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Electron’s magnetic moment

Magnetic Diffraction

𝝁 = 𝐼𝐴ෝ𝒏

The classical moment from a current loop

𝐼 = −
𝑒𝑣e
2𝜋𝑟

𝐴 = 𝜋𝑟2

𝝁 = −
𝑒𝑣e
2
𝑟 = −

𝜇B
ℏ
𝑳

where 𝜇B =
𝑒ℏ

2𝑚e
, and 𝑳 = 𝑣e𝑟𝑚e



Electron’s magnetic moment

Magnetic Diffraction

The quantum moment: dimensionless g-factor

𝝁𝒔 = −𝑔𝑠
𝜇B
ℏ
𝒔 𝝁𝒍 = −𝑔𝑙

𝜇B
ℏ
𝒍 𝑔𝑠~2,  𝑔𝑙 = 1



Atom’s magnetic moment

Magnetic Diffraction

𝝁𝒔 = −𝑔𝑠
𝜇B
ℏ
𝒔 𝝁𝒍 = −𝑔𝑙

𝜇B
ℏ
𝒍 𝑔𝑠~2,  𝑔𝑙 = 1

𝝁𝑺 = −𝑔𝑠
𝜇B
ℏ
𝑺 𝝁𝑳 = −𝑔𝑙

𝜇B
ℏ
𝑳

𝑺 =෍

𝑖

𝒔𝑖 𝑳 =෍

𝑖

𝒍𝑖



Atom’s magnetic moment

Magnetic Diffraction

𝝁𝑺 = −𝑔𝑆
𝜇B
ℏ
𝑺

From LS coupling 𝑱 = 𝑳 + 𝑺, and

𝝁𝑳 = −𝑔𝐿
𝜇B
ℏ
𝑳

𝝁𝑱 = −𝑔𝐽𝑱 𝑔𝐽 = 1 +
𝐽 𝐽 + 1 + 𝑆 𝑆 + 1 − 𝐿(𝐿 + 1)

2𝐽(𝐽 + 1)

𝑔𝑆~2,  𝑔𝐿 = 1



Neutron’s magnetic moment

Magnetic Diffraction

From experiment |𝝁𝑛| = −1.913𝜇N,

where 𝜇N =
𝑒ℏ

2𝑚p
= 5.051 × 10−27JT−1 is the nuclear magneton 

𝜇B =
𝑒ℏ
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Neutron’s magnetic moment

Magnetic Diffraction

From experiment |𝝁𝑛| = −1.913𝜇N,

where 𝜇N =
𝑒ℏ

2𝑚p
= 5.051 × 10−27JT−1 is the nuclear magneton 

𝝁𝑛 = −𝑔𝑛
𝜇N
ℏ
𝑰

𝑰 = 𝒔𝑛ℏ, where 𝒔𝑛 = ±
1

2
. Hence 𝑔𝑛 = 3.826



Born approximation (elastic scattering)

Magnetic Diffraction

𝑑𝜎

𝑑Ω
=

𝑚n

2𝜋ℏ2

2

𝜎𝑓 𝑉 𝑸 𝜎𝑖
2

We will assume that the perturbation V does not act on the target’s eigenstates (i.e. the 

state of the target is not changed by the interaction with a neutron)

Will consider only elastic scattering of neutrons

A central result of the Born approximation is that the differential scattering cross-section 

depends upon the Fourier transform, 𝑉(𝑸), of the interaction potential 𝑉 𝒓 .
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• The neutron’s spin couples to microscopic electromagnetic fields in the sample
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Magnetic interaction potential

Magnetic Diffraction

• The neutron’s spin couples to microscopic electromagnetic fields in the sample

• The strongest, and hence good approximation, is the dipole-dipole interaction

𝑉 𝒓 = −𝝁N ∙ 𝑩(𝒓)

• 𝑩(𝒓) is a local magnetic flux density due to unpaired electrons in the sample

𝑩 𝒓 = 𝑩𝑆 𝒓 + 𝑩𝐿(𝒓)

