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Take-home message

Polarized neutrons can be used to enhance (nearly) any
neutron scattering experiment, either by:

1. Providing additional information on the scattering
components (coherent, incoherent, magnetic)

2. Improving the resolution or range
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Overview

Principles of polarized neutron scattering
- What is a polarized neutron beam?
How do polarized neutrons interact with matter?

- What extra information can be gained by using
polarized neutrons?

Practical polarized neutron scattering

» Devices: polarizers/analyzers, flippers, and guide
field

Techniques and applications of polarized neutrons
Half-polarized
 Longitudinal polarization analysis

Spherical polarimetry

Spin echo
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Principles of polarised neutron scattering
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Spin angular momentum

Neutrons possess an inherent magnetic moment related to their spin-angular
momentum S = 1/2

classical A Z

+1/2 T
1/ l .

]
+

Stern, Gerlach (1922)

The spin has three components — x, y, and z. In a magnetic field, only the
component along the field, conventionally z, is well defined.
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Vector and Scalar Polarization

In a magnetic field, the polarization of a beam is a vector pointing in the direction of
the field, with the length of the vector defined as the (scalar) polarization:

Ny —N_ F—-1 Ny
— or P=—; F=—
Ny + N_ F+1 N_

P

Where F is the flipping ratio, a frequently measured experimental quantity.

To determine the polarisation of a beam, we insert a device that selects either T or |
from the beam (e.g. another SG apparatus). This is called polarization analysis.
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Polarized neutron scattering

Most samples also contain magnetic moments, originating either from nuclei or the

electrons — magnetism.
d_a

f f

2

Q Nuclear spin |

Nuclear Magnetic

The scattered polarization and cross section (intensity) depends on the relative
orientation of the beam polarization and the magnetic moments in the sample.

2 Analyzing the scattered beam can provide us with this information!
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Spin-flip and non-spin-flip elastic scattering

In most experiments, it is sufficient to analyse the scattered polarization along the
same direction as the incident. This is called longitudinal polarization analysis.

We then only need to consider two types of process:

Non-spin-flip (NSF)
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Nuclear scattering

The neutron interacts with the nucleus via the strong nuclear force (Squires Ch. 9
and Boothroyd Ch. 4):
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Example 1: Polymer

Consider a hydrocarbon polymer:

(Y @
df

Ocoh Os|
C b5.551 0.001
H 1.757 80.26 .

Q

If we perform longitudinal polarization analysis, we can separate the contributions:
(da) _(da) _|_1(d0> (da) _Z(da)
dsl ) | d /) consrl |13 \dQL /. dl) | [3\dQ /..
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Example 1: Polymer

Consider a hydrocarbon polymer:

(Y @
a0 Total

Ocoh Osi| Coh

C 5.551 0.001
H 1.757 80.26

Q

If we perform longitudinal polarization analysis, we can separate the contributions:
(da) _<d0> 1<d0> <d0> _3<d0>
dQ ) ..l I\d2) . .| [2\dQ2/), Q)| 12 \d2/ .,
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Magnetic scattering

Magnetic scattering dominated by the neutron-dipole interaction (see)

Only measure
components ML

M
ML L.

MxQ
M, =QxM(Q) xQ

Magnetic

Boothroyd Ch. 4
Squires Ch. 7

MLIIPi-NSF
ML L Pi-SF

Pi

1. Rot. Pi 180° about M
2. Project onto P;

Boothroyd Ch. 4
Brown, Forsyth, Tasset

This means we now have to worry about the relative directions of the sample

moment (magnetisation) M (often ordered),

, and P;. Complicated in general!
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Example 2: Paramagnetic scattering

Let us consider the case where the electronic moments are disordered.

After averaging over the random direction of M, the magnetic elastic scattering cross
section only depends on angle between the incident polarization P; and

da) (da) A A o | Z P.

<dﬂ ++ drj__ 5 T Pi
e

do do N X y

(d_ﬂ>+__<d_ﬂ>_+ocl+(Q Pi) 0:1 1/2 1 1/2

Squires Ch. 9, p. 179
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Example 2: the || - L method

Combining this with example 1, what if all three types of scattering are present?
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Example 3: collinear ferromagnet

Another case involves the electronic moments in the sample all being aligned

> 0 % 9 9

Bragg peak cross section now depends on the orientations of the magnetisation M,

Pi, and
MIlP; L

A

. It also includes both nuclear and magnetic contributions. For M Il Pi L
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Example 3: magnetic crystal polarizer

e.g. CusMnAl
m g
M Il (110) E 2 ; E
= (1-11) = =
Fn=7.2fm E i E
Fuv=6.8 fm e 3 -
HYSPEC @ SNS™— a ¥ cusm
Heusler monochromator
MIIPiL 1. M L Q : measure all of M

