s,h, where s, = i%. Hence g, = 3.826
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Born approximation (elastic scattering)

We will assume that the perturbation V does not act on the target’s eigenstates (i.e. the
state of the target is not changed by the interaction with a neutron)

Will consider only elastic scattering of neutrons

A central result of the Born approximation is that the differential scattering cross-section
depends upon the Fourier transform, V(Q), of the interaction potential V (r).

do (mn
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Magnetic interaction potential
* The neutron’s spin couples to microscopic electromagnetic fields in the sample

* The strongest, and hence good approximation, is the dipole-dipole interaction
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Magnetic interaction potential

* The neutron’s spin couples to microscopic electromagnetic fields in the sample

* The strongest, and hence good approximation, is the dipole-dipole interaction
V@) = —py- B(r)

« B(r) is alocal magnetic flux density due to unpaired electrons in the sample

B(r) = By(r) + B, (1)

By(r) = —211, -2 v x (

(g
41T ¢

sxr) Mol(PXT>

BL(r) = _Znu'B 471_% ,r3

73

where s is the electron’s spin and p the electron’s momentum

2)
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Magnetic interaction potential

Consider a system of many electrons, each labeled j. Calculating the Fourier transform of
B(r) one finds:

{BS(Q)}]' = —2Upl {@ X (Sj X @)}exp(iQ . rj)

(B,(Q)}, = —ZuBMO% (p, x Q)exp(iQ - 7))

Taking p, = —gnfixSy

V(@) =~y BQ) = ~2gaisitoiss, - ) (@ (5% Q) + 75 (p] x @){exp(i@ 1))

J
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Magnetic interaction potential (strength of interaction)

d
2 = () KoV @lo P
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Magnetic interaction potential

Consider a spatially varying magnetization, M(r) = M (r) + M /()

M. (r) = —ZMBZ 6(r—r)s; (sum over localized spins)
J

M(Q) = _ZHBz s;exp(iQ.1;)
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Magnetic interaction potential

Consider a spatially varying magnetization, M(r) = M (r) + M /()

M. (r) = —ZMBZ 6(r—r)s; (sum over localized spins)

M(Q) = _ZHBz s;exp(iQ.1;)

J

V(Q) = —2gnHpHoiS, ° z {Q X(s5;xQ)+-> (p, X Q)} exp(iQ - 1))

J

1 _ j .
= 2gnMplolinS, * [Z_ﬂBQ x (Mg(Q) x Q) - Z% (pj x Q)exp(iQ - rj)]
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Magnetic interaction potential

One can similarly show that

i _ _ 1 N
) @(pj x Q)exp(iQ - 1)) = —Z—HBQ x (M (Q) x Q)

1 ~ J ~
V(Q) = 2gnlptolinSy * [Z_HBQ X (MS(Q) X Q) — Z]:% (pj X Q)exp(iQ . rj)

= GnloHUNSy [Q X (MS(Q) X @) + Q X (ML(Q) X @)]
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Magnetic interaction potential

V(Q) = gnlolinS, * [Q X (MS(Q) X a) + O X (ML(Q) X O)]
= GnlolinS, - M, (Q)

where M@Q) = Ms(Q) + M, (Q)

and M, (Q)=0Qx(M@Q) xQ)
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Magnetic differential scattering cross-section u, = = _ b e
B 2m,” "N 2m’ 0" 4mme
2th?\ (9.1,
V(Q) = gnltpinS, - M, (Q) = s, M, (Q)
My 2Uug
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Magnetic differential scattering cross-section Uy = eh = eh . _
2me’ 2m
v B ” B 2th?\ (9.1, "
(Q) = GnttotinS, - M, (Q) = My 2u, s, M, (Q)

d N\ n ‘
22— (220) Ko V@lol? = (2£22) Ko ls,lo )M, (@)
dQ \2mh 2ug

For unpolarized neutrons, we evaluate {(o,|s_ |o;), averaged over ¢. and iving =
P , O¢lSplOy)s g 0, 0, GIVING 2

do _ InTo
A0\ 4,

2
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M(Q) of an atom: Magnetic form factors
» Ignore filled shells
« Assume atomic-like orbitals for unpaired electrons