𝑩𝑆 𝒓 = −2𝜇B
𝜇0
4𝜋

∇ ×
𝒔 × 𝒓

𝑟3
𝑩𝐿 𝒓 = −2𝜇B

𝜇0
4𝜋

1

ℏ

𝒑 × 𝒓

𝑟3
(𝑔𝑒 = 2)

where 𝒔 is the electron’s spin and 𝒑 the electron’s momentum



Magnetic interaction potential

Magnetic Diffraction

Consider a system of many electrons, each labeled j. Calculating the Fourier transform of 

𝑩 𝒓 one finds:

𝑩𝑆 𝑸 𝑗 = −2𝜇𝐵𝜇0 ෡𝑸 × 𝒔𝑗 × ෡𝑸 exp(𝑖𝑸 ∙ 𝒓𝑗)

𝑩𝐿 𝑸 𝑗 = −2𝜇𝐵𝜇0
𝑖

ℏ𝑄
𝒑𝑗 × ෡𝑸 exp(𝑖𝑸 ∙ 𝒓𝑗)

Taking 𝝁n = −𝑔n𝜇N𝒔n,

𝑉 𝑸 = −𝝁N ∙ 𝑩(𝑸) = −2𝑔n𝜇𝐵𝜇0𝜇N𝒔n ∙෍

𝑗

෡𝑸 × 𝒔𝑗 × ෡𝑸 +
𝑖

ℏ𝑄
𝒑𝑗 × ෡𝑸 exp(𝑖𝑸 ∙ 𝒓𝑗)



Magnetic interaction potential (strength of interaction)

Magnetic Diffraction

𝑉 𝑸 = −2𝑔n𝜇𝐵𝜇0𝜇N𝒔n ∙෍

𝑗

෡𝑸 × 𝒔𝑗 × ෡𝑸 +
𝑖

ℏ𝑄
𝒑𝑗 × ෡𝑸 exp(𝑖𝑸 ∙ 𝒓𝑗)

𝑑𝜎

𝑑Ω
=

𝑚N

2𝜋ℏ2

2

𝜎𝑓 𝑉 𝑸 𝜎𝑖
2

𝑑𝜎

𝑑Ω
∝

2𝑔n𝜇B𝜇0𝜇N|𝒔n|𝑚N

2𝜋ℏ2

2

=
𝑔n𝑟0
2

2

= (5.39)2 fm2

where 𝜇B =
𝑒ℏ

2𝑚𝑒
, 𝜇N =

𝑒ℏ

2𝑚
n

, 𝑟0 =
𝜇
0
𝑒2

4𝜋𝑚
𝑒

For nuclear scattering
𝑑𝜎

𝑑Ω
∝ 𝑏2
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Magnetic Diffraction

Magnetic interaction potential

Consider a spatially varying magnetization, 𝑴 𝒓 = 𝑴𝑆 𝒓 +𝑴𝐿(𝒓)

𝑴𝑆 𝒓 = −2𝜇B෍

𝑗

𝛿 𝒓 − 𝒓𝑗 𝒔𝑗 (sum over localized spins)

𝑴𝑆 𝑸 = −2𝜇B෍

𝑗

𝒔𝑗 exp 𝑖𝑸. 𝒓𝑗

𝑉 𝑸 = −2𝑔n𝜇𝐵𝜇0𝜇N𝒔n ∙෍

𝑗

෡𝑸 × 𝒔𝑗 × ෡𝑸 +
𝑖

ℏ𝑄
𝒑𝑗 × ෡𝑸 exp(𝑖𝑸 ∙ 𝒓𝑗)

= 2𝑔n𝜇𝐵𝜇0𝜇N𝒔n ∙
1

2𝜇B
෡𝑸 × 𝑴𝑆(𝑸) × ෡𝑸 −෍

𝑗

𝑖

ℏ𝑄
𝒑𝑗 × ෡𝑸 exp(𝑖𝑸 ∙ 𝒓𝑗)



