Inelastic Neutron Scattering

Motions (mainly nuclear) and Spectrometers

ISIS Neutron and Muon Source

Victoria.Garcia-Sakai@stfc.ac.uk

18th Oxford School on Neutron Scattering 11th September 2024

Neutrons tell us where atoms are and what atoms do

Take Home Messages

1. Neutron spectroscopy probes dynamics, whether it is vibrations in a crystal lattice, bond stretching modes, diffusion of species through pores or relaxation processes in polymers, magnetic excitations.

2. It can also, indirectly, inform on structure/binding

- **3. Variety of instrument types** are available get informed on which is best suited to your problem
 - **4. Plethora of applications** ask or search the literature and talk to facility scientists
- **5. Offer unique info** complementary to other techniques, in particular atomic or molecular calculations.

Neutron Concepts (reminder)

Elastic and Inelastic Scattering

Elastic scattering:

$$|\mathbf{k}_i| = |\mathbf{k}_f| = \frac{2\pi}{\lambda}; \quad \mathbf{Q} = 2|\mathbf{k}|\sin\theta = \frac{4\pi}{\lambda}\sin\theta;$$

 $\Delta E = \mathbf{0}$

Inelastic scattering:

$$|\mathbf{k}_i| \neq |\mathbf{k}_f|;$$

$$\Delta \mathbf{E} = \hbar \boldsymbol{\omega} = E_i - E_f = \frac{\hbar}{2m} (k_i - k_f)$$

 $\frac{d^2\sigma}{d\Omega d\omega} \propto \frac{k_f}{k_f} \frac{\sigma}{4\pi} S(\boldsymbol{Q}, \omega)$

The scattering function, $S(Q, \omega)$ contains all the physics of the system (in space and time) and depends only on the system.

If your detector can analyse the energy of the neutrons, then the **double differential cross-section** can be defined as

 $\frac{d^2\sigma}{d\Omega dE} = \frac{d\Omega \text{ with final energies between } E_f \text{ and}(E_f + dE_f)}{I_0 d\Omega dE_f}$

2

$$\frac{d^2\sigma}{d\Omega d\omega} = \left(\frac{d^2\sigma}{d\Omega d\omega}\right)_{\text{elastic}} + \left(\frac{d^2\sigma}{d\Omega d\omega}\right)_{\text{inelastic}}$$

$$\frac{d^2\sigma}{d\Omega d\omega} = \left(\frac{d^2\sigma}{d\Omega d\omega}\right)_{\text{elastic}} + \left(\frac{d^2\sigma}{d\Omega d\omega}\right)_{\text{inelastic}} + \left(\frac{d^2\sigma}{d\Omega d\omega}\right)_{\text{quasi-elastic}}$$

Elastic scattering – no energy exchange $\hbar\omega$ =0. Ideally it is a δ function, in reality it is the resolution.

Energy Transfer

Quasi-elastic scattering (QENS)– a <u>small</u> energy exchange ħω≠0≈neV or few meV . Processes with a distribution of energies.

Inelastic scattering (INS) – energy exchange ħω≠0. Processes of <u>discrete energy steps</u>, <u>quantised</u> (vibrations or excitations).

Scattering Cross-section, σ

 σ is the total scattering x-section – probability that the neutron is scattered which depends on nucleus-neutron interactions as defined by the scattering length *b*. Complex number where the imaginary part is for the absorption.

$$\sigma_{\rm coh} = 4\pi \bar{b}^2$$

$$\sigma_{\rm incoh} = 4\pi (\overline{b^2} - \overline{b}^2)$$

• Detector can only measure a finite angular range $\Delta\Omega$ and for an assembly of nuclei, the differential cross-section is

$$\frac{d\sigma}{d\Omega} = \sum_{n} \sum_{m} b_{n} b_{m} \exp(i\boldsymbol{Q} \cdot (\boldsymbol{r}_{n} - \boldsymbol{r}_{m}))$$
Incoherent
$$= \overline{b}^{2} \sum_{n} \sum_{m \neq n} \exp(i\boldsymbol{Q} \cdot (\boldsymbol{r}_{n} - \boldsymbol{r}_{m})) + \overline{b}^{2}$$
Scattering
$$= \overline{b}^{2} \sum_{n} \sum_{m} \exp(i\boldsymbol{Q} \cdot (\boldsymbol{r}_{n} - \boldsymbol{r}_{m})) + (\overline{b}^{2} - \overline{b}^{2})$$

