

Neutrons for life sciences

Yuri Gerelli Institute for Complex Systems - CNR Physics department, Sapienza University, Rome

Life Sciences

Life Sciences involve the scientific study of life – such as microorganisms, plants, and animals including human beings.

Among Life Science disciplines, those that can benefit from neutron techniques are:

- **Biology** scientific study of life
- **Biochemistry** study of the chemical reactions required for life to exist and function, usually a focus on the cellular level
- **Bioinformatics** developing of methods or software tools for storing, retrieving, organizing and analyzing biological data to generate useful biological knowledge
- **Biophysics** study of biological processes by applying the theories and methods that have been traditionally used in the physical sciences
- **Molecular biology** the study of biology and biological functions at the molecular level, some cross over with biochemistry, genetics, and microbiology
- **Structural biology** a branch of molecular biology, biochemistry, and biophysics concerned with the molecular structure of biological macro-molecules

Neutron techniques play a key role for:

- Biomaterials
- Health, Biomedical and Medical Sciences
- Bioelectronics
- Pharmacology
- Proteomics

Key systems

Lipids

- Structure
- **Dynamics**
- Role of composition on emerging properties

Biopolymers

- Structure
- Dynamics

Complex membranes

Extracellular Fluid

Proteins & Peptides

- Structure
- Aggregation
- Dynamics
- Interactions

- Interactions
- Structural remodeling
- Structure & dynamics
 VS composition

Istituto dei Sistemi Complessi Consiglio Nazionale delle Ricerche

Neutron techniques for structural characterisation

Atomic resolution

Neutron Diffraction

1. Crystallography

- Main use: locating H atoms in biomacromolecules.
- Sample state: crystalline, to capture structures at atomic resolution.
- Commonly used for studying enzymes, proteins, and large biological complexes and to visualize structured solvent networks.

2. Fiber diffraction

- Main use: understanding the structure of biological fibers.
- **Sample state:** well-ordered, periodic fiber form (e.g., crystalline fibers).
- Commonly used for studying DNA, filamentous bacterial viruses, polysaccharides, amyloids, etc...

3. Small-Angle diffraction

- Main use: understanding the structure of planar oriented samples.
- Sample state: oriented or ordered, e.g. stacked multilayers, etc...
- Commonly used for studying lipid and protein multilayers, skin models, myelin sheaths, etc...

lazionale delle Ricerche

Neutron techniques for structural characterisation

From atomic to molecular resolution

Small-Angle Neutron Scattering (SANS)

- Main use: characterising size, shape and internal structure of biomacromolecules in solution.
- **Sample state:** in solution, typically 1-100 mg/ml.
- Can be combined with *in-situ* Size Exclusion Chromatography (SEC-SANS).
- Transversal for the study of many biosystems (lipid vesicles, proteins, their aggregates, etc...).

Neutron Reflectometry (NR)

- Main use: characterising size, shape and internal structure of biomacromolecules in solution.
- Sample state: planar thin films, typically 1-500 nm thick.
- Can be combined with *in-situ* infrared (ATR-IR) and electrical impedance (EIS) spectroscopies.
- Commonly used to study biomembranes, protein films, polymer coatings, etc...

Neutron Imaging

- Main use: watch the internal structure (direct space) of macroscopic samples.
- Sample state: macroscopic, >few 10 mm³ and in solid state.
- Typically used to study water in biological specimens.

Isotopic substitution for "coherent" techniques

Chemical composition of

- a generic phopsholipid molecule (DOPC): <mark>62% H</mark>, 31% C, <u>6% O</u>, 0.5% N, 0.5% P
- a generic protein (HSA):

50% H, 29% C, 10% O, 0.3% N, 0.3% P

Techniques with atomic resolution exploit isotopic substitution to alter the scattering behavior without changing the structural properties of the sample.