Magnetic Diffraction

Magnetic interaction potential

One can similarly show that

𝑉 𝑸 = 2𝑔n𝜇𝐵𝜇0𝜇N𝒔n ∙
1

2𝜇B
෡𝑸 × 𝑴𝑆(𝑸) × ෡𝑸 −෍

𝑗

𝑖

ℏ𝑄
𝒑𝑗 × ෡𝑸 exp(𝑖𝑸 ∙ 𝒓𝑗)

= 𝑔n𝜇0𝜇N𝒔n ∙ ෡𝑸× 𝑴𝑆(𝑸) × ෡𝑸 + ෡𝑸 × 𝑴𝐿(𝑸) × ෡𝑸

෍

𝑗

𝑖

ℏ𝑄
𝒑𝑗 × ෡𝑸 exp(𝑖𝑸 ∙ 𝒓𝑗) = −

1

2𝜇B
෡𝑸 × 𝑴𝐿(𝑸) × ෡𝑸



Magnetic Diffraction

Magnetic interaction potential

where        𝑴 𝑸 = 𝑴𝑆 𝑸 +𝑴𝐿 𝑸

and 𝑴⊥ 𝑸 = ෡𝑸 × 𝑴(𝑸) × ෡𝑸

𝑉 𝑸 = 𝑔n𝜇0𝜇N𝒔n ∙ ෡𝑸 × 𝑴𝑆(𝑸) × ෡𝑸 + ෡𝑸 × 𝑴𝐿(𝑸) × ෡𝑸

= 𝑔n𝜇0𝜇N𝒔n ∙ 𝑴⊥ 𝑸



Magnetic differential scattering cross-section

Magnetic Diffraction

𝑉 𝑸 = 𝑔n𝜇0𝜇N𝒔n ∙ 𝑴⊥ 𝑸 =
2𝜋ℏ2

𝑚N

𝑔n𝑟0
2𝜇B

𝒔n ∙ 𝑴⊥ 𝑸

𝜇B =
𝑒ℏ

2𝑚𝑒
, 𝜇N =

𝑒ℏ

2𝑚
n

, 𝑟0 =
𝜇
0
𝑒2

4𝜋𝑚𝑒



Magnetic differential scattering cross-section

Magnetic Diffraction

𝑑𝜎

𝑑Ω
=

𝑚N

2𝜋ℏ2

2

𝜎𝑓 𝑉 𝑸 𝜎𝑖
2 =

𝑔n𝑟0
2𝜇B

2

𝜎𝑓 𝒔𝑛 𝜎𝑖 𝑴⊥ 𝑸 2

𝑉 𝑸 = 𝑔n𝜇0𝜇N𝒔n ∙ 𝑴⊥ 𝑸 =
2𝜋ℏ2

𝑚N

𝑔n𝑟0
2𝜇B

𝒔n ∙ 𝑴⊥ 𝑸

For unpolarized neutrons, we evaluate 𝜎𝑓 𝒔𝑛 𝜎𝑖 , averaged over 𝜎𝑖 and 𝜎𝑓, giving 
1

2

𝑑𝜎

𝑑Ω
=

𝑔n𝑟0
4𝜇B

2

𝑴⊥ 𝑸 2

𝜇B =
𝑒ℏ

2𝑚𝑒
, 𝜇N =

𝑒ℏ

2𝑚
n

, 𝑟0 =
𝜇
0
𝑒2

4𝜋𝑚𝑒



M(Q) of an atom: Magnetic form factors

Magnetic Diffraction

• Ignore filled shells

• Assume atomic-like orbitals for unpaired electrons

• To good approximation:

𝑴 𝑄 ≃ −2𝜇B 𝑗0 𝑄 𝑺 + 1
2 𝑗0 𝑄 + 𝑗2 𝑄 𝑳 = −𝑔𝐽𝜇B𝑱𝑓 Q = 𝝁𝑓(𝑄)

and 𝑗𝑛 𝑄 = 0׬
∞
𝑗𝑛 𝑄𝑟 𝑟2𝑅2 𝑟 d𝑟, where 𝑗𝑛 𝑄𝑟 is a spherical Bessel function

where     𝑓 𝑄 = 𝑗0 𝑄 +
2−𝑔𝐽

𝑔𝐽
𝑗2 𝑄



M(Q) of an atom: Magnetic form factors

Magnetic Diffraction

𝑴 𝑄 ≃ 𝝁𝑓(𝑄)