Scattering Function- Correlations

In the experiment we measure the total $S(Q, \omega)$ and that each term, coherent and incoherent is weighted by its respective cross-section σ

$$S(\boldsymbol{Q}, \omega) = S_{\text{inc}}(\boldsymbol{Q}, \omega) + S_{\text{coh}}(\boldsymbol{Q}, \omega)$$

$$S_{\text{inc}}(\boldsymbol{Q},\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \sum_{i} \langle \exp(-i\boldsymbol{Q}\cdot\boldsymbol{R}_{i}(0))\exp(-i\boldsymbol{Q}\cdot\boldsymbol{R}_{i}(t)) \rangle \exp(-iwt) dt$$
$$S_{\text{coh}}(\boldsymbol{Q},\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \sum_{i,j} \langle \exp(-i\boldsymbol{Q}\cdot\boldsymbol{R}_{i}(0))\exp(-i\boldsymbol{Q}\cdot\boldsymbol{R}_{j}(t)) \rangle \exp(-iwt) dt$$

So, just like we can write

$$\frac{d^2\sigma}{d\Omega d\omega} = \left(\frac{d^2\sigma}{d\Omega d\omega}\right)_{\text{elastic}} + \left(\frac{d^2\sigma}{d\Omega d\omega}\right)_{\text{inelastic}} + \left(\frac{d^2\sigma}{d\Omega d\omega}\right)_{\text{quasi-elastic}}$$
we could also write it in terms of:

$$\frac{d^2\sigma}{d\Omega d\omega} = \left(\frac{d^2\sigma}{d\Omega d\omega}\right)_{\text{inc}} + \left(\frac{d^2\sigma}{d\Omega d\omega}\right)_{\text{coh}}$$

$$S(\mathbf{Q}, \omega) = S_{\text{inc}}(\mathbf{Q}, \omega) + S_{\text{coh}}(\mathbf{Q}, \omega)$$
Coherent inelastic scattering

Incoherent quasi-elastic scattering Coherent quasi-elastic scattering

Incoherent inelastic scattering

Coherent & Incoherent Scattering

Coherent scattering

- Describes correlations between nuclei
- Peaks arise due to wave interference
- Provides **structure** of the sample (elastic)
- Describes the **collective dynamics** of nuclei (lattice vibrations, bending modes, cooperative relaxations...)

• Incoherent scattering

- Contains no information about structure
- For most elastic scattering measurements, it manifests itself as an inconvenient flat background but ...
- ... it relates to the region of space accessible to the scatterers and yields information about the geometry of the motions.
- Describes the **dynamics of individual particles**

Motions

Map of dynamical modes

Diffusive motions (incoherent QENS)

Large scale modes and membrane bending/fluctuations (coherent QENS)

1. Coherent Inelastic Scattering

Remember the double differential cross-section

$$\frac{d^2\sigma}{d\Omega d\omega} \propto \frac{k_f}{k_i} \frac{\sigma}{4\pi} S(\boldsymbol{Q}, \omega)$$

For propagating excitations (e.g. lattice vibrations or spin waves), $S(Q, \omega)_{coh}$ has peaks at single frequencies $\hbar \omega_{ph}$ and the size of the peaks varies according to:

Lattice vibrations (phonons)

 $S(\boldsymbol{Q},\omega) \propto \exp[-2W(\boldsymbol{Q},T)] \times |G(\boldsymbol{Q})|^2 \times [n(\omega_{ph}) + 1] \times 1/\omega_{ph} \times \boldsymbol{Q}^2$

Spin waves (magnons)

 $S(\boldsymbol{Q},\omega) \propto \exp[-2W(\boldsymbol{Q},T)] \times [n(\omega_{mag}) + 1] \times 1/\omega_{mag} \times f^2(\boldsymbol{Q})$

1. Coherent Inelastic Scattering

Atoms are considered to be oscillating in harmonic potentials. Dispersion relation gives angular frequency of phonon as function of momentum

Optical phonon Out of-phase vibrations

2. Incoherent Inelastic Scattering

If not a lattice but individual molecules, the incoherent inelastic intensity $S(\mathbf{Q}, \omega_{\iota})_{incoh}$ can be written for **vibrational modes**.

$$S_{\text{inc}}(Q, n\omega_i) \propto \frac{(Q^2 U_i^2)^n}{n!} \exp(-Q^2 U_{\text{total}}^2)$$

Energy Transfer

Vibrations are quantised thus appear as INS feature at given ħω≠0 values. Incoherent scattering ...

... describes vibrational modes

... stretching, rocking, bending, twisting...

... main association of vibrational spectroscopy technique (cm⁻¹) comparable to Raman or IR spectroscopy

... relies on large incoh x-section of H

... DWF minimised by measuring at low temperatures.