» To good approximation:

M(Q) = —2up[(jo(@)S + (o (@) + GL(@NL] = —g;uf f(Q) = pf(Q)

where  £(Q) = (o(@) + (22) (@)

and (j(Q)) = fooojn(Qr)rsz(r)dr, where j, (Qr) is a spherical Bessel function
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M(Q) of an atom: Magnetic form factors

M(Q) = pf(Q)

F@ = (@) +(52) 6,@)

When @ =0, (jo) =1, (j,) = 0, and M(Q) = u

Hence this approximation is known as the dipole approximation
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M(Q) of an atom: Magnetic form factors
(jo(s)) = Aexp(—as?) + B exp(—bs?) + C exp(—cs?) + D

(j,(s)) = [Aexp(—as?) + B exp(—bs?) + C exp(—cs?) + D]s*

sinf £(k) Penelope Jane Brown

SZA R

https://www.ill.eu/sites/ccsl/ffacts/ffachtml.html
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Part 2: Types of magnetic structure

« The propagation vector

. Ferromagnets

. Collinear commensurate antiferromagnets

. Canted commensurate antiferromagnets / weak ferromagnets
« Incommensurate spin density waves

« Incommensurate cycloids and helices
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The propagation vector

t ¢t ¢ b ¢
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The propagation vector

q = (30,0)

RV

a




Magnetic Diffraction

The propagation vector

q = (0,0,0)

AVA VA VWA VA VA,
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The propagation vector

q = (6,0,0)
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Fourier description of magnetic structures

Describe magnetic structure as a Fourier series
Hig = Em exp(—iq.1)

« pu, is the ordered moment at the d" site in the unit cell reached by |

. E]d) is the nt" complex Fourier amplitude containing phase and amplitude of the wave

* Mgy = Mgi6)q, hENCE SUMMation over 1% Brilluoin zone

*

 Magnetic moments are real: p;; = py4, -q always present, m_gq = my,

* my, related to basis functions derived by representation theory
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Ferromagnets

Hig = z mf,’;) exp(—iq.1)
qn

m, =2[0,0,4], g = (0,0,0)

;= 10,0, u]
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Collinear commensurate antiferromagnets
— (n) —ia.l
Mg = ) mg; exp(—iq.l)
qn

mg = [1,0,0], g = (5,0,0)

n=my (exp(—nlx) + exp(nlx))
= 2mg cos(ml,)

— [(_1)lxu’ 010]
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Canted commensurate antiferromagnets

Pt

SRS N

\

BN

B

Hig = z mc(;clz) exp(—iq.1)
qn

1
m(® = 1[0,0,u], g® = (0,0,0)

2 1
m{? =1u®,0,0], ¢® = (3,0,0)

w = [(=D%u®,0,0] +[0,0,u D]
= m[(—=1)% cos 6, 0, sin 0]

u@

where tan(0) = @
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Incommensurate spin density waves

Hig = z mc(;clz) exp(—iq.1)
qn

\ my =1(0,0,1), g = (5,0,0)

W = mq(exp(—2n6lx) + exp(2m4ly,))
= 2m, cos(2mbl,)
= [0,0, u cos(2mdl,)]

-
it



Magnetic Diffraction

Incommensurate cycloids and helices

'

NS
N
N

Hig = z mf,’;) exp(—iq.1)
qn

1
m(® = 1[0,0,u], ¢ = (5,0,0)

m{? = 1[in, 0,01, @ = (5,0,0)

TR mgl)(exp(—ZnSIx) + exp(2m6l,))
+mg” (exp(—2mdly) — exp(2ndly))
= 2m{ cos(2ndlx) — 2im{” sin(2msL,)
= p[sin(2mély), 0, cos(2mél,y)]
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Incommensurate cycloids and helices

Hig = z mf,’;) exp(—iq.1)
qn

1
m(® = 1[0,0,u], ¢ = (5,0,0)

m{ =1[0,i1,0), ¢ = (5,0,0)