When 𝑄 = 0, 𝑗0 = 1, 𝑗2 = 0, and 𝑴 𝑄 ≃ 𝝁

Hence this approximation is known as the dipole approximation

𝑓 𝑄 = 𝑗0 𝑄 +
2−𝑔𝐽

𝑔𝐽
𝑗2 𝑄



Magnetic Diffraction

https://www.ill.eu/sites/ccsl/ffacts/ffachtml.html

𝑗0 𝑠 = 𝐴 exp −𝑎𝑠2 + 𝐵 exp −𝑏𝑠2 + 𝐶 exp −𝑐𝑠2 + 𝐷

𝑗2 𝑠 = 𝐴exp −𝑎𝑠2 + 𝐵 exp −𝑏𝑠2 + 𝐶 exp −𝑐𝑠2 + 𝐷 𝑠2

𝑠 =
sin 𝜃

𝜆

M(Q) of an atom: Magnetic form factors

Penelope Jane Brown



Part 2: Types of magnetic structure

⚫ The propagation vector

⚫ Ferromagnets

⚫ Collinear commensurate antiferromagnets

⚫ Canted commensurate antiferromagnets / weak ferromagnets

⚫ Incommensurate spin density waves

⚫ Incommensurate cycloids and helices

Magnetic Diffraction



The propagation vector

Magnetic Diffraction

a



The propagation vector

Magnetic Diffraction

a

𝒒 = 1
2, 0,0

cos(2𝜋𝒒 ∙ 𝑹)



The propagation vector

Magnetic Diffraction

a

𝒒 = 0,0,0



The propagation vector

Magnetic Diffraction

a

𝒒 = 𝛿, 0,0



The propagation vector

Magnetic Diffraction

𝒒 = 1
2
, 1
2
, 0



The propagation vector

Magnetic Diffraction

𝒒 = 1
2
, 1
2
, 0



The propagation vector

Magnetic Diffraction

𝒒 = 1
2
, 1
2
, 0



The propagation vector

Magnetic Diffraction

𝒒 = 1
2
, 1
2
, 0

q

a

b*

a*

b



• Describe magnetic structure as a Fourier series

• 𝝁𝒍𝑑 is the ordered moment at the dth site in the unit cell reached by l

• 𝒎𝒒𝑑
(𝑛)

is the nth complex Fourier amplitude containing phase and amplitude of the wave

• 𝒎𝒒𝑑 = 𝒎(𝒒+𝑮)𝑑, hence summation over 1st Brilluoin zone

• Magnetic moments are real: 𝝁𝒍𝑑 = 𝝁𝒍𝑑
∗ , -q always present, 𝒎−𝒒𝑑 = 𝒎𝒒𝑑

∗

• 𝒎𝒒𝑑 related to basis functions derived by representation theory

Fourier description of magnetic structures

Magnetic Diffraction

𝝁𝒍𝑑 =෍

𝒒,𝑛

𝒎𝒒𝑑
(𝑛)

exp(−𝑖𝒒. 𝒍)



Ferromagnets

Magnetic Diffraction

𝝁𝒍𝑑 =෍

𝒒,𝑛

𝒎𝒒𝑑
(𝑛)

exp(−𝑖𝒒. 𝒍)

𝒎𝒒 =
1

2
[0,0, 𝜇], 𝒒 = (0,0,0)

𝝁𝒍 = [0,0, 𝜇]



Collinear commensurate antiferromagnets

Magnetic Diffraction

𝝁𝒍𝑑 =෍

𝒒,𝑛

𝒎𝒒𝑑
(𝑛)

exp(−𝑖𝒒. 𝒍)