3. Incoherent Quasi-elastic scattering

Energy Transfer

We measure **the self correlation function**, ie. how particles move as a function of time. This corresponds to the incoherent signal which we can write as:

 $S_{\text{inc}}(\boldsymbol{Q},\omega) = S_{\text{vib}}(\boldsymbol{Q},\omega) \otimes S_{\text{rot}}(\boldsymbol{Q},\omega) \otimes S_{\text{trans}}(\boldsymbol{Q},\omega)$

 $I_{\text{self}}(\boldsymbol{Q},t) = I_{\text{vib}}(\boldsymbol{Q},t) \times I_{\text{rot}}(\boldsymbol{Q},t) \times I_{\text{trans}}(\boldsymbol{Q},t)$

It is a **convolution of components** which for simplicity are assumed **independent** motions. Note that in the time domain we multiply the terms (easier!)

Can't forget the instrumental resolution:

 $S'(Q,\omega) = S(Q,\omega) \otimes R(Q,\omega)$

QENS relies on the large incoherent xsection of hydrogen.

Fixed Energy Window Scans

Case of **S(Q**, $\omega \approx 0$): Elastic Fixed Window Scans

Measure the elastic intensity as a function of temperature (resembles a DSC scan).

Good for locating **transitions**, choosing at what temperatures to perform QENS measurements (**dynamics enter the spectrometer window**), and comparative studies (**parametric**).

Dubey, VGS et al, Scientific Reports (2018)

Fixed Energy Window Scans

4. Coherent Quasi-elastic scattering

These are 'collective' dynamics, they come from **coherent part of the correlation function** and depend on the **structure factor**, *S*(*Q*), ie. how atoms are distributed in space.

$$I_{\text{coll}}(Q,t) \approx I_{\text{self}}(Q,t) \left(\frac{Q}{\sqrt{S(Q)}},t\right)$$

 $\tau_{\rm coll}(Q,T) \approx a(T)\tau_{\rm self}(Q,T)S(Q)^{1/\beta}$

Molecular relaxations in polyisobutylene

Farago et al, PRE, (2002)

2. Collective nuclear (or spin) dynamics

Bu et al, PNAS (2005)

Stradner and Schurtenberger, Soft Matter (2019)

Map of dynamical modes

Inelastic Scattering Measurements (Instruments)

Need to measure k_i and k_f , how?

- 1) Bragg diffraction
- 2) Time-of-flight
- 3) Larmor precession

Bragg's Law

For **constructive interference**, **path difference** between the reflected wave and that traversing through, must equal $n\lambda$

Path difference =
$$(AB + BC) - (AD) = n\lambda$$

 $\sin \theta = \frac{d}{AB} = \frac{d}{BC}$ $\tan \theta = \frac{2d}{AC}$ $\cos \theta = \frac{AD}{AC}$
 $n\lambda = \left(\frac{d}{\sin \theta} + \frac{d}{\sin \theta}\right) - \frac{2d}{\tan \theta}\cos \theta = \frac{2d}{\sin \theta}\left(1 - \cos^2 \theta\right)$

 $n\lambda = 2dsin \theta$

Time-of-flight

Basic needs for measuring neutron scattering probability

- **Source** of neutrons with wavelengths in the right range; need to transport neutrons to the experimental area.
- Need to determine the incident and neutron directions angular resolution
- Need to determine the incident and scattered neutron wavelength (energy) - wavelength (energy) resolution
 - Bragg diffraction
 - Time of flight
- **Detectors** to measure counts at different scattering angles
- To cover desired range, need measurements at different wavelengths and/or many angles **Q-range, E-range**
- Need to **filter** out unwanted neutrons
- Need to **polarise** beams

Instrumental Resolution

Uncertainties in the neutron wavelength and direction of travel => Q and E can only be defined with a certain precision

Total signal in a scattering experiment ∞ phase space volume

The better the resolution volume, the lower the count rate. It's always a trade-off between intensity and resolution.

Basic needs general (cont.)

- Large sample area, to achieve good count rates, since neutron sources are weak
- Need large sample-detector distance otherwise additional collimation is necessary for good angular resolution with large samples
- Need detectors all around sample to collect maximum number of scattered neutrons
- Need large amounts of shielding to minimise background in detectors (and personnel safety!). Also achieved with large source-sample distance
- For ToF need long moderator-sample distance for good time resolution as dictated by pulse width plus long sample-detector distance.

Snell's Law

 $n_1 \cos \theta_1 = n_2 \cos \theta_2$ $\frac{\cos\theta_1}{\cos\theta_2}$ n_2 $n_2 = \cos \theta_c$ if $\theta_2 = 0$

refracted beam

Neutron guide tubes exploit that *n* for neutrons is < 1 in more materials, so total external reflection can occur at the boundary between material and vacuum.

