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What would | like you to take
away from today? i

* A basic understanding of the (| e
mathematical underpinnings of MD ey diance

* Sign posting to the array of software
that is available for both setting up and
analysing MD

* A convincing argument about how and
why MD and Neutron scattering can
and should be used to extract more | /)
information from one another W e
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What is Molecular Dynamics?

* A method/model that generates a movie at the atomic scale, letting
us examine or interrogate the motions/structure of the atoms

Example: Small molecule diffusion in Zeolites

This can help us
understand the links
between the atomic
properties and the
macroscopic properties of
a system

e.g. Diffusion of products
e iN Ccatalytic zeolite can be
a rate limiting effect




Basic objective of MD (cycle of consistency)

» Aim: To predict the equilibrium macroscopic properties of large systems

(1023 atoms/molecules) using properties of atoms and molecules

Experiment
Spectroscopy
Thermophysics

) S—

» Simulations: supports

System
[ Structure |

Thermodynamics
[Dynamics

Theory
Statistical
Mechanics

Solid: Primitive cell
Liquid: Radial
distribution

Simulations

interpretation of experimental

Phase transitions
Thermal expansion

Self-diffusion
Rotational diffusion
Viscosity

Thermal conductivity

observations,

test

theories and it is also a discovery tool => new experiments and theories




time

Multiscale ladder (what scale does MD probe?)

FE

S
ms w » Dynamics (QENS)
- S(q,w) e Structure
) Classical MD (SANS/diffraction)
ns *Time: fs — us ° La rge Scale
*L th: 0.1-
o Nf el structures/surfaces
et l (reflectometry)
fs : http Ilwww.icams.de/content/research/

oy

Length Scale

» Strong overlap in time-lengths scales (q, w)in neutron scattering
and classical Molecular Dynamics



We generate “movies”, but formally
we are exploring Phase Space

»Molecular Dynamics provides an approach to solve the dynamic behaviour of
atoms and molecules, i.e., to sample the phase space, I'(qN,pN), and to compute

the properties of a system.

Phase Space Trajectory
- Time dependence of .

Easily Visualised with the case of a | StateVariables
. 5 1
harmonically coupled system z \
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Thermodynamic quantities can be |
calculated as temporal averages of

» In MD we asume [ergodicity:] the system can explore “all” the points in the

phase space

these state variables

» We will focus on cartesian coordinates for which Newton’s equations apply




Revisiting Newton (the basic math of MD)

» The force on a given particle / can be represented as the gradient of the potential
energy. The time evolution of Newton’s equations is given by:

A mathematical term describing Force-field usually expressed
the time evolution of the positions / as potential energy
\d d?r; dU (rV) :
F, = P% —m. 2t U => Potential energy
/" v dt? dr; N _ (I‘ . - )
----- QYC{ Something that is fully — UL A2y IN

Kl‘dﬂg{(\z determined by the
L X & L9  current state of the

“  system (Force-field)

»For an isolated set of particles Newton’s equations conserve the total energy
and linear momentum => (N,V,E) ensemble

p?2
E=U+K=U+ i

Qmi

Zdrz dtz Za(%nz)_o E(Z&:pi)_—;d—ri_z:fz_o

Energy conservation Linear momentum conservation




How do we solve this in practice?

»Objective: develop a numerical method to integrate the trajectory of N
interacting atoms. Most methods rely on a Taylor expansion of r about time t.
One of the most successful methods was developed by Verlet (1967).

L r},py,tf
The closer we are to our initial “known” NN For¥fo
state, the more accurate the truncated Taylor * Pi s i At —y Time ste
expansion will be (i.e. small time-step). | I ’Im | | P

»Perform a Taylor expansion about r(t):

dr(t) N At? d?r(t) N At? d3r(t)
dt 2 dt? 3! dt3

dr(t) N At* d’r(t)  At® d’r(t)
dt 2 dt? 3! dt?

r(t + At) = r(t) + At
+
r(t — At) =r(t) — At

4
+ O(At) d2r,

dt?

