

Marc Janoschek :: Head, Laboratory for Neutron and Muon Instrumentation :: Paul Scherrer Institut

Neutron Instrumentation

Oxford School on Neutron Scattering 2022

Neutron instrumentation cannot be overlooked thanks to its impressive size

Detectorbank

@ ISIS

But its importance has also been recognized on the highest level!

90 Years of Neutrons in Nobel Prizes

1932

James Chadwick discovers the neutron. He receives the Nobel Prize in Physics in 1935 for discovering the missing part of the atom.

1938

Enrico Fermi receives the Nobel Prize in Physics for his work investigating the atomic scattering and absorption cross-sections of slow and thermal neutrons.

1970

Louis Néel wins the Nobel Prize in Physics for the discovery of the concepts of antiferromagnetism and ferrimagnetism. Neutron diffraction was instrumental in verifying this concept.

1974

Small angle neutron scattering shows that polymer chains in the liquid state have a random coil conformation as predicted by Paul J Flory. He wins the Nobel Prize in Chemistry for his fundamental achievements in understanding macromolecules.

1987

J. Georg Bednorz and K. Alexander Müller receive the Nobel Prize in Physics for the discovery of high temperature superconductors. Later, neutron spectroscopy shows that magnetic interactions are crucial to this phenomenon.

1991

Pierre-Gilles de Gennes receives the Nobel Prize in Physics for his work on liquid crystals and polymers. Neutron spin-echo spectroscopy was used to validate his models of the snake-like polymer repetition dynamics of polymers.

2016

David J. Thouless, for one half, and F. Duncan M. Haldane with J. Michael Kosterlitz for the second half, for 'theoretical discoveries of topological phase transitions and topological phases of matter. Neutrons instrumental in validating these concepts.

https://stfc.ukri.org/research/our-science-facilities/neutron-and-muon-sources/80-years-of-neutrons-a-timeline/ https://europeanspallationsource.se/article/nobel-prize-physics-once-again-highlights-essential-role-neutron-scattering-facilities

Definition of "Instrumentation"

lisit the main page			A Not logged in Talk Contributions Create account Log in					
I Q H	Article Talk	Read	Edit	View history	Search Wikipedia	Q		
WIKIPEDIA	Instrumentation							
The Free Encyclopedia	From Wikipedia, the free encyclopedia							
Main page	For other uses, see Instrumentation (disambiguation).							
Contents Current events	Instrumentation is a collective term for measuring instruments that are used for indicating, measuring and recording physical quantities. The term has its origins in the art							
Random article About Wikipedia Contact us Donate	Instrumentation can refer to devices as simple as direct-reading thermometers, or as complex as multi-sensor components of industrial control systems. Today, instruments can be found in laboratories, refineries, factories and vehicles, as well as in everyday household use (e.g., smoke detectors and thermostats)							
				and the second se				
	rumentation					The Oxford		
/ˌinstro	vmɛnˈteiʃ(ə)n/					English		
noun					W W M M MB WB XX XX	Dictionary		

the particular instruments used in a piece of music.
"Telemann's specified instrumentation of flute, violin, and continuo"

measuring instruments regarded collectively.
"the controls and instrumentation of an aircraft"

In this lecture we will use the following definition:

"Neutron instrumentation is a collection of technology that helps you exploit the properties of neutrons to realize your experimental strategy to study matter. Knowing instrumentation well, will allow you to extract the maximum out of your experiments."

Summary

Rules/Guidelines

Instrumentation enables progress in science!

Neutron instrumentation is a collection of technology to exploit the properties of the neutrons for your measurements.

Consequences

Neutron instrumentation is fun!

Knowing neutron instrumentation well, will improve your experiments!

Two Experimental Strategies

Ernest Wollan (left) and Clifford Shull (right) work with a double-crystal <u>neutron diffractometer</u> at the ORNLX-10 Graphite Reactor in 1949.

Picture from:

Jeremy Rumsey "A history of neutron scattering at ORNL," Neutron News 29, 10-16 (2018)

B.N. Brockhouse with the first version of his triple-axis <u>spectrometer</u> at the NRU reactor (November 1958 – July 1959)

Picture from: Canadian Institute for Neutron Scattering (CINS) https://cins.ca/discover/brockhouse/

What can we learn?

Diffractometer

Yard stick for measuring correlations over interatomic distances r

Spectrometer

for detecting correlations over distances r and times t

Summary

Rules/Guidelines

There are two main instrumentation strategies: diffraction and spectroscopy.

Diffraction: Exploit neutrons as atomic scale ruler

Spectroscopy: Exploit neutrons as atomic scale stopwatch

Consequences

Neutrons are ideal tools to measure atomic-scale structure and dynamics!

Accessible length and time-scales cover many orders of magnitudes!

Diffractometer

Experimental Strategy: Exploit Bragg reflection on "sample" to obtain atomic scale structure!

Diffraction: What are the parameters we want to control?

Diffraction: What are the parameters we want to control?

For a working diffractometer we need to:

- ! be able to control the wavelength
- **!** Be able to control orientation of sample and counter
- ! be able to count neutrons (will come back to this later)

Monochromator: Selecting the Neutron Wavelength

Material (Reflection)	d-spacing (nm)
Germanium (333)	10.89
Copper (200)	18.07
Silicon (111)	31.35
Graphite (002)	33.55
(Reflection) Germanium (333) Copper (200) Silicon (111) Graphite (002)	(nm) 10.89 18.07 31.35 33.55

$$n\lambda = 2d\sin\theta$$

Material	Structure	Lattice constant(s) at 300 K a, c (Å)	Unit-cell volume V _o (10 ⁻²⁴ cm ³)	Coherent scattering length b (10 ⁻¹² cm