Wide Angle Scattering and Pair Distribution Functions

Dr Katharina Edkins University of Strathclyde @k_edkins

Overview

- Diffraction
 - What are the effects of increasing disorder?
- Small vs wide angle scattering
- Pair distribution function
- Examples

Wide vs small angle scattering

Wide Angle Scattering < 10⁻⁹ m

Diffraction and disorder

Diffraction

 $n\lambda = 2d \sin(\theta)$

The effect of temperature

Debye-Waller factor

Diffraction

 $n\lambda = 2d \sin(\theta)$

Birkbeck College

The effect of dislocation

(a)

Single-crystal diffuse scattering studies on polymorphs of molecular crystals. I. The room-temperature polymorphs of the drug benzocaine. E.J. Chan, T.R. Welberry, D.J. Goossens, A.P. Heerdegen, A. Beasley, P.J. Chupas DOI:10.1107/S0108768109015857

Nanoscale structure

Science, 2007, 316, 561

Wide vs small angle scattering

Amorphous poly(phosphoamidate), data acquired with Cu K α radiation (λ = 1.54 Å)

Polym. Chem., 2016, 7, 5004–5010

 $4\pi \sin(\theta)$

q =

F(q) and S(q) are related to respective G(r) and $g_{\alpha\beta}(r)$ by Fourier Transform

J. Appl. Cryst. (2001). 34, 172-177

Indomethacin in polymer

V. Petkov, Y. Ren, S. Kabekkodu, D. Murphy, Phys. Chem. Chem. Phys., 2013, 15, 8544

Silver nanoparticles in zeolite

D. O'Nolan, H. Zhao, Z. Chen et al., Chem. Sci., 2021, 12, 13836

Structure solution from WAXS

Problem: fitting of too many parameters to one structure factor!

D. Prill, P. Juhas, M.U. Schmidt, S.J.K. Billinge, J. Appl. Cryst., 2015, 48, 171

Wide-angle neutron scattering

5 mol% H/D exchange on part of the sample we want to see

WANS

$$F(q) = \sum_{i,j} (2 - \delta_{i,j}) c_i c_j b_i b_j S_{i,j}(q)$$

Water

i	j	C _i	C _j	<i>b_i,</i> fm	<i>b_j,</i> fm	$c_i c_j b_i b_j = w_{ij}$, fm
0	0	1/3	1/3	0.5804	0.5804	0.0374
0	Н	1/3	2/3	0.5804	-0.3741	-0.0482
Н	Н	2/3	2/3	-0.3741	-0.3741	0.0622

Heavy water

i	j	c _i	с _ј	<i>b_i,</i> fm	<i>b_j,</i> fm	$c_i c_j b_i b_j = w_{ij}$, fm
0	0	1/3	1/3	0.5804	0.5804	0.0374
0	D	1/3	2/3	0.5804	0.6674	0.0861
D	D	2/3	2/3	0.6674	0.6674	0.1980

- Each isotopic mixture gives one structure factor
- Different correlations can be extracted from each structure factor

Mol. Phys. (2019), 117(22), 3464-3477

https://github.com/disorderedmaterials/dissolve

Generation of structural models

N.H. Rhys, A.K. Soper, L. Dougan, J. Phys. Chem. B, 2012, 116, 13308

Applications

Water

A. Soper, C.J. Benmore, Phys. Rev. Lett., 101, 065502

Antifreeze effect

J.J. Towey, A.K. Soper, L. Dougan, *Faraday Disc.* 2013, DOI 10.1039/c3fd00084b

Small peptides

Drug compounds

1.0

L. Tavagnacco, J.W. Brady, F. Bruni, S. Callear, M.A. Ricci, M.L. Saboungi, A. Cesaro, J. Phys Chem. B, 2015, 119, 13294

Pure CAF: 4.1 Å 5 (a) 3.6-3.7 Å CAF-CAF CAF6-CAF6 CAF5-CAF5 CAF6-CAF5 3 g(r)2 1 CAF-CAF 0 2 8 10 0 6 r (Å)

Int. J. Pharmaceut., 2023, 647, 123520 j.ijpharm.2023.123520

J. Phys. Chem. B 2015, 119(42), 13294-13301

Int. J. Pharmaceut., 2023, 647, 123520 j.ijpharm.2023.123520

Int. J. Pharmaceut., 2023, 647, 123520 j.ijpharm.2023.123520

J. Phys. Chem. B 2015, **119(42)**, 13294-13301

C. Hardacre, J.D. Holbrey, S.E.J. McMath, D.T. Bowron, A.K. Soper, J. *Chem. Phys.*, 2003, **118**, 273

Imidazole-imidazole distance

Imidazole-chloride distance

Heterogeneous catalysis

T.G.A. Youngs, H. Manyar, D.T. Bowron, L.F. Gladden, C. Hardacre, Chem. Sci., 2013, 4, 3484

Conclusion

- Wide angle scattering gives atomic resolution data
- Potential samples are
 - disordered crystalline materials
 - Nanomaterials
 - Solutions
 - Glasses
- Using WANS and WAXS in combination with Monte Carlo simulation can give a structural snap-shot of the disordered phase