 $\theta_{\rm c}$ is the critical angle of total reflection

N is number of atoms per cm3

b is bound coherent cross-section

$$n_{2} = 1 - \lambda^{2} \frac{Nb}{\pi}$$
$$\theta_{c} = \lambda \sqrt{Nb/\pi}$$

Neutron Guide Characteristics

Natural Ni is most commonly used, with high θ_c of 1.7mrad @ λ =1Å. For Ni,

$$\theta_{\rm c}({\rm Ni}) = \lambda [{\rm \AA}] \times 0.1^{\circ}; \ Q_{\rm c} = 0.0218 {\rm \AA}^{-1}$$

Reflectance requires extremely flat surfaces, so coatings on glass are typically used.

Better technology involves evaporating alternate layers of ⁵⁸Ni and Ti and of varying thicknesses. $\theta_{\rm c}({\rm SM}) = m \times \lambda [{\rm \AA}] \times 0.1^{\circ}$

Courtesy of J. Stahn, PSI and Swiss Neutronics

Neutron Guides

WISH guide on TS2 @ ISIS

Neutron transport up to ~ 100m in existing sources -> pushing to ~ 200m

Swiss neutronics guides for NIST, USA

Distribution of neutrons by guides

Distribution of neutrons by guides

Guide Types

Curved Guides

- Reflecting from both sides
- Garland reflections
- Exceed critical angle
- Fewer neutrons along inside face
- Fast neutrons and gamma rays

Straight Guide

D17 parabolic focusing guide @ ILL

	Ballistic Guide		
SIS 82m	Source	High m coating	High m coating
ide @ SNS		Low m coating	Sample

Energy/Wavelength Selection
Velocity Selector

If you can live with poor monochormatization ($\delta\lambda/\lambda \sim 10\%$) as it is commonly used in reactor small angle neutron scattering machines (SANS for measurements of large objects), you use a **velocity selector** (essentially a **rotating collimator**).

Crystal Monochromators

In a reactor, this is done by typically using **crystal monochromators** or ToF concept. The neutron wavelength (E_i) is selected through Bragg reflection. (E_i or E_f)

Crystal Analyzers

Note that similar concept can be used to choose the final neutron wavelength (E_f) - analysers

Tight $\Delta\lambda/\lambda \sim 1\%$ Poorer reflectivity Higher order contamination

$n\lambda = 2dsin \theta$

$$\frac{1}{2}\frac{\Delta E}{E} = \frac{\Delta\lambda}{\lambda} \sim \frac{\delta d}{d} + \cot(\theta)\delta\theta$$

Pulses and Time-of-Flight

In a reactor, energy selection (E_i) can alternatively be achieved by creating pulses (using choppers) and using the pulsed source concept, **ToF concept**.

Powgen3 @ SNS

Disk Choppers

Allow a certain wavelength (or band) through, or multiple, i.e. as a **monochromator**.

Alternatively, removes unwanted frames in pulsed sources, as a **bandwidth limiter**.

Disk Choppers

Design enables possibility of selecting a variety of wavelengths (trade band width, resolution and intensity). Also cascade allows for multiple wavelengths in one pulse

Other Types of Neutron Choppers

Horizontal axis T0 chopper

Phase Space Transform chopper using moving crystals

Fermi chopper

continuous or pulsed polychromatic neutron beam absorbing blades absorbing blades sharp pulse of neutrons

rotating chopper body

600 Hz rotor

Filters – mainly Beryllium

Cooled Beryllium is used to remove higher order contamination from crystal monochromators (eg. PG002)

polycrystalline Be filter

M. Wahba, Egypt J. Sol. **25**, 215-227 (2002)

Filters – mainly Beryllium

Cooled Beryllium also is a big part of some inelastic neutron spectrometers such as TOSCA @ ISIS

Radial Collimators

- Large angular coverage
- Collimation of 0.2° to several degrees
- Blades of polymer or glass coated with absorbing material (Gd₂O₃, ¹⁰B)
- Can be used to defined beam direction and angular resolution

Neutron Detection

³He tubes

n + ³He -> ³H + ¹H + 0.764MeV

>1 mm resolution High efficiency Low gamma-sensitivity Position sensitive 3He supply problem \$\$\$c

Scintillators n + ⁶Li -> ⁴H + ³H + 4.79MeV <1 mm resolution Medium efficiency Some gamma-sensitivity Sensitive to magnetic fields

Neutron Detection

¹⁰B multigrids

n + ¹⁰B -> ⁷Li + 4¹He + 0.48MeV

New technology under development Basis for ESS? B layer thickness limited to ~1μm Low \$\$ for large area

Neutron polarisation

Remember that neutrons posses an inherent **magnetic moment** related to their **spin-angular momentum S=1/2**. In a magnetic field, beam polarisation is a vector pointing in the direction of the field.

