

Neutron sources Jörg Voigt

9. September 2022

Principle of a scattering experiment

Primary Spectrometer: Define phase space before sample illumination **Secondary Spectrometer**: Determine the phase space after scattering

- \rightarrow Source requirements: Provide high phase space density
 - → Constraint the neutrons in space and energy
 - → High Brightness $[\Phi] = 1$ neutron cm⁻²s⁻¹sr⁻¹Å⁻¹

Evolution of neutron sources

K. H. Andersen, C.J. Carlile, Jour. Phys.: Conf. Ser. (2016)

European Neutron Landscape

www.esfri.eu

Figure 12. The predicted delivery of instrument beam days in the Enhanced Baseline Scenario

Neutron Production

Nuclear fission

Spallation

Low energy nuclear processes

Neutron Release

Nuclear fission

Spallation

Nuclear processes

Reactor based neutron source (ILL, FRM II, NIST, JINR, ANSTO a.m.m.)

Spallation based neutron source (ESS, ISIS, SINQ, SNS, CSNS, J-PARC, KEK) Accelerator based neutron source (LENS, RANS, HUNS, NUANS, IREN a.o.)

Nuclear Process	Example	Example Neutron Yield		Source
D-T in solid target	400 keV d on T in Ti	4 x 10 ⁻⁵ n/d	10000	
Deuteron stripping	40 MeV d on liq. Li	7 x 10 ⁻² n/d	3500	
Nuclear photo effect from e- Brems-strahlung	100 MeV e ⁻ on ²³⁸ U	5 x 10 ⁻² n/e ⁻	2000	HUNS, n- ELBE
⁹ Be(d,n) ¹⁰ Be	15 MeV d on Be	1.5 x 10 ⁻² n/d	1000	
⁹ Be(p,n:p,pn)	11 MeV p on Be	4 x 10 ⁻⁵ n/d	2000	RANS, LENS
Nuclear fission	Fission of ²³⁵ U by thermal neutrons	1n/fission	180	MLZ, ILL
Spallation	800 MeV p on ²³⁸ U or Pb	27 n/p or 17 n/p	55 or 30	ISIS, SINQ, ESS

<u>9. September 2022</u> Ref.: G. Mank, G. Bauer, F. Mulhauser, Accelerators for Neutron Generation and Their Applications, Rev. Accl. Sci. Tech 04, 219 (2011)

•

Compact Accelerator based Neutron Source

** HiCANS: High-Current Accelerator based Neutron Source

500 Mio EUR

From CANS* to HiCANS** Accelerator Based Neutron Sources

0.01 kW	0.1 kW	1 kW	10 kW	100 kW
0.001-0.01 mA	0.01-1 mA	0.5-5 mA	1-20 mA	50-100 mA
~10 ¹¹ n/s	~10 ¹² n/s	~10 ¹³ n/s	~10 ¹⁴ n/s	~10 ¹⁵ n/s

<u>10 Mio EUR</u>

Running CANS facilities:

LENS, Indiana University (USA)	
HUNS, Hokaido University (Japan)	HOKKAIDO
RANS, RIKEN (Japan)	RANS RIGEN Accelerator - driven compact Neutron Sources
NUANS, Nagoya University (Japan)	名古屋大学 NAGOYA UNIVERSITY
CPHS, Tsinghua University (China)	CP
IREN, JINR Dubna (Russia)	IREN

HiCANS projects:

*CANS:

HBS, JCNS (Germany)					
SONATE, CEA LLB (France)					
ARGITU, ESS Bilbao (Spain)					
LENOS, INFN LNL (Italy)					
SARAF, SOREQ (Israel)					

9. September 2022

Nuclear fission reaction

- \rightarrow capture of a slow neutron
- \rightarrow deformation of nucleus
- → splitting into two fragments, simultaneously releasing 2 or 3 (on average 2.5) "prompt" neutrons with energies 1.29 MeV

Chain reaction

Nuclear fission reaction

235 U + neutron \rightarrow fission fragments + 2.52 neutrons + 180 MeV.

The critical mass M_c.