Fz-:mi

+ O(At)*

2 d°r(t) 4 Time reversible, conserves linear
+0A* (1) ’ :
dt? momentum (conservative forces)

Previous step \We have this! F/m good” energy conservation

_dr(t)  r(t+ At) —r(t — At)
- dt 2At

r(t + At) = 2r(t) — m(t — Af) + At

»Subtract equations to get:  v(?) + O(At)? ()



Time steps and energy conservation

»The numerical integration of Newton’s equations of motion should conserve
energy. Criterion: conserve energy in ., /(§E2)/E < 1/10*°

>In order to conserve energy the time step At should be < 1/10'" of the fastest
time scale:

Time dependence of
State Variables
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~ —— & — v: Frequency of fastest vibrational mode v

100 10
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o3 Time step (fs=10-15 s)

Stretching
Bending 2
Translation 5-10

.. : : y
Note: Rigid models are often available, and perform very well in many cases



Example energy conservation

You probably want less than a 1% energy drift over the course of the simulation
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"energiconv0005.dat" u 0:1

: 2D Lennard-Jones model "energiconv0025.dat" u 0:1
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Thermostats and Barostats

[Guide the system to a given temperature or pressure]

»Microscopic state: defined by the atom
positions and momenta {q,p} => phase

) . Microcanonical Canonical Isothermal-
space (I). A point {q,p} defines a (NVE) (NVT) Isobaric (NPT)
microstate, and a collection of points Isolated q W, q

satisfying the conditions of a given
thermodynamic state define an ensemble.

»Integration of Newton's equations of motion generates microstates in the
microcanonical ensemble (NVE). Ensemble average = Time average (ergodic
principle)

»Simulation in other ensembles can be performed by coupling the system to a
heat bath (NVT) or to a barostat (NPT)

Nosé-Hoover canonical dynamics (NVT)

Instantaneous
dr; _ pi temperature\‘
FTn SaEe e
dt =F; —&p; / / e
Relaxation rate g~ 3N Ensemble temperature

It is often appropriate to run a simulation in NPT at a desired pressure, and from the
average box dimensions, switch to a NVE ensemble



But what is the force-field?

Usually a potential energy that can be expressed as a function of the atomic positons

» The interaction potential can be written as a sum of N-body contributions,
including bonding and non-bonding (coulombic, dispersion, polarization,
charge transfer) interactions

N
Ul(ry,- Z‘Uq (rs) + Z 2(Tij) Z u3(Tij, ik, Thi) +
1<i<j<N 1<i<j<k<N
External field Two body Three body

» Very often we use the pairwise additivity approximation

U(rl"” 7rN): Z u2(rij):U2(r12)‘|‘"'—|—’uf2(1‘23)—|—-'-
1<i<j<N

Higher order than pair potentials are very costly and rarely used



Interatomic potentials

Overlapping electroniclouds
.. ha repulsion
»Hard spheres (no liquid phase)
= Lennard-Jones
uHS(r.-)={OO l‘f r;I <0 104 |
1 )
0 ifr,zo0 | o : X
How would you simulate this!? Los London forces
attraction
»Lennard-Jones potential=> dispersion £ Equilibrium distance
ri=2%%0

=[]

c(1+3cosb,cos6;cosb,)

> Three-body: Axilrod-Teller w(r,r;,n) = T3 3
Vi Tik Vi
(7 - These have to be treated via special methods (e.g. Ewald)
» Coulomb qiq
U(T) — g This is due to 1/r? nature (energy drops off at the same

4megr :
rate as volume increases)



Intra-molecular terms

energy .

Bonding
9—9- Harmonic

Bt

distance
Very important for keeping

V, (k) mole™)
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+ Z ks (14 cos(ngijk) — 0)

¢Carefu| about dihedral convections in different codes/FFs
» At ~300 K vibrations are in the ground state => rigid

bonds (constraints)

> AMBER, CHARMM, GROMOS (BIO), OPLS, TraPPE
(MOL. LIQUIDS), UFF (GENERIC), FENE (POLYMERS)



Coarse-graining (something to be aware of)

. . . The forcefield jungle
* Particularly important for large systems in

biology (lipid bi-layers, proteins etc.) | 5;;5‘%,5‘7 k‘_"‘ n
* (Can be important for SANS and reflectometry st T A E pas | =
 Note that dynamic quantities can be very wrong — B — —
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Where do these force-fields come from and
what are their weaknesses?