Techniques with **lower resolution** exploit **contrast variation** to highlight or mask different parts of a complex system by selectively substituting specific isotopes without changing the structural properties of the sample.

$$V(\vec{r}) = \frac{2\pi\hbar^2}{m_n} b^{coh} \delta(\vec{r})$$
$$b^{coh}(^1H) = -3.74 fm$$
$$b^{coh}(D) = +6.67 fm$$

$$\rho = \sum_{j=1}^{N} \frac{b_j^{coh}}{V_m}$$

$$\rho(H_2 O) = -0.56 \times 10^{-6} \text{ Å}^{-2}$$

$$\rho(D_2 O) = 6.35 \times 10^{-6} \text{ Å}^{-2}$$

Contrast variation

S. Combet EPJ Web of Conference 2020, <u>10.1051/epjconf/202023601001</u>

The contrast is the difference between the SLD of the part of the sample considered and that of the surrounding environment.

Neutron Spectroscopy techniques for life sciences

Istituto dei Sistemi Complessi

Consiglio Nazionale delle Ricerche

Neutron techniques for dynamical characterisation

From picoseconds to nanoseconds

Inelastic Neutron Scattering (INS)

- Main use: probing the *collective* dynamics in biomacromolecules (and larger systems).
- Used to probe collective excitations at large energy transfers (<u>meV regime</u>).

Quasielastic Neutron Scattering (QENS)

- Main use: probing *internal dynamics* in biomacromolecules, *diffusive behaviour* of water and biomacromolecules.
- Largely used to investigate proteins and lipids in deuterium-rich environments (ps-ns, <u>μeV regime</u>).

Elastic Incoherent Neutron Scattering (EINS)

- Main use: probing the average dynamics of protiated macromolecules.
- Commonly used to determine the mean-square displacement of H atoms (< μeV regime).

Neutron Spin-Echo (NSE)

- Main use: probing slow correlated motions on the nano- to picosecond timescale.
- Commonly used to determine diffusion constants and collective motions.

For INS, QENS and EINS samples are hydrated powder or films and very dense solutions (> 50 mg of "sample" in the beam). For NSE concentrated solutions are typically used.

Selected examples

Fiber diffraction

Example taken from

M. Haertlein et al. Methods in Enzymology 2016 <u>10.1016/bs.mie.2015.11.001</u>

DNA fibers

Isotopic substitution

Solvent structure and hydrogen bonding around DNA molecules

Data collected <u>hydrating</u> the fibres with water containing from 0% (A) to 100% (F) deuterium.

What ca we observe?

- **1. Background** is **reduced**: less H in the sample, less the incoherent scattering.
- Relative intensity of some diffraction peaks changes: <u>labile H atoms</u> of <u>DNA</u> (N-H, O-H groups) are exchanged by D atoms (formation of N-D, O-D groups).
- 3. Peaks disappearing are due to labile H atoms and by H atoms of water molecules.

SANS for life sciences

A generic SANS experiment

on a protein solution

Mahieu & Gabel Acta Cryst. 2018, 10.1107/S2059798318005016

The structure of a protein complex

Pyrococcus horikoshii TET2–TET3 aminopeptidase complexes

hetero-oligomers formed upon re-oligomerization of de-oligomerized TET2 and TET3

Mahieu & Gabel Actα Cryst. 2018, 10.1107/S2059798318005016 Appolaire et al. Acta Cryst. 2014, 10.1107/S1399004714018446

The structure of a protein complex

Pyrococcus horikoshii TET2–TET3 aminopeptidase complexes

A model free approach

Composition from contrast variation series

M. Adamo et al. Lab on a Chip 2017, <u>10.1039/c7lc00179g</u>

A model free approach

Composition from contrast variation series

% D₂O (v/v)