If the mass of fissile material M>M_c:

- \Rightarrow the number of neutrons will increase exponentially
- \Rightarrow the reaction will become uncontrollable very quickly
- \Rightarrow a huge energy release (an explosion: A-bomb)

If the mass of fissile material M<M_c:

- \Rightarrow the number of neutrons will decrease over time
- \Rightarrow it is impossible to sustain a chain reaction:

So, this neutron producing reaction is unstable.

How to obtain a stable neutron flux?

Nuclear fission reactors: delayed neutrons

Considering prompt neutrons in a reactor

 $M < M_c$

Delayed neutrons keep reactor burning.

How to control a fission reactor? Remove thermal neutrons

Spallation reaction

A high-energy proton hits a nucleous:

The de Broglie wavelength of the proton $\lambda = \sqrt{h^2/2mE} \ll d_{nucl}$

Spallation reaction

The spallation process takes 10⁻¹⁵ s. Proton pulse determines primary neutron pulse

This pulse can be made:

- Pulse length > 1 ms (the long pulse spallation source (LPSS)), ESS
- Pulse length < 1 µs (the short pulse spallation source (SPSS)), ISIS, SNS,...

Neutron Production

Low energy nuclear processes

p \Rightarrow Be502.70%1.68E+143.37E+12d \Rightarrow Be505.90%3.69E+147.38E+12p \Rightarrow Li200.33%2.08E+131.04E+12p \Rightarrow V505.08%3.18E+146.35E+12p \Rightarrow Ta506.40%4.00E+148.01E+12	Nuclear process	E [MeV]	n/ion	n/(s mA)	n/(s kW)
d \Rightarrow Be505.90%3.69E+147.38E+12p \Rightarrow Li200.33%2.08E+131.04E+12p \Rightarrow V505.08%3.18E+146.35E+12p \Rightarrow Ta506.40%4.00E+148.01E+12	p ⇒ Be	50	2.70%	1.68E+14	3.37E+12
$p \Rightarrow Li$ 200.33%2.08E+131.04E+12 $p \Rightarrow V$ 505.08%3.18E+146.35E+12 $p \Rightarrow Ta$ 506.40%4.00E+148.01E+12	d ⇒ Be	50	5.90%	3.69E+14	7.38E+12
$p \Rightarrow V$ 505.08%3.18E+146.35E+12 $p \Rightarrow Ta$ 506.40%4.00E+148.01E+12	p ⇒ Li	20	0.33%	2.08E+13	1.04E+12
$p \Rightarrow Ta$ 50 6.40% 4.00E+14 8.01E+12	$p\RightarrowV$	50	5.08%	3.18E+14	6.35E+12
	p ⇒ Ta	50	6.40%	4.00E+14	8.01E+12
$p \Rightarrow W$ 50 6.95% 4.35E+14 8.70E+12	$p\RightarrowW$	50	6.95%	4.35E+14	8.70E+12

J. Carpenter, C.-K. Loong, Elements of Slow-Neutron Scattering, Cambridge University Press, 2015

Neutron Production

Target material

- E > 35 MeV: High Z Materials
- Mechanical stability
- Chemically inert
- Manufacturable
- Radiation damage
- Hydrogen inclusions

Accelerator for long pulse spallation source

ESS Design

- Power: 5 (2) MW
- Energy: 2 (0.8) GeV
- Current: 62.5 mA

Accelerator for short pulse spallation source

Linac & Synchrotron (Accumulator) 70 MeV & 800 meV 200 µA mean current 40 A peak current

Accelerators for HiCANS

Targets for spallation sources

Liquid Hg at SNS

Solid W at ISIS

Rotating W-wheel at ESS

9. September 2022

Folie 21

Liquid Hg at SNS

Rotating W-wheel at ESS

Solid W at ISIS

9. September 2022

The HBS Target: Proton beam dumped in water

JÜLICH

Release Volume: Neutron density vs. heat removal

Nuclear Process	Example	Neutron Yield	Heat Release [MeV/n]	Target Volume [l]
HBS	70 MeV ¹ H on Ta	0.14 n/ ¹ H	500	0.05
FRM2	Fission of ²³⁵ U by thermal neutrons	1n/fission	180	17.6
Spallation	800 MeV p on ²³⁸ U or Pb	27 n/p or 17 n/p	55 or 30	1-2