» It is not possible to model chemical reactions (bond breaking formation, electron
excitations / charge transfer). Multi-scale approaches do exist

» Parametrized to reproduce properties at specific conditions => transferability
may be limited. Phase transitions for example may be shifted

» Classical FF can be fairly accurate at predicting thermodynamic, structural and
dynamic properties + it is possible to investigate large systems

B — 1140 (—
R Influenza A viri
G 80-120 nm
ol g .
£ | Surface |7
; >
E tension 1=
> 41 alllo

551 -

o el il i ontonliinis Gold nanopartiﬁles, 5 nm

| 109G ot -
0 300 320 340 360 380 290 300 310 320 330
Temperature (K] Tempenture [K) at the Water sSu ace

103 molecules, atomistic 0.5x106 particles, atomistic Reddy et al, 108 Particles, CG
DOI: 10.1021/acs.jctc.5b00080 DOI:10.1039/C5NR00620A DOI: 10.1016/i.str.2014.12.019




Periodic Boundary Conditions

(we can’t simulate a whole macroscopic system)

> Simulations are performed using “small” systems 10°< N < [F====---- ;

10 (CPU limited). Interactions ~ O(N?)

» Large fraction of molecules influenced by surface effects:
50% for a sytem containing 102 molecules.

» Periodic boundary conditions (Born
and von Karman, 1912) => infinite
number of copies of the simulation box

z z

-

X

(a) (b)

Fig. 1.10 Non-cubic simulation boxes. (a) The truncated octahedron and its containing
cube; (b) the rhombic dodecahedron and its containing cube. The axes are those used in
microfiche F.1.
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Cut-offs and minimum image convention

» Periodic boundary conditions => spherical truncation + minimum image (Ml)

® o 06 o0 O _
. @ L @ @ ; . LJ potential cutoff ~2.50
B ® | @ =
o1z ol | o | , —
“e | 6;.3} o Rl 102-10°3 kg T
Sh20 @ - :
O © @ \ ‘\/——\
® 0. ® ©. ® O : <
Q! @ @
________ o . & &

» What cutoff, r, should | use? => as small as possible! and < (Box length/2) to avoid
multiple image interactions: BEWARE: short cutoffs modify cohesive energy (e.g. critical
point) significantly

» Typical cutoff for dispersion (LJ) interactions 2.5 o => u(2.5 o) ~ 102-10-3 kgT

» Coulomb: U(r.)~102 kgT at r,~100 o (water, 0.033 molecules/A3=>107-® molecules!!)=>

Special techniques required to compute Coulombic interactions => Ewald summation

(Particle Mesh Ewald), Reaction Field, Wolf method (see Allen & Tildesley).

You also need to be aware of neighbour lists, which keep track of which atoms are within a given radial distance
of one another, meaning only a sub-set of distances need to be calculated each step




What can we measure?

Energy and entropy changes | Atomic positons relative to
as a function of T etc. each other and surfaces

Thermodynamics Structure

Individual or collective
motions of atoms

Dynamics

T & A

PV 03 1 ~
3 | |
U ’\r R £ B % s € R & A R S B & a4

Ergodic principle: <A>ensemble — <A>time




Equilibration (when are we ready to analyse?)

» When can we calculate averages?. the system needs first to be
equilibrated. Averages are computed during the production process =>

when the properties fluctuate (Gaussian~1/+/ N ) around a well defined
average Has the running average plateaued?

Is the typical variation consistent with time?

320 enes 2
2 310r Equ1I|brat|on e
| 4
E 290+ / \ ST I NI RESTIIReLL By
© :
h .
Q 280k e
Q :
& 270-----/---------
] ‘
- 250/ P PTRPREERE
24 1 10 *CO, — N= 216 molecules

Time (ps) *NPT: ensemble (1 bar, 300K)
»>Estimating the equilibration time: 7 ~ L?/D

e.g.: D~ 103 nm?/ps; L=0.3 nm =>90 ps; L=3 nm => 9 ns



These can be useful quantities
to assess equilibration

Thermodynamic quantities

N—-1 N
>Potential energy {U) = <Z > ufry)

i—=1 j—it1
_ 2(K)
»>Temperature: (1) = m

N
o 1
_ 2
> Kinetic Energy <K> — < 5 Z m;v; “Ngor IS the number of degrees of freedom
i=1 e.g. N particle moving in 3D (x,y,z)=> 3N