𝒎𝒒 =
1

2
[𝜇, 0,0], 𝒒 =

1

2
, 0,0

𝝁𝒍 = 𝒎𝒒 exp −𝜋𝑙𝑥 + exp 𝜋𝑙𝑥
= 2𝒎𝒒 cos 𝜋𝑙𝑥
= −1 𝑙𝑥𝜇, 0,0



Canted commensurate antiferromagnets

Magnetic Diffraction

𝝁𝒍𝑑 =෍

𝒒,𝑛

𝒎𝒒𝑑
(𝑛)

exp(−𝑖𝒒. 𝒍)

𝒎𝒒
(1)

= 1

2
[0,0, 𝜇 1 ], 𝒒(𝟏) = (0,0,0)

𝒎𝒒
(2)

= 1

2
[𝜇 2 , 0,0], 𝒒(𝟐) =

1

2
, 0,0

𝝁𝒍 = −1 𝑙𝑥𝜇 2 , 0,0 + 0,0, 𝜇 1

= 𝑚[ −1 𝑙𝑥 cos 𝜃, 0, sin 𝜃]

where tan 𝜃 =
𝜇 1

𝜇 2



Incommensurate spin density waves

Magnetic Diffraction

𝝁𝒍𝑑 =෍

𝒒,𝑛

𝒎𝒒𝑑
(𝑛)

exp(−𝑖𝒒. 𝒍)

𝒎𝒒 =
1

2
(0,0, 𝜇), 𝒒 = (𝛿, 0,0)

𝝁𝒍 = 𝒎𝒒 exp −2𝜋𝛿𝑙𝑥 + exp 2𝜋𝛿𝑙𝑥
= 2𝒎𝒒 cos 2𝜋𝛿𝑙𝑥
= [0,0, 𝜇 cos 2𝜋𝛿𝑙𝑥 ]



Incommensurate cycloids and helices

Magnetic Diffraction

𝝁𝒍𝑑 =෍

𝒒,𝑛

𝒎𝒒𝑑
(𝑛)

exp(−𝑖𝒒. 𝒍)

𝒎𝒒
(1)

= 1

2
[0,0, 𝜇], 𝒒(𝟏) = (𝛿, 0,0)

𝒎𝒒
(2)

= 1

2
[𝑖𝜇, 0,0], 𝒒(𝟐) = 𝛿, 0,0

𝝁𝒍 = 𝒎𝒒
(1)

exp −2𝜋𝛿𝑙𝑥 + exp 2𝜋𝛿𝑙𝑥

+𝒎𝒒
(2)

exp −2𝜋𝛿𝑙𝑥 − exp 2𝜋𝛿𝑙𝑥

= 2𝒎𝒒
(1)

cos 2𝜋𝛿𝑙𝑥 − 2𝑖𝒎𝒒
(2)

sin 2𝜋𝛿𝑙𝑥
= 𝜇[sin 2𝜋𝛿𝑙𝑥 , 0, cos 2𝜋𝛿𝑙𝑥 ]



Incommensurate cycloids and helices

Magnetic Diffraction

𝝁𝒍𝑑 =෍

𝒒,𝑛

𝒎𝒒𝑑
(𝑛)

exp(−𝑖𝒒. 𝒍)

𝒎𝒒
(1)

= 1

2
[0,0, 𝜇], 𝒒(𝟏) = (𝛿, 0,0)

𝒎𝒒
(2)

= 1

2
[0, 𝑖𝜇, 0], 𝒒(𝟐) = 𝛿, 0,0

𝝁𝒍 = 𝒎𝒒
(1)

exp −2𝜋𝛿𝑙𝑥 + exp 2𝜋𝛿𝑙𝑥

+𝒎𝒒
(2)

exp −2𝜋𝛿𝑙𝑥 − exp 2𝜋𝛿𝑙𝑥

= 2𝒎𝒒
(1)

cos 2𝜋𝛿𝑙𝑥 − 2𝑖𝒎𝒒
(2)

sin 2𝜋𝛿𝑙𝑥
= 𝜇[0, sin 2𝜋𝛿𝑙𝑥 , cos 2𝜋𝛿𝑙𝑥 ]