Neutron polarisers

Heussler crystal

$$b_{\rm coh} = b_{\rm mag}$$

³He spin filters

$$\sigma_{a}(\uparrow\downarrow) = 5931b; \sigma_{a}(\uparrow\uparrow) \sim 0b$$

XYZ field rotators

Neutron Spectrometers

Neutron Spectrometers

Direct Geometry (or Chopper spectrometers)

Direct Geometry

- Send neutrons of known fixed E_i (v_i) neutron can loose only as much energy as it has but can gain any.
- Source-sample and sample-detector distances known (order of m)
- Time at which neutron is sent, known, t_0
- Time at which neutron is detected tells us E_{f_i} thus we know ΔE

Monochromatisation			
6 counter-rota	ating choppers		
hopper velocity Vo evolution per minute)	2000 rpm to 17000 rpi		
cident wavelength λ_{\circ}	1.8 Å to 20 Å		

	Sample				
	elastic energy resolution at 5.0 Å, 8500rpm	~ 100 µeV			
	max neutron energy loss	$ \begin{split} \hbar \; \omega_{\text{max}} \; 0.6 \times E_{\circ} \\ E_{\text{min}} \approx 0.4 \times E_{\circ} \left(\lambda_{\text{max}} = 1.5 \lambda_{\circ} \right) \end{split} $			
	max energy gain for the neutrons	E _{max} ~ ∞			
	max momentum transfer Qmax	11.48/λο Å-1			
	horizontal divergence (no collim.)	~ 0.1×2×λ₀ [°]			
	vertical divergence (no collim.)	~ 0.1×3× λ_{o} [°]			
	Collimation before sample	- / 30' / 60'			
	beam size at the sample	~ 15×50 mm²			
	flux at the sample at 5.0 Å	6.83×10 ⁵ [n/cm ² /s]			

Dete	ctors
detector shape	cylindrical
detector surface [m²]	30.0
fight path (radius of reading) [m]	4.0
effective detection height [m]	3.0
scattering angular range [°]	-12° to 135°
vertical angular range [°]e	±20.55°
solid angle covered	1.8 sr (~0.6π)
min. & max. momentum transfer [Å-1]	0.2/λ [Å] - 11.8/λ [Å]
spatial resolution [cm ²]	2.6 × 2.6
angular resolution [° / rad / ']	0.37° / 6.10-3 rad / 22
detector type	position sensitive ³ He counters
gas mixture	4.75 bar ³ He +1.25 bar CF ₄
detector efficiency	~ 80% for Eo = 3.27 meV (5 Å)
dead time / max. count rate (per tube)	≤ 10 µs / ≥ 100 kHz
material	stainless steel
number of detectors units (32 tubes/unit)	12
tubes diameters [inches/cm]	1' / 2.54

or Chopper Spectrometers

Typical layout – consist of a number of choppers, large detector arrays of ³He tubes of varying heights, position sensitive, typically covering -15 to 160deg and have a radial collimator. Tank is evacuated or Ar filled. Incident energies between 1meV and 1eV.

Chopper Spectrometers

Solid Helium

Spin dynamics in molecular nanomagnets

Baker et al., Nature Physics 8, 906-911 (2012)

Can be found at reactors or spallation sources

Time-of-flight Spectrometers

15-G00337A/gim

Time-of-flight Spectrometers

Chopper Spectrometers

DCS @ NIST

Energy resolution ΔE as a function of λ

- Medium energy resolution (10's ueV to meV's)
- Large DE and Q range

Intensity as a function of λ and ΔE

Elastic scattering vector Q, as a function of $\boldsymbol{\lambda}$

- Flexible in choosing Q-E space
- Picosecond dynamics

Chopper Spectrometers

Clever chopper cascades have enable Repetition Rate Multiplication

LET @ ISIS

Closes gap in S(Q,w) space

Polarisation Analysis

Since neutrons allow for polarised beams, PA can be used to separate signals:

- 1. Nuclear from magnetic inelastic scattering
- 2. Where deuteration is difficult in multi-component systems
- 3. When there is structural peak contamination (non-H)
- 4. Where coherent and incoherent scattering are difficult to distinguish (e.g. Na, ⁷Li, D ...)
- 5. To prove assumptions!