N—-1 N

> Pressure: PV = NKpgT + (W) rarwise W = % DD i fy

interactions : et
1=1 73>

I‘,,;j =T; — I'j
Forces on atomidue toj

ideal virial

Pis a tensor, P4 that can be used to compute surface and interfacial tensions.

oT
Also very sensitive to phase changes of various orders (including dynamical transitions e.g. Rotor phase)

: (BN _((E-(E)Y) (B -(B)
> Heat Capacity (fluctuations): Cv = (—)V = T2 = T



Fluctuations

» Fluctuations are ensemble dependent => Different ensembles require
different fluctuation equations.

wesl  Fluctuations | R
E _/Gaussian
g / 2 \
g S (// \
g- e+05 E: """"" ; ‘\\
il i 'l oo 2l /J/ \
408405 |- ,‘ : Aygrag lllll | ;’“:;7 NPT P
0 2000 4000 :::jp_\ 8000 10000 12000 U
2
oo — (2B _(E-(E)*) _(F)-(E)
TNy i kT _l(ovy _ 1 (=)
T=yv\or ), ksT (V)

Heat capacity at constant volume, (NVT) ensemble
Isothermal compressibility, (NPT)

ensemble

(H?) — (H)®
k5T

Heat capacity at constant pressure, (NPT) ensemble

Cp =



Radial Distribution Function

» The radial distribution function or pair correlation function is widely used to
investigate the molecular structure of gases, liquids and solids.

» The radial distribution function quantifies the probability of finding two
particles 1 and 2 at distance, ry,

@ eo20,0 | ,
D X 1/1 -
23 :’ f fab \‘: \ ‘\' g('r') = —( — Z Z(S(r — T3 + I'z)> |' '. p _
‘f‘//{.‘l/b/ P <N i joti | " | !1i T 99 2 @
e 5 [ Sal
® N . . © ’ | 'min =59
For a non interacting 2 \ - | —5 -
In practice this is counted Zﬁtsof atoms (ideal gas) | B Y
within given shells 1 J
g(r)=1- v = 1 ,
i
» Coordination number (C.N.) n(rmin) = 4mp / r2g(r)dr
0
> Structure factor S(q) = 4mp / drr2(g('r)—1)smq(gr) neutrons
0



Dynamics (Self-diffusion coefficient)

» Atoms and molecules move continuously changing their positions and velocities
=> Brownian motion

» The diffusion coefficient, D, quantifies how fast molecules/atoms move. There
are two approaches to calculate D: mean square displacements and

autocorrelation functions
MSD = (|x(t) — xo|?) Z\x(ﬂ t) —x@(0)”




Correlation functions

» Time correlation functions provide a route to obtain transport coefficients

| & y I‘%P}V,tf
CO=(ADAO)=lim [ drAw+nan P00 oyt
T | At I |
C(t) "
C(0)1.01 i) ) © g (1) . v
. - C(OU) :[ dtezwt (vl(t) 2VZ(O)>
€ o5 \lﬁ-
J 3 Density of states
) 0.5+
0.0 ——
0.5 1.0 15 %04 pA 0
t(ps) w(cm™)

1 o0
Green-Kubo equation D = §/ dt (v(0) - v(t))
0

Some quantities may also involve cross-correlations



Van Hove (link with Neutrons)

» Van Hove correlation function and dynamic structure factors

G(r, 1) = % (p(r, 1) - p(0,0)) G(r,t) = G4(r,t) + Gy(r, 1)
SELF DISTINCT
- <%§ *“Z(°>)> Go(r,0)=d(r)  Gqa(r,0) = pg(r)

Gs(r,t — 00) ~ % Gy(r,t - 00) ~p

N N
( St +rz<o>>>
i=1 j#i

Dynamic structure factor is the spatial and temporal Fourier Transform of the Van Hove Eqn.

1 [ |
Ss(q,w) = %/ dtewt/Gs(r, t)e " dr

Inc.



What MD package to use in practice?