Part 3: Magnetic diffraction

Magnetic Diffraction

⚫ Commensurate magnetic structures

⚫ Incommensurate magnetic structures

⚫ Integrated intensities



Commensurate magnetic structures

Magnetic Diffraction

𝑴𝑢𝑐 𝑸 = 𝑝෍

𝑑

𝝁𝑑𝑓𝑑 𝑄 exp −𝑊𝑑 exp(𝑖𝑸. 𝒅)

𝑴𝑢𝑐,⊥ 𝑸 = ෡𝑸 × 𝑴𝑢𝑐 𝑸 × ෡𝑸

𝑝 =
𝑔n𝑟0
4𝜇B

𝑑𝜎

𝑑Ω
=

𝑔n𝑟0
4𝜇B

2

𝑴⊥ 𝑸 2 = 𝑁𝑚

2𝜋 3

𝑣𝑚
෍

𝐆
𝑚

𝑴𝑢𝑐,⊥ 𝑸
2
𝛿 𝑸 − 𝑮𝑚

Where the magnetic unit cell structure factor is:



Commensurate magnetic structures (simple ferromagnet)

Magnetic Diffraction

𝑑𝜎

𝑑Ω
= 𝑁𝑚

2𝜋 3

𝑣𝑚
෍

𝐆
𝑚

𝑴𝑢𝑐,⊥ 𝑸
2
𝛿 𝑸 − 𝑮𝑚

= 𝑁
2𝜋 3

𝑣0
𝑝2𝑓2 𝑄 exp −2𝑊 sin2(𝜃) 𝜇2෍

𝐆

𝛿 𝑸 − 𝑮

𝑴𝑢𝑐 𝑸 = 𝑝෍

𝑑

𝝁𝑑𝑓𝑑 𝑄 exp −𝑊𝑑 exp(𝑖𝑸. 𝒅) = 𝑝𝑓 𝑄 exp −𝑊 𝝁

𝑴𝑢𝑐,⊥ 𝑸 = ෡𝑸 × 𝑴𝑢𝑐 𝑸 × ෡𝑸 = 𝑝𝑓 𝑄 exp −𝑊 sin 𝜃 𝜇

𝝁𝒍𝑑 = [0,0, 𝜇]

where sin 𝜃 is the tilt of 𝝁 away from ෡𝑸



Commensurate magnetic structures (simple antiferromagnet)

Magnetic Diffraction

𝝁𝒍𝑑 = −1 𝑙
𝑥𝜇, 0,0

𝑑𝜎

𝑑Ω
= 𝑁𝑚

2𝜋 3

𝑣𝑚
෍

𝐆
𝑚

𝑴𝑢𝑐,⊥ 𝑸
2
𝛿 𝑸 − 𝑮𝑚

= 2𝑁𝑚

2𝜋 3

𝑣𝑚
𝑝2𝑓2 𝑄 exp −2𝑊 sin2 𝜃 𝜇2෍

𝐆
𝑚

𝛿 𝑸 − 𝑮𝑚

𝑴⊥ 𝑸 = 𝑝𝑓 𝑄 exp −𝑊 sin 𝜃 𝜇(1 − exp(𝜋𝑖ℎ𝑚))

1 − exp 𝜋𝑖ℎ𝑚 = 0 for  ℎ𝑘𝑙: ℎ𝑚 = 2𝑛
1 − exp 𝜋𝑖ℎ𝑚 = 2 for  ℎ𝑘𝑙: ℎ𝑚 = 2𝑛+1

For  ℎ𝑘𝑙: ℎ𝑚 = 2𝑛+1



Commensurate magnetic structures (simple antiferromagnet)

Magnetic Diffraction

𝝁𝒍𝑑 = −1 𝑙
𝑥𝜇, 0,0

𝒂𝑚 = 2𝒂 𝒂𝑚
∗ = 1

2𝒂
∗

𝑴𝑢𝑐 = 0 for  ℎ𝑘𝑙: ℎ = 𝑛
𝑴𝑢𝑐 = 2 for  ℎ𝑘𝑙: ℎ = 𝑛 + 1

2

and in the nuclear unit cell…

1 − exp 𝜋𝑖ℎ𝑚 = 0 for  ℎ𝑘𝑙: ℎ𝑚 = 2𝑛
1 − exp 𝜋𝑖ℎ𝑚 = 2 for  ℎ𝑘𝑙: ℎ𝑚 = 2𝑛+1

ℎ𝑚𝒂𝑚
∗ = ℎ 𝒂 ℎ𝑚 = 2ℎ



Incommensurate magnetic structures

Magnetic Diffraction

𝑑𝜎

𝑑Ω
= 𝑁

2𝜋 3

𝑣0
෍

𝐆

෍

𝒒

𝑴𝑢𝑐,⊥ 𝑸
2
𝛿 𝑸 − 𝒒 − 𝑮



Incommensurate magnetic structures

Magnetic Diffraction

𝑴𝑢𝑐,+𝒒 𝑸 = 𝑝𝒎+𝒒𝑓 𝑄 exp −𝑊

𝑑𝜎

𝑑Ω
= 𝑁

2𝜋 3

𝑣0
෍

𝐆

෍

𝒒

𝑴𝑢𝑐⊥ 𝑸 2𝛿 𝑸 − 𝒒 − 𝑮

= 𝑁
2𝜋 3

𝑣0
𝑝2𝑓2 𝑄 exp −2𝑊 sin2 𝜃 𝜇2

1

4
෍

𝐆

𝛿 𝑸 − 𝑮 ± 𝒒

𝒎+𝒒𝑑 =
1
2
(0,0, 𝜇𝑒−𝑖𝜙)

𝒎−𝒒𝑑 =
1
2
(0,0, 𝜇𝑒𝑖𝜙)

𝑴𝑢𝑐,⊥,+𝒒 𝑸 =
1

2
𝑝 sin 𝜃 𝜇𝑒−𝑖𝜙𝑓 𝑄 exp −𝑊



Commensurate magnetic structures (again!)

Magnetic Diffraction

𝑴𝑢𝑐,+𝒒 𝑸 = 𝑝𝒎+𝒒𝑓 𝑄 exp −𝑊

𝑑𝜎

𝑑Ω
= 𝑁

2𝜋 3

𝑣0
෍

𝐆

෍

𝒒

𝑴𝑢𝑐,⊥ 𝑸
2
𝛿 𝑸 − 𝒒 − 𝑮

=
1

2
𝑁

2𝜋 3

𝑣0
𝑝2𝑓2 𝑄 exp −2𝑊 sin2 𝜃 𝜇2෍

𝐆

𝛿 𝑸 − 𝑮 −
1

2

= 2𝑁𝑚

2𝜋 3

𝑣𝑚
𝑝2𝑓2 𝑄 exp −2𝑊 sin2 𝜃 𝜇2෍

𝐆
𝑚

𝛿 𝑸 − 𝑮𝑚

𝒎+𝒒𝑑 =
1
2
[𝜇, 0,0]

𝒎−𝒒𝑑 =
1

2
[𝜇, 0,0] , 𝒒 =

1

2
, 0,0

𝑴𝑢𝑐,⊥,+𝒒 𝑸 =
1

2
𝑝 sin 𝜃 𝜇𝑓 𝑄 exp −𝑊



Summary

Magnetic Diffraction

𝝁𝒍𝑑 =෍

𝒒,𝑛

𝒎𝒒𝑑
(𝑛)

exp(−𝑖𝒒. 𝒍)

𝑴𝑢𝑐 𝑸 = 𝑝෍

𝑑

𝝁𝑑𝑓𝑑 𝑄 exp −𝑊𝑑 exp(𝑖𝑸. 𝒅)

𝑴𝑢𝑐,⊥ 𝑸 = ෡𝑸 × 𝑴𝑢𝑐 𝑸 × ෡𝑸

𝑝 =
𝑔n𝑟0
4𝜇B

= 0.2695 × 10−12 cm 𝜇B
−1

𝑑𝜎

𝑑Ω
∝෍

𝐆

෍

𝒒

𝑴𝑢𝑐,⊥ 𝑸
2
𝛿 𝑸 − 𝒒 − 𝑮