Neutron energy classification

Source spectrum: Fast neutrons

Desired spectrum: Slow neutrons

Ultra cold	E <0.5 µeV	λ > 400 Å
Very cold	E=0.5µeV-0.05 meV	$\lambda = (40-400) \text{ Å}$
Cold	E=(0.05-5) meV	λ = (4-40) Å
Thermal	E=(5-500) meV	λ = (0.4-4) Å
Hot	E>500 meV	λ < 0.4 Å

$$\lambda(\text{\AA}) = \frac{h}{mv} = \frac{3956}{v(m/s)} = \sqrt{\frac{81.8}{E(meV)}}$$

E > 1 MeV

How to cool neutrons?

How to slow down neutrons?

- \Rightarrow Collisions with atoms (nuclei), until in thermal equilibrium
- Energy loss per collision $\Delta E = \frac{2A}{(A+1)^2}$
- Light atoms moderate fast
 ~ 20 collisions in 6 µs in ¹H₂O
 - ~ 2000 collisions in 3 ms in Pb
- Scattering cross sections to be considered
- \Rightarrow H best choice for E<10 MeV
- ⇒ High H particle density: Water, PE

Materials for moderation and shielding

Properties of moderators and shielding materialst

(At 20 °C unless stated otherwise)

Material	Density	Σ_{rem}/m^{-1}	ξ	τ/(10 ³ mm ²)	L/mm	D _{th} /mm	t₅/µs	t _{th} ∕µs	. 77
	10 ³ kg m ⁻³								
H ₂ O	1.00	9.0 ^a	0.948	2.67 ^c	27ª	1.4ª	6	205	20
D ₂ O (pure)	1.10	9.1ª	0.570	11.7 ^c	940	8.4	53	~10 ⁵	- 33
Diphenyl (C12H10)								•	
85 °C	0.99	7.1 ^b	0.812	4.6 ^d	48	2.6	13	354	23
Paraffin Wax									
(C ₃₀ H ₆₂)	0.89	10.9 ^b	0.913	1.8	21	1.1	7	160	21
Be	1:85	13.0ª	0.209	7.32 ^e	208ª	5.0 ^a	50	3 460	90
BeO	3.00	14.3 ^b	0.173	9.38 ^e	290 ^a	5.0 ^a	102	7 000	109
Graphite	1.67	8.1ª	0.158	29.8 ^c	520ª	8.5ª	140	13 000	119
Concrete‡	2.3	8.8 ^b	0.55	10.0	77	6.0	30	400	30
Al	2.70	7.9 ^a	0.072	430	200	55	900	8 800	262
Fe	7.86	16.8ª	0.035	33.0	12.7	3.4	360	19	540
Pb	11.35	11.6ª	0.0096	600	121.8	9.2	2720	-640	1960
Bi	9.75	9.8ª	0,0095	800	320	11.2	3000	3 660	1990
U	18.9	1.7ª	0.0084	ş	13.7	7.0	2040	11	2250
			1						

† The data in this table are obtained from old sources as they are not needed in modern calculations though they remain valuable in compilations like this: a, experimental value; b, derived from components; c, UK Nuclear Data File (see for example Report

http://www.kayelaby.npl.co.uk/atomic_and_nuclear_phy sics/4_7/4_7_3.html

Nuclear reactor with compact core

Maximum of the thermal neutron flux density is at r = 10-15 cm

9. September 2022

Folie 29

\Rightarrow Tangential beam tubes

9. September 2022

Neutrons in a moderator

Maxwell distribution of energy

$$\Phi(E) = \frac{2\sqrt{E}}{\sqrt{\pi k^3 T_M^3}} \exp\left\{-\frac{E}{kT_M}\right\}$$

Ultra cold	E <0.5 µeV	λ > 400 Å	
Very cold	E=0.5µeV-0.05 meV	λ = (40-400) Å	
Cold	E=(0.05-5) meV	λ = (4-40) Å	
Thermal	E=(5-500) meV	λ = (0.4-4) Å	Ф(E)
Hot	E>500 meV	λ < 0.4 Å	Ū

Thermal neutron spectrum (T=300K)

Interatomic distances in solids ~ 5 Å Lattice energies ~ 10-100 meV

Ultra cold	E <0.5 µeV	λ > 400 Å
Very cold	E=0.5µeV-0.05 meV	$\lambda = (40-400) \text{ Å}$
Cold	E=(0.05-5) meV	$\lambda = (4-40) \text{ Å}$
Thermal	E=(5-500) meV	$\lambda = (0.4-4) \text{ Å}$
Hot	E>500 meV	λ < 0.4 Å

Maxwellian distribution

Cold neutrons: Larger distance or lower energies

Hot neutrons: Small lattice spacing or higher energies

 \Rightarrow heating or cooling of the moderator

Cryogenic moderator materials

High proton density + low energy excited states

TABLE III

Material	Femperature, K	Proton Density, protons/Å3	Melting and Boiling (1 atm) Temperatures, K
H2O (for reference)	293	0.067	273, 373
(CH ₂) _n , 0.94 gm/cm ³ (re	ef) 293	0.081	
TiH2 (for reference)	293	0.095	
H2	20	0.042	14, 21
CH4	109	0.070	90, 110
CH4	10	0.079	90, 110
C2H6	165	0.068	90, 184
C3H8	228	0.064	83, 231
C12H18, Mellitine	293	0.047	439, 538
C9H12, Mesitylene	293	0.039	228, 438

Pulsed Source Moderator Materials

Issue: Radiation damage in solid materials

→ Solid cryogenic moderators at medium intensity sources, e.g. ISIS, HiCANS

20

[cm]

Horizontal position

Cryogenic moderators

 Liquid Hydrogen ~ 20 K Para-hydrogen: Increased extraction volume Low dimensional moderator not fully moderated \rightarrow 'warmer' spectrum

Moderation at pulsed sources

- Pulse length is used for wavelength/energy definition
 - Should match resolution requirements
 - Must be treated in data analysis → "nice" shape
 - Time-of-Fligth (ToF): $t = 0.25278 \frac{\text{ms}}{\text{m}\text{\AA}} \lambda L$

9. September 2022

Moderater & Reflector

- < 10 µs to moderate to thermal</p>
- < 50 µs to moderate to cold</p>
- Then: Dilution of neutron cloud by diffusion
- Reflector
 - Feed neutrons back into moderator
 - Don't absorb neutrons
 - Slow diffusion to keep cloud contained

Long Pulse (ESS)

- Low resolution without pulse shaping
- "Normal" resolution: Mechanical neutron choppers
- → Requirements to moderator:
- Low Absorption to keep neutron number high
- Neutron lifetime in reflector ≈ pulse length
 → Be reflector

ESS Target-Moderator-Reflector Assembly,

L Zanini et al., Jour. Phys.: Conf. Ser. 1021 (2018) 012066

Intermediate Pulse (HiCANS)

Short Pulse

Time/Energy emission map of the cold H₂ J-Parc moderator

Short pulse: How to get even shorter pulses?

Folie 41

Decoupling: Prevent return of thermal neutrons from reflector to moderator

Poisoning: Reduce the extraction volume, e.g. by Gd layer

M. Harada et al., NUM A 574, 407 (2007)

Bi-spectral extraction: Increase spectral range for multi scale investigations

- Increase of spectral range
- At short pulse source separated in time
- At long pulse and steady sources
 - View cold & thermal faces
 - Additional optics to bring beams on one axis

K.H. Andersen *et al.*, Jour. Appl. Crys. 51, 264 (2018) Folie 42

Comparison of moderator brightness

Take home messages

- ✓ Free neutrons are products of nuclear reactions
- ✓ Small production volume: Brightness vs. cooling
- ✓ High continuous flux from reactor
- ✓ High peak flux from spallation sources
- ✓ HiCANS as prospect to provide sufficient neutrons in future
- Moderators confine neutrons in space and energy to maximize phase space density aka brightness
- ✓ Adapted spectra & pulse properties
- Integrated approaches from source to detector to improve instruments & progress neutron science