* Many flavours of MD (DL POLY, GROMACS, LAMMPS, Not to mention AB INITIO
MD which also produces trajectories)

* Your choice will depend on your use (Gromacs: Fast and therefore good for large
systems, but poor flexibility, LAMMPS very flexible but slower; good for complex




Setting up your simulation

» Setting up the configuration for an MD simulation is often the most challenging aspect
(especially if a solid/porous material is involved; relaxation of structure)

. TOPOTOOLS (VIVID) I\/Iaterlals Studio (requires a licence)

VMD 1.9.2 OpenGL Display

vmd.exe - Shortcut

Bonds: 23336 —
Angles: 27200 Dihedri Solvate = n

Bondtypes: © Anglety

. I t
Residues: 9554 s
PSF entsiCaseinKinaseiwild-type/csnp.psf Browse

[~ Waterbox Only

VMD Main =
FDB nts/CaseinkKinase/wild-type/csnp.pdd Browse

File Molecule Graphics Display Mouse BExtensio |~ Rotate to minimize volume Rotation increment (deg): 1[

Selection for Rotation: |all
ID T A D F Molecule Atoms Fra Siini i

0 T A DF csnp.psf 4760 1 Output csn_wb Browse

Segment ID Prefix WT
Boundary 24

Box Size: ¥ Use Molecule Dimensions

. ,. : fo 2%/  Set up the geometry

0 L 'I

gzoloml_ |Loap v] step_lj1___:| speed S . =
Residues: 3509 Box Padd h f _f' Id
aters: 3218 g - * Set up the force-tie

Segments: 2 Max x [0 y. |0

z o
nfo)  Fragments: 3217 P £ U RoaGmadh o * Analyse results from the
vmd.exe - Shortcut Bl V™MD 1.9.2 OpenGL Display i MD Main VMD TkConsale t raj e CtO ry

859 AM
a Wy *
' al 3320 s



Running on a cluster and parallelisation

* These calculations usually havetoberun ,, __ shannonsinglenode oncPus
on a super computer cluster (ISIS ool
provides use of the SCARF cluster to [ e~ INTEL (double

¢4 INTEL (mixeg

users) S 30| m-m INTEL (singls
] o a @-% USER-O
* How many CPUs is efficient? After a % 25| @@ KOKKRZIONP
certain point more CPUs is bad as the %20_ /
communication between CPUs is more & y
expensive than the gain §si o)
=

* The best method is to run short tests 10}
with different numbers of CPUs on your AP

SYSte m Atoms



We have our trajectory, now how do we
compare to Neutron Scattering? « MDANSE is the go to

MDANSE

w "I:o \:'GU
Mugren =

single_wall_nanotube.nc * protein in_periodic_universe.nc
Morc st Vewer

Dynam

Structure

analysis package for
extracting neutron
weighted results

We will now go through
some of its features
explicitly as there are
some important things to
consider when choosing
different parameters
Resolution, neutron cross-
section weighting,
projection onto relevant Q



Plugins
- Structure
Area Per Molecule
Coordination Number
Density Profile
Eccentricity

Structure (Radial distribution funct

* Useful for comparison with SANS (E.g. Nimrod) ‘il el

Root Mean Square Fluctuation

Radius of Gyration

 Structure typically favours infrequent printing

Static Structure Factor

(uncorrelated frames) -,

#)- Thermodynamics
+- Trajectory
Pair Distribution Function 4} 2D/3D Plotter - m}
. Fil
trajectory N -
Data Multiple Plot Window
C:\Users\fpn90659\Dropbox\outputWater.nc
key filename path pdf_total HO(Line) X
frames rdfWater_pdf.h5 rdfWater_pdfh5 C:\Users\fpn90€
First frame | 0 ‘ Last frame ‘ 19 | Frame step | 1
rvalues (nm) —— pdf_total_HO
< > 4
E | o T —
Variable Axis Dimension Size as
et pdf_total_HO 1 (40L) =2
atom selection pdf_total_0O r 1 4oL) v
< > 3 4
Set new selection = £3 -
Select Plotter Line v g
. Plot in new window Plot in current figure % 2.5
atom transmutation -
Quick View s,
. B 4
Set new selection | €3 2
—— pdf_total_HO 5
215 -
weights
equal v 14
output files 0.5 1
Basename ‘ C:\Users\fpn90659\Dropbox\outputWater_pdf Browse output formats v 0
T T T
0.5 1 15
running mode r{nm)
monoprocessor a~ 6 * ‘}’ Q E
multiprocessor | 3 Offset Value | 0.0 Modulation ' Fit axes range