Polarisation Analysis Example

Indirect Geometry

Indirect Spectrometers or Backscattering

Send neutrons of a known band of wavelengths or $E_i(v_i)$ s (defines your energy) window)

cos θ

- In reactor source, use a Doppler drive; in a spallation source, use choppers
- Analyser crytals reflect back only a **fixed** *E*_f (Bragg's Law)
- Times & distances known, so detected neutron gives us ΔE
- Higher energy resolution ΔE at a flux penalty ${\color{black}\bullet}$

$$n\lambda = 2d\sin\theta \qquad \text{in backscattering } \theta \to \pi/2$$
$$\frac{1}{2}\frac{\Delta E}{E} = \frac{\Delta\lambda}{\lambda} \sim \frac{\delta d}{d} + \cot(\theta)\delta\theta \qquad \text{cot}(\theta) = \frac{\cos\theta}{\sin\theta} \to 0$$

Backscattering @ Reactors

Typical layout – consist of a Doppler monochromator, large analyser bank of **Si111 crystals** (final energy is 2.08meV), small array of 3He detectors, typically covering 15 to 130deg. Tank is evacuated.

 λ_0 = 6.271 Å and E₀ = 2.08 meV

Monochromato

Backscattering @ Reactors

- High energy resolution (~1 ueV)
- Limited ΔE and Q range
- Limited flexibility in choosing Q-E space
- Picosecond and nanosecond dynamics
- Multiple modes (EFWS, QENS)

Backscattering @ Reactors

Changing the analyser crystal enables choice of energy resolution, Q-range and energy window. As a result of the crystal reflectivity, choice of scattered beam intensity.

modes	Si 111		Si 311	BATS	GaAs 200	
	standard E-resolution	high E-resolution	access to high Q with high E-resolution	wide E-transfer range	best E-resolution (in commissioning)	
analysers	Si 111 'strained'	Si 111 'polished'	Si 311 'strained'	Si 111 or Si 311	GaAs 200	
	6 new full height large angle analysers (LAA). SANS: old IN16 analysers with half height	3 old IN16 type LAA and SANS (half height ±19°)	6 old IN16 type LAA; no SANS (half height ±19°)	commissioned with Si 111 only	~ 0.3 m2 prototype analyser	
monochromator	Si 111 'strained'	Si 111 'polished'	Si 311 'strained'	- none - short 'white' pulses	GaAs 200	
final wavelength (Å)	6.271	6.271	3.275	$\Delta\lambda/\lambda \sim 12\%$	5.654	
final energy (meV)	2.08	2.08	7.63	2.08 or 7.63	2.56	
Q-range (Å-1)	0.1 - 1.8	0.1 - 1.8	0.7 - 3.5	~ 0.2 - 1.8		
energy resoution (µeV)	~0.75	~0.30	~ 2.0	~ 1.2 to 8	~ 0.075	
energy transfer (µeV)	± 31	± 31	± 59	for Si 111 kr centered: ± 200 kr off-set: -8501000	< ± 5	
flux at the sample (n/cm2/s) @ 58 MW	HF: 6.0 · 10 ⁵ LB: 8.7 · 10 ⁴	~ factor 8 lower than standard	HF: 1.2 · 105	~ $1.2 \cdot 10^{6}$ (with 8° slit and ~ $3.5\mu eV$ resolution)	estimated a factor 50 - 100 lower than Si 111	

IN16B @ ILL

Monochromator		
	CaF ₂ (422)	
temperature range	-196 < $T_{\rm M}/^{\circ}{\rm C}$ < 250	
energy range	-125 < ∆E/µeV < 150	
angular range	81° < θ _M < 89°	
incident energy (7 _M ≥25°C)	16.45 meV	
incident wavelength (7 _M ≥25°C)	2.23 Å	
energy resolution	8 µeV	

	Sample
sample size	3.5 x 3.5 cm ²
flux at sample	2 x 10 ⁴ n cm ⁻² s ⁻¹

Ana	lyser
CaF ₂	(422)
Q-range	0.2 < Q/Å ⁻¹ < 4.9
Q-resolution	∆Q/Å ⁻¹ < 0.1

Detectors			
monitors	2		
35 ³ He detectors	1 < Q/Å ⁻¹ < 4.9		
³ He PSD detector	0.2 <q å<sup="">-1 < 0.8</q>		
background per detector	0.5 - 4 cpm		

Scanning the incident energy

Initial wavelength band can be selected in two ways at a reactor source backscattering spectrometer:

Doppler shifting the energy (Eg. IN16B, HFBS)

 $d(T) = d_0(1 + \alpha T + \cdots)$

 $\frac{\delta E}{E_i} = \frac{\delta d(T)}{d_0}$

Change the monochromator temperature which changes the crystal d-spacing (eg. IN13)

Backscattering @ Spallation Sources

Combination of time-of-flight technique plus crystal analyser backscattering.