= mgl) (exp(—ZTC@lx) + exp(2n5lx))
+ mgz) (exp(—ZTCSIx) — exp(2n5lx))
= ngl) cos(2mdl,.) — Zimflz) sin(2mél,)
= u[0, sin(2ws1,.) , cos(2msl,)]
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Part 3: Magnetic diffraction

« Commensurate magnetic structures
« Incommensurate magnetic structures

. Integrated intensities
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Commensurate magnetic structures

(2w
v

dO' gnrO
dQ

2
> %) (ML (@) =N,

) 2
ZlMuc,J_(Q)l 5(0 _ Gm)
Gm

m

Where the magnetic unit cell structure factor is:

_ InTo

M, (Q) =D ) 1of o(Q) exp(~W,) exp(iQ. d)
d

Muc,_l_(Q) = Q X (Muc(Q) X @)
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Commensurate magnetic structures (simple ferromagnet)

Muc(@) =1 ) 1af o(Q) exp(~Wy) exp(iQ.d) = pf (Q) exp(~ W) g = [0,0, ]
d

M, .(Q) =0 x(M,(Q)xQ)=pf(Q)exp(—W)sinf u

where sin @ is the tilt of u away from Q

d 21)3
do _ (2m)
dQ v

(2m)?

0

P ROIRICE
G

= N="p22(Q) exp(—2W) sin?(0) i ) 8(@ = 6)
G
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Commensurate magnetic structures (simple antiferromagnet)

M, (Q) =pf(Q) exp(—=W)sin 8 u(1 — exp(mih,,)) Uy = [(—1)le; 0,0]

(1 — exp(mih,,)) =0 for hkl:h,, = 2n
(1 — exp(mih,,)) =2 for hkl:h,, = 2n+1

For hkl:h,, = 2n+l

do (2m)3 2
E - Nm v GZlMch_(Q)l 5(Q - Gm)
G
= 28, L p2p2() exp(-2wysin? 0,2 Y 5@ - 6,
Gm

m
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Commensurate magnetic structures (simple antiferromagnet)

and in the nuclear unit cell... pyy = [(—1)%p, 0,0]

(1 — exp(mih,,)) =0 for hkl:h,, = 2n
(1 — exp(mih,,)) =2 for hkl:h,, = 2n+1

a_ =2a a;, =a’

m

h,a;,=ha = h, Z=2h

M, =0 for hkl:

h=n
M, =2 for hkl:h=n+3
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Incommensurate magnetic structures

1%

do (2m)3 ,
-V ZZIMMMM 5@ -q-6)
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Incommensurate magnetic structures

Muc,+q(Q) = pm+qf(Q) exp(—W) 1

DV Y
1

My ,+q(@) = 5psin® ue " £(Q) exp(—W)

-
i
-IN=I
I

| -!!-k

do (2

do _  @n)’ B R e A
=N Z;wacl(@)%(@—q—a) 5 mas
—N(zn)g 2f2(Q) exp(—2W) sin* 6 215 5(Q-G+tq)
= ” p-f exp Sin“ 6 u 2 4 Tq
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Commensurate magnetic structures (again!)

Muc,+q(Q) = pm+qf(Q) exp(—W)

My, 1,+q(Q) = 3 sin 0 uf (Q) exp(—W)

do (2m)3 5
=N ZEIMMJQ)I 50 - q - 6)
3
= %N%szz((?) exp(—2W) sin® 6 p* Z 5 <Q —G— %)
(2m)°

m

= 2N, “=—p?f2(Q) exp(—2W) sin? 0 47 GZ 5(Q - G,)
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Summary

Mg = Z mf,’é) exp(—iq.l)
q.n
M (@) =P ) #fo(Q) exp(—Wa) exp(iQ. d)
d

Muc,J_(Q) = Q X (Muc(Q) X Q)

d
% X ZZ|MuC,J_(Q)|25(Q —q— G)
G gq

— 9nTo
4ig

= 0.2695 X 10712 cm pg?!