>

MSD (r*(t))

MSD and diffusion coefficients

* A metric to compare with QENS

* Gradient at long time asymptote gives diffusion coefficient
 Typically plotted over a 1 ns period (depends of speed of diffusion)
* Shape of MSD can vary for more complex phenomena

Mean Square Displacement

trajectory
C:\Users\fpn90659\Dropbox\outputWater.nc

E.g. Super lonic conduction in a sub lattice

S U p e rd iﬂ:U S i O n First frame \ 0 Last frame | 19 Frame step | 1

{r*y oc %, o>1

(® None

. . O Axial

norm. diffusion Opin
<,2> Cx: D T atom selection

Set new selection

subdiffusion |
<r2> o Ta, (X,<1 atom transmutation

E.g. Local diffusion in a restricted geometry (closed pore) wegms

equal

Set new selection

ti m e T output files

[+ ]



Velocity autocorrelation
function

e Relates to vibrations, and also
diffusion (integral of this is another
route to the diffusion coefficient)

* Higher printing frequency required

‘L / \
N\
|| \'iwvlc 4 oo
| . ot A"
0 g g
|.. 3-\:\\
'::J | \ -“‘\'..' -
T
\ x SOl
\\ - /'/ﬁ\-_ "| ‘.

Velocity AutoCorrelation Function

trajectory
C:\Users\fpn90659\Dropbox\outputWater.nc

frames

First frame | 0 Last frame | 19
velocities

interpolation order v

project coordinates
(® None
O Axial

(O Planar

normalize

[Jves

atom selection

Group coordinates by

atom transmutation

weights
equal

output files

Frame step

1

Set new selection

Set new selection

£



Vibrational density of states (FT of Vel ACF)

* This can be compared to TOSCA

e Resolution of peaks is included

* Can be weighted by neutron cross-section for correct Expt. relative peak intensity

* High print frequency as we are now interested in vibrations (fast motions) as well as

quite long if we are dealing with a solid, to include slower phonons

v-DOS (arb. units)

T

I

|

— AIMD
— SPCF®

— SPCF-d

0

|
500

1000

1500
-1
v(cm )

2000

2500

f

3000

C:\Users\fpn%0659\Dropbox\outputWater.nc

First frame | 0 Last frame | 19 Frame ste p |1

(‘'gaussian’, {'mu': 0.0, 'sigma’: 10.0}) Set

Set new selection | £3

ttttttttttttttttt

Set new selection = £3



Angular Correlation Function ¢ This can be useful for comparing to

We must define a frame of reference for our angular vector:

Typically the vector between two atoms in the molecule

Atoms list

Molecules

Number of atoms

-

4

=)- spce water
- HWI1
i HW2

Selected atoms

HW1

owo

O X

Atom 730:
Atom 733:
Atom 736:
Atom 739:
Atom 742:
Atom 745:
Atom 748:
Atom 751:
Atom 754:
Atom 757:
Atom 760:
Atom 763:
Atom 766:

HW1
HW1

HW1
HW1
HW1
HW1
HW1
HW1
HW1

HW1

; Atom
; Atom
HW1 ;
HW1 ;
: Atom
; Atom
; Atom
; Atom
. Atom
; Atom
; Atom
HW1 ;
: Atom

Atom
Atom

Atom

729:
732:
735:
738:
: OW0
744 .
747 :
750:
753:
756:
759:
762 :
765:

4

Oowo
Oowo
Oowo
owo

Oowo
owo
Oowo
Oowo
Oowo
Oowo
owo
Oowo

Save

QENS
e Extract rotational signal

* Find relaxation times for different
molecular units in proteins

1 I I l 1 I I l 1




rument resolution - O x

Dynamic Structure factor: IMPORTANT:

ameters 0.16 4

* Note that Incoherent and Coherent are calculated separately m
* A Qgrid must be created (think carefully about ranges) v
* A resolution function must be specified (usually a Gaussian) i

* The signals will be weighted by the neutron cross-section

el
are
m

0.08 4

Dynamic Incoherent Structure Factor H 0.02
trajectory 2| 0.00 1
C\Users\fpn90659\Dropbox\outputWater.nc T T T T T T T
-300 -200 -100 0 100 200 300
frames omega (rad/ps)