Typical layout – consist of choppers, analyser bank of **PG002** (final energy is 1.845meV) or **Si111 crystals** (final energy is 2.08meV), ³He (or scintillator) detectors, typically covering 15 to 150deg. Tank is evacuated. For PG need cooling and Be filter.

DNA @ SNS

Neutron source

BASIS @ SNS

IRIS @ ISIS

Backscattering @ Spallation Sources

Poorer resolution than reactor
backscattering (near backscattering) plus
other contributions to the resolution –
need long L1, but still higher than direct.

• Larger ΔE but similar Q range

- Limited flexibility in Q-E space
- Picosecond-nanosecond
- Again, be flexible with choice of crystal

Backscattering @ Spallation Sources

	PG 002	PG 004	Mica 002	Mica 004	Mica 006
Analysing Energy (meV)	1.84	7.38	0.207	0.826	1.86
Dynamic Range (meV)	-0.4 to +0.4	-3.5 to +4.0	-0.02 to +0.02	-0.15 to +0.15	-0.4 to +0.4
Resolution (µeV)	17.5	54.5	1.0	4.5	11.0
Q-range (Å⁻¹)	0.42 to 1.85	0.84 to 3.70	0.13 to 0.62	0.26 to 1.24	0.40 to 1.87

In addition, running the choppers at for eg. 16Hz we are able to open the window to -1 to 30meV

7 ^3He diffraction detectors at 20 \approx 170°

Reactor meets Spallation

Seeing a trend towards widening the accessible time scale of backscattering instruments. Towards Si111 spallation sources and innovative use of choppers on IN16B to create pulses and wider energy widnow.

OSIRIS upgrade 5-5000ueV

Methyl tunneling in 4-Methylpyridine-N-Oxide, 6h per offset, 3.4 µeV resolution, sum all detectors

Inverted Geometry- Vibrational Spectrometers

A white beam is sent to the sample and a small portion that are scattered at 45deg or 145deg impinge on the analyser crystals. Those satisfying the PG 002 Bragg condition on the analyser are selected.

Inverted Geometry- Vibrational Spectrometers

- Resolution is almost constant with energy transfer.
- Very broad energy transfer range (0-120meV)
- Used to be limited by sample mass, but great achievements lately (mg)

Triple-Axis Spectrometers

Triple-axis spectrometers @ reactors (e.g. ILL)

The Nobel Prize in Physics 1994 Bertram N. Brockhouse, Clifford G. Shull

Bertram N. Brockhouse

- Facts

Source: Atomic Energy of Canada Limited, Chalk River, Ontario (CC BY-NC-ND 2.0)

Bertram N. Brockhouse. Nobelprize.org. Nobel Media AB 2013.

Triple-Axis Spectrometers

Using Bragg diffraction -> using crystals as monochromators and analysers.

Selecting a specific neutron wavelength through Bragg reflection (either E_i or E_f)

Bragg's Law $n\lambda = 2dsin \theta$

Graphite 002 d = 3.335 Å

Copper 200 d = 1.807 Å

Si 111 d = 3.135 Å

Monochromator

Triple-Axis Spectrometers

Triple-axis spectrometers @ reactors (e.g. ILL)

IN22 @ ILL

- Good for single-crystal excitations
- Very flexible
- Can focus all intensity on a single point in reciprocal space
- Can scan either constant **Q** or constant *E* depending on excitation
- Can use multiplexing and polarisation analysis
- Can be slow
- Crystals can give rise to higher-order effects and spurions
- Measurement along high-symmetry directions
- 'Coarse' E resolution

- NSE uses the neutron's **spin polarisation** to encode the difference in energies between incident and scattered beams.
- Neutron perform **Larmor precessions** in two antiparallel magnetic fields, before and after the sample, resulting in polarization of the neutrons.
- Precession angles are equal and opposite and the difference is analysed at the detector. Small energy transfers lead to a change in the precession angle and thus a decrease in measured polarization.

- NSE is the neutron spectroscopy with highest energy resolution
- Time covered is 1ps < t < 1us (equivalent to neV resolution)
- Momentum transfer range is 0.01 < Q < 4Ang⁻¹
- Unlike other neutron spectrometers, measures in I(Q,t), real time.

- Velocity selector determines mean velocity with a spread of 10-20%
- Beam goes through polarizer with all spins aligned to velocity direction
- First $\pi/2$ flipper changes the spin to be perpendicular to magnetic filed of the coils and precession starts
- Neutron precesses and faster neutrons will spend less time than slow neutrons and their final precession angle will be smaller
- π flipper rotates the spin direction of 180deg around the z-axis and y component changes sign (B_{in} and B_{out} are parallel).
- Neutron interacts with the sample and exchange momentum and energy, changing direction and velocity.
- Apply equivalent field, those exchange will not regain initial polarisation. Second π/2 flipper stops precession.