For multi component complexes/aggregates: $I(q) \approx \sum_{j} (f_j \Delta \rho_j v_j)^2$

$$\rho_{MP} = 0 = \sum_{j} f_{j} \rho_{j}$$

Istituto dei Sistemi Complessi Consiglio Nazionale delle Ricerche

M. Adamo et al. Lab on a Chip 2017, <u>10.1039/c7lc001799</u>

Specular NR for life sciences

General experiment layout

Reflectivity (R) is the quantity measured in a reflectometry experiment

$$R = \frac{num.reflect.neutrons}{num.incident neutrons}$$

Key considerations

"Reflectometry is a technique used to determine the thickness and the internal structure of thin films at interfaces"

•Thickness: depends on sample and instrumentation, but from few (2-3) Å up to 10³-10⁴ Å, as rule of thumb.
•Visible to the probe i.e. with a *good contrast* with respect to the environment.
•Sensitivity on internal structure: down to few Å.

Always look to the sample from the side and imagine a layered structure!

A visual example with a lipid bilayer

The result of a NR experiment

$$R(q) = \frac{16\pi^2}{q^4} \left| \int \frac{\partial \rho(z)}{\partial z} e^{i\vec{q}\cdot\vec{z}} d\vec{z} \right|^2$$

Master formula (valid at large q)

Contrast variation and multi-component materials

SLD for multi-component materials

headgroups + water

$$\rho_B = \phi_{HG} \cdot \rho_{HG} + \phi_w \cdot \rho_w = (1 - \phi_w) \cdot \rho_{HG} + \phi_w \cdot \rho_w$$
tails + caffeine

$$\rho_Y = \phi_T \cdot \rho_T + \phi_C \cdot \rho_C = (1 - \phi_C) \cdot \rho_T + \phi_C \cdot \rho_C$$

For hydration or solvent penetration in any layer $\rho_l = \phi^{dry} \rho^{dry} + \phi_w \rho_w = (1 - \phi_w) \rho^{dry} + \phi_w \rho_w, \quad \phi_w + \phi^{dry} = 1$

ACMW = **a**ir contrast-matched water, SLD = 0 i.e. **92:8** $H_2O:D_2O$ by volume.

CNR Istituto dei Sistemi Complessi

QENS for life sciences

$S(2\theta,\omega)$ scattering regimes

Incoherent Structure factor

Fourier transform of the self-correlation function, $\rm G_{s}$

$$S_{incoh}(\vec{q},\omega) = \frac{1}{2\pi\hbar} \int G_s(\vec{r},t) e^{i(\vec{q}\cdot\vec{r}-\omega t)} d\vec{r} dt$$

For biological systems, a QENS spectrum consists of an elastic contribution and, at least, of a quasi-elastic broadening.

The q-dependence of the elastic peak intensity gives information on the

- 1. fraction of immobile** H-atoms.
- 2. Geometry of confined motions, if any.

The q-dependence of the QE broadening and intensity gives information on the

- 1. timescale and diffusion constants of the motions.
- 2. number of motions detected.

An example of phospholipid vesicles

measured at different resolutions

0

-2

Energy (meV)

Y. Gerelli et al. Soft Matter 2011, 10.1039/CoSM01301C

Some assumption:

- 1. the sample complexity limits the detail of the information that can be derived from this type of measurements.
- 2. The measurements are informative on the localisation, in temperature or other external parameters, of different dynamical regimes shown by the sample.
- 3. It is possible** to extract a mean square displacement information that is analogous to the Debye-Waller factor for solids.

Istituto dei Sistemi Complessi

Consiglio Nazionale delle Ricerche

Dynamics of hydration water

 $\Gamma_T(q) \rightarrow$ measures the time for a particle to diffuse a distance 1/q. It increases with q. $\Gamma_R(q) \rightarrow$ measures frequency of rotational motions. It is q-independent.

Sample: perdeuterated protein powder + hydration water (H₂O).

Characterisation of individual motions

- The complexity of the sample poses challenges in data analysis.
- Detailed modeling, whether numerical or analytical, is necessary for proper data analysis.
- Knowledge from complementary techniques must be employed to build accurate structural and dynamical models.
- Separation of coherent and incoherent signals is not as straightforward as described in textbooks.
- Isotopic substitution might affect biological samples...