First frame ‘ 0 Last frame | 19 Frame step

A€ Q=

instrument resolution

 Comumb s . e 08 s« Cautionary warning! MDANSE uses very unusual units (e.g. radians per
picosecond for energy and inverse nanometres for Q)

Q vectors - | X

~ | View selected definition New definition

atom selection

generator
spherical_lattice v
Group coordinates by
parameters
atom
seed
atom transmutation
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Dynamic Structure factor

 MDANSE has an internal visualizer, which allows you to take slices in E/Q, which is very

useful for deducing tends

» Also useful for working out which regions can be ignored (e.g. Bragg peaks)

4 2D/3D Plotter

File

Data Muttiple Plot Window
key filename path s(q.f)_total(image)
testinc.nc testinc.nc C:\Users\fpn90€

inc_NZTOtraj_1... inc_NZTOtraj_1... C:\Users\fpn90€

3
< >
Variable Axis Dimension Size ~ 2
f(gqt)_0 gtime 2 (19L, &
f(q.t)_Te gtime 2 (19L, 6( ¥
< >
Select Plotter Image v 1
Plot in new window Plot in current figure

Quick View

omega (rad/ps)
o

-3
2 4 6 8 10 12 14 16 18 20
q (inv_nm)

,ﬁ 6 * Q-I-o Q E Slicingmode

=]

(=)}

=

N
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X

B ' Cross slicing
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21
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7.5 1
5.0
2.5
0.0 4
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Aed>» Q= B
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Auto-Scale

[ Single target plot




Case study: Liquid lignin monomers

What information can we extract?
Potential pitfalls?

=\ od
D
Botto s Hes
~ D

(a) (b) OH (c) OH (d) OH (e) OH
o} 0

e Simulations performed on ~5000 atoms
* Run times of ~10 ns

* Runin DL POLY

* Trajectories output every 1000 steps for
Structural and Slow dynamics, and every
10 for faster dynamics.



0.21 0.55

QENS Experiment E

* Fitting of two Lorentzians

M + Experimental Data
Anisole Total Fit P-cresol
0.44 Delta
Lorentzian 1 \

Lorentzian 1
0.14-{ — Lorentzian 2
Background

—— Lorentzian 2
0.33 1 Background

S(Q,m)

* One for translational hopping

» One for local rotation

-1.0 -0.5 0.0 0.5 1.0
Energy transfer (meV) Energy transfer (meV)

This style of fitting can be
performed in Mantid (conv fit)
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S(Q.m)

We can generate the S(Q,E) from simulation
and perform exactly the same analysis

The accuracy of a model can be determined
by how well the S(Q,E) matches

0.45

Same fittings applied to Expt and Sim
(Extracted diffusion coefficients)

021
* Experiment F]
*  Simulation .

« Experiment
*  Simulation

-0.5 0.0

0.5

Energy transfer (meV)

(a) Anisole

0.63

* Experiment

0.54- * Simulation t

045 n
—_ €3
Z 0.36 3 ‘
<] CH
@ 0274 o %

HIRT)

0.18 4 >

0.09 1

0.00 : : i

1.0 05 0.0 05

Energy transfer (meV)

(d) m-cresol

T pormen . Expt HRD __ [sim HR D
pdey o S 8 Anisole 330 19.66  18.48
A i 360 23345 27.11
5% it 390 35.955  33.075
E activation 10.61] 10.45
Guaicol 330 6.98 7.325
, | : , , 360 14375  11.41
© gy ey et o) 390 18.01] 18245
E activation 17.11] 16.23
(b) Guaiacol (¢) p-cresol b-cresol 330 9.475 5.06
S — 360 12.635|  7.785
P41+ simuston 3 390 2071  13.705
031 ;"l‘ E activation 6.905 17.66
S ;% m-cresol 330 4.46 3.99
7o : 360 7.885  6.285
01+ 390 13.165 8.69
00 ' . ‘ . E activation 19.29 13.92
10 -0 05 00 0s 10 p-cresol 330 6.01] 3.77)
Energy transfer (meV)
360 1033  6.545
(e) o-cresol 390 13.3 9.25
E activation 14.28 16.08




Diffusion from MSD

 MSD provides the “true” self-diffusion coefficient

* Major differences between this value and the fitted models for many simulations

* This same error therefore occurs during experimental fittings

Temperature (K)

% Difference from MSD

Anisole 330 -0.698549167
360 7.408874802
390 -15.58192956
Guaicol 330 25.85910653
360 -0.262237762
390 -1.003798155|
o-cresol 330 66.99669967
360 -1.580278129
390 -2.386039886
m-cresol 330 159.0909091
360 52.54854369|
390 -9.948186528
p-cresol 330 153.0201342
360 56.2052506
390 -9.402546523

% Diff between D,,sp and D5
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Why do we see this deviation?

* The first derivative of the

10 | - 1 - T - 80 MSD serves as a time-

9 m-cresol 330 K anisgle 390K dependent diffusion
Y 0 coefficient
L 8- ¢ o .
£ 7] ¥ 50 € * Aseachinstrument has a
o o= 60 5 o : ;
PR ¥ 5 limited time-scale, it can only
N Lo 50 T sample motions within this

3 ° #ﬁ / 3 range

S CTIUX G - 400« The fastest systems in this
S 4- < study arrive at the self-
I %% diffusion asymptote within
o 37 @ the instrument range
) | ' o ’
S ol ISR sy 3 whereas the slower systems
R R 7/ 17 11 45/ /. . & have not reached this

1- Dyt _ “Fickian” regime

0 I I I 0

0 20 40 60 80



What about the rotations?

0.30

. 0.25 -

0.20

(R(0)-R(t)) / Arb. Units

0.05

[ o
o
—

D,=24.8x10% s?

0.00

10

D,=0.31/0.75/5.17x10%° s

t/ps

100

1000

Accurate for faster systems (E.g. Anisole 390 K)

Slower systems display multiple exponential decays (~3
for m-cresol 330 K) with different time scales

The largest portion of motions come from the slowest
relaxation, which is 30 times slower than that extracted
from FWHM fitting

Fittings in slow regime in general are inappropriate. Likely
mostly fitting local motions (delta function probably
accounting for some of these very slow motions)

3 exponential fit to m-cresol 330 K

1.0 T T T T T T T T
0.8 —
j2)
c
-
2 06- .
<
T 04 -
<)
=3 — Fast
0.2 1 —— Medium i
—— Slow
0.0 T T T T T T T T
0 10 20 30 40

t/ps



Radial distribution functions can highlight hydrogen
bonding trends

* Increased hydrogen bonding indicated by higher O-H peak height
* This can then explain differences in diffusion/rotation between models

8 —6 p-cresol and m-cresol
18 guaiacol
2 p-cresol | Strong h-bonding, sharp peaks
—— m-cresol : )
B o-cresol _ at close distances

o-cresol

= h-bonding restricted by adjacent methyl group,
2 larger bonding distance

f guaiacol
B 2 —————— = [Bulkygroups,broaderrangeofbonding}

Distance (A) distances due to steric hindrance




H-bond distributions (from VMD)

* H-bonds can be detected with certain distance and angle criteria
* These distributions can be evaluated over the course of the simulation
* They can also be plotted visually

* More complex method is to look at h-bond lifetimes
300 300
390 K . . e 390K
0l ¢ 370K s, 0l © 370K D
34OK C~ .:. ° ¢ 340K .‘& ..
= 2007 ,.:o. 3 200 - e
E ¢ & ° ; ° : :.o ¢ o.?.
2 150 S e ° 150 - : b o,
: PRI Crie s
= 100 A o e 100 - Ve o, o
] ¢ o % . * N
50 :s vé ® « . H s °
- o : ?? ° 50— .‘ .. .. ‘ ‘
. se 2% 4 - dro oL e
|%‘ . .
° 50 100 150 200 ° 50 100 150 200

Number of hydrogen bonds

Number of hydrogen bonds




Matching Structure with MD/MC (EPSR)

e Simulations, coupled with a
progressive alteration of the force-
field parameters via a figure of
merit (deviation form Expt. data)

* Convergence towards a force-field =
which reproduces the neutron
results

* Force-fields may be meaningless
from a dynamics point of view
(configurational space only correct)




Fitting MD models with Neutron Data (MDMC
The Algorithm

FOMold . FOMnew)
Tuc

P =min| 1, exp(




Questions?
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