In neutron experiment we measure the **polarisation P** over all precession angles:

 $P_x = \langle \cos \varphi \rangle = \langle \cos(\varphi_{in} - \varphi_{out}) \rangle$

Precession angles in and out are given as before and after scattering from the sample, related to their respective velocities:

$$P_x = \langle \cos[\gamma_L(\frac{\int \vec{B}_{in} \cdot \vec{dl}}{v_{in}} - \frac{\int \vec{B}_{out} \cdot \vec{dl}}{v_{out}})] \rangle$$

To first order the angle is proportional to the energy transfer at the sample with the proportionally constant being the **spin echo time** *t*:

 $\varphi = t\omega$

The polarisation is also related to the scattering function and if QENS signal is a Lorentzian, the the Fourier transform is an exponential decay:

$$P_x(Q,t) = \frac{\int S(Q,\omega) \cos(\omega t) d\omega}{\int S(Q,\omega) d\omega} \qquad P_x(Q,t) = \frac{\int [\Gamma^2 + \omega^2]^{-1} \cos(\omega t) d\omega}{\int [\Gamma^2 + \omega^2]^{-1} d\omega} = e^{-\Gamma t} = e^{-t/\tau}$$

Neutron Spin-Echo Spectrometers

Today's IN15: measures up to 1 µs

Wide Angle Spin Echo: WASP (ILL, Millennium Programme)

Resonant NSE RESEDA in Munich, Germany

High resolution spectrometer J-NSE in Munich, Germany

two-/three-axis spectrometer with RNSE option MIRA in Munich, Germany

Triple axis resonant

spin-echo spectrometer TRISP in Munich,

SOURCES High resolution NSE at SNS, USA

The best signal in NSE is at the peaks and is very complementary to the SANS structural information.

Neutron Spectrometers – Which one?

Neutron Spectrometers

Frequency domain S(Q, w)

- Lower energy resolution
- Larger DE and Q range
- Flexible in choosing Q-E space
- Good Q resolution
- Picosecond
- Self-correlation function (H)
- IN5, LET, CNCS, MAPS, MERLIN
- For INS better for higher energy features and more flexible tuning.
- Polarisation analysis available

- Higher energy resolution
- Smaller DE and Q range
- Fixed Q-E space
- Picosecond-nanosecond
- Self-correlation function (H)
- Coarse Q resolution
- DNA, IRIS, IN16B, HFBS, VISION, TOSCA
- For INS excellent resolution and sensitivity below ~ 2000cm⁻¹
- Polarisation analysis under development

Time domain I(Q,t) Neutron Spin Echo SOURCE

- Highest energy resolution
- Large dynamic and Q range
- Nanosecond dynamics
- Collective dynamics (H/D) normally
- Q resolution not very high generally
- Signal is often weak
- IN15, NIST-NSE
- Polarisation analysis in-built

- Triple-Axis MONOCHROMATOR ANALYSER SOURCE SAMPLE DETECTOR
- High flux but point by point (compare with DG)
- Cold and hot neutrons, mainly high energies
- Used for collective excitations and magnetic excitations
- Polarisation analysis available
- Coarser resolution and control over Qresolution

Neutron Spectrometers – Which one?

Totally depends on the problem!

You need to know a certain amount about your system before embarking in neutron spectroscopy

Talk to the facility scientists!

Further Reading & Credits

- Neutron Scattering: A Primer by Roger Pynn (1990): http://library.lanl.gov/cgibin/getfile?19-01.pdf and http://la-science.lanl.gov/cat_materials.shtml#neutron
- Experimental Neutron Scattering: B. T. M. Willis and C. J. Carlile, OUP (2013); http://global.oup.com/academic/product/experimental-neutron-scattering-9780199673773
- J. S. Gardner, Ehlers, G., Faraone, A. and Garcia Sakai, V. (2020), High-Resolution Neutron Spectroscopy using Backscattering and Neutron Spin-Echo Spectrometers in Soft and Hard Condensed Matter, Nature Reviews Physics.
- F. Mezei, C. Pappas, T. Gutberlet (Eds.): "Neutron Spin-Echo Spectroscopy (2nd workshop)", Lecture Notes in Physics 601, Springer, Heidelberg, (2003)
- ... and many others

These lectures have been made using material from many people including Ken Andersen, Ian Anderson, Timmy Ramirez-Cuesta, Stewart Parker, Goran Nilsen, Peter Fouquet, Ross Stewart, Bernhard Frick, Dan Neumann.