2. Pill ML : all scattering NSF

d
+Pill M : (dg> x |Fyn + Fy|*~ 0.16 barns

do
-Pill M : (dQ) x |Fn — FM|2~ 200 barns
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Summary

Rules

@ The nuclear coherent and isotope incoherent scattering is entirely NSF
@ The spin incoherent scattering is 1/3 NSF and 2/3 SF

@ The components of the sample magnetisation perpendicular to € and...
e ... parallelto Pi: NSF
e ... perpendicular to P; : SF

Consequences

@ We can separate the components of the cross section (Examples 1,2)

We are also sensitive to the direction of magnetic moments through
either the cross section (ferromagnets) or the polarization
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What do we need?

Returning to examples 1 and 2: how do we measure the SF and NSF scattering?
We've seen that we can polarise and analyse a beam with crystals like CuoMnAl:
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However, these are normally fixed to accept only one state — need flippers

We have also seen that it can be useful to rotate the polarisation versus @ and M —
guide field. The guide field also preserves the polarisation between the elements.
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Polarized neutrons in practice

The first instrument of this kind was built by Moon, Riste, and Koehler in 1968

GUIDE FIELDS

Guide field +x

COUNTER

~weze Polarize +z

Guide field

FLIPPER

Flipper

2 ELECTROMAGNET

K@ Guide field Il Q

5000

H
(@}
o
o

3000

neutrons per 3min

2000

1000

2000

1600

1200

800

400

neutrons per 20 min

600

400

200

Moon, Riste, Koehler

Total

__|MnF, 9

[

NPOLARIZED BEAM

oD Oan e
hlanh 5

Porre

S LY

Nuclear +11 | |

POLARIZED BEAM WITH l
POLARIZATION ANALYSIS . i

PIIK

|

FLIPPER OFF

L
""""d'mmn-#“\- J o

%0

SCATTERING ANGLE (deg)

Magnetic
® 'V'w
FLIPPER ON“GW".'-' P,
M C A PO y|
| S——BACKGROUND | | | _"_'1
0 10 20 30

OSNS, 9/9/2022



Neutron polarizers and analyzers

1. Magnetic crystal 2. Polarizing mirrors
CusMnAL | &

Alternating nonmagnetic and
magnetic layers

nty X \/pcoh + Pmag
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Ny + N_ ng + N4
If Fn = Fum, polarized beam! If no = In.l, polarized beam!
(see Example 3) (see S. Langridge lecture)
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Neutron polarizers and analyzers

3. 3He spin filter

08
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Oabs ~ 0 barns

polarized
beam

- 80

SHe (nuclear spin | = 1/2) has a spin-dependent absorption cross section:
neutron

60 46

Tabs ~ 6000 barns

SHe plasma

FLYNN, ISIS

Require high 3He polarization for good neutron polarization — lasers!
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Manipulating the polarization

After creating polarised beam, need to guide/rotate it and flip its direction. This is
done using magnetic fields.

If the direction of the magnetic field changes, the polarization Larmor precesses
around the new field direction.

Larmor frequency wr, = VB

fIII%%ﬁ

The angle of the cone depends on the angle between the original field direction and
the new field direction.
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Manipulating the polarization

Let us imagine we have a field changing at a rate ws = d6g/dt. We may then identify
two cases by comparing this rate with the Larmor frequency and neutron velocity:

q_wL_ B
wp  vn(dip/dx)
Adiabatic (A > 10) Non-adiabatic (A <0.1)
The spin follows the rotating field The spin immediately begins
direction precessing about the new direction

P .
veam (1117777722227 | | . N2 ,
1t fé///W TTTTTON

—

Slow changes — field rotation. Fast changes — precession/flipping
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Guide fields/field rotators

Guide/rotating field is typically constructed using either permanent magnets or
electromagnets:

XYZ field rotator

Guide field
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Spin flippers: a few examples

Drabkin Mezei

00O,

1. Non-adiabatic transition
2. Precession ()
Field changes direction in the middle. 3. Non-adiabatic transition
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Techniques and applications q
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Reminder: rules of polarised neutron scattering

Nuclear

@ The nuclear coherent and isotope incoherent scattering is entirely NSF

@ The spin incoherent scattering is 1/3 NSF and 2/3 SF

Magnetic
@ The components of the sample magnetisation perpendicular to @2 and...
... parallel to Pi : NSF ZT P;
dicular to P; : SF u
... perpendiculartoPi: SF .~
X y
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“Half”-polarized techniques

The simplest implementation involves just a polarizer and flipper. These techniques

typically rely on nuclear-magnetic interference (Example 3):
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“Half”-polarized techniques

The simplest implementation involves just a polarizer and flipper. These techniques
typically rely on nuclear-magnetic interference (Example 3):

Spin density Polarized neutron reflectometry

e.g. [NHz(CHs)2][Fe3+Fe2+(HCOO)s] e.g. model E-coli lipid membrane

Q
(=)
® 9
0 a

H,0

Distance / A

"0 2 4 6 8 10
Scattering Length Density / x106 A-2

Canadillas-Delgado et al. Clifton et al.; see S. Langridge for other examples
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Longitudinal polarization analysis: chiral scattering

Beyond component separation, longitudinal polarization analysis is also able to
observe cross section components that are invisible to unpolarized neutrons:

Chiral scattering

e.g. multiferroic NizV20s do\ FillQ P o
CCW (dﬂ) X ’MJ_ ' _ PMchz'
+_
®
M. >0
] TR
@ 150 :
CW 2
2 100t
Z (@]
Pill >
@ 50t
I3
Pi =
e 0 50 o
X 1221.241.261.281.30  1.241.261.281.301.32
y h (reciprocal lattice units)

Cabrera et. al.; see R. Johnson lecture
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2D XYZ polarization analysis

In the case where we have a 2D detector, like on a powder diffractometer, it is no
longer possible to align 2 and P; for every detector. However (see Stewart):

(do/dQ)nsF : (do/dQ)sF
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Examples: 2D XYZ PA

This technique can be used to separate very small signals or distinguish
magnetization components in magnetically disordered systems:

Frustrated magnets Magnetocaloric materials
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Longitudinal polarization analysis

We have already looked at a few examples of longitudinal PA. Wide-angle LPA has
recently come into more widespread use for inelastic scattering:

Polarized spectroscopy

e.g. Coherent and incoherent dynamics in D2O
D2O 295K7 S(Qa hV)inc D2O 295K7 S(Qa h'V)coh
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Sinc(Q, E) contains the collective (and single-molecule) dynamics while Sinc(Q, E)
contains only the single-molecule motions. This has resulted in a revision of the
model for the dynamics in water.

Arbe et. al.
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Spherical polarimetry

In some cases, the crystal symmetry means that different magnetic structures look
identical in LPA. This is a result of the projection onto the P; (field) direction:

Pi T Pi

* \ IVIJ_
.
. *
.

. -

.* »
-
-

In this case, LPA is insufficient, and we need to measure all components of the
scattered polarization. This is achieved by doing spherical polarimetry

Pf,a: Pa:a: Pa;y Pa;z Pi,a:

_ Py y = | Pya Pyy Dy Py

: P Pf,z Pz:c sz Pzz Pi,z
f,x

In spherical polarimetry, projection avoided by placing sample in zero field, and
carefully controlling P; and P: with fields and flippers (see Brown, Forsyth, Tasset).
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Spherical polarimetry

In spherical polarimetry, projection avoided by placing sample in zero field, and
carefully controlling P; and Ps with fields and flippers (see Brown, Forsyth, Tasset).

N. Qureshi; see R. Johnson lecture for examples
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Neutron spin echo
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Principle: “classical” spin echo

Precession field Precession field
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Principle: “classical” spin echo
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Adapted from Hippert; see Alba-Simionesco lecture
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Resolution
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Example

Spin echo is frequently used to observe “slow” (~ns-us) dynamics in polymers and
biological systems, as well as magnetic systems (with some modifications...)

Dynamics Iin soft matter and biological systems

Energy E (neV)
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Gardner et. al.
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Example

Spin echo is frequently used to observe “slow” (~ns-us) dynamics in polymers and
biological systems, as well as magnetic materials (with some modifications)

Dynamics Iin soft matter and biological systems

e.g. Thickness fluctuations in model lipid bilayer systems
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Lipid bilayers make up the cell membranes of many cells. Their thickness
fluctuations determine many aspects of cell function. The ns dynamics in a
deuterated sample reveal these fluctuations.

Ashkar et. al.
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Conclusion

» Polarized neutron beams interact with magnetic moments (both
nuclear and electronic) in samples. The scattered polarization and
cross section depends on the type of scattering process
(nuclear coherent, spin incoherent, or magnetic).

* Polarized neutron beams can therefore be used to:

- Separate cross section components

-  Determine magnetic moment orientations

- Access parts of the cross section inaccessible to
unpolarised neutrons

* Polarized neutron beams can also be used to improve the resolution
of neutron scattering by exploiting Larmor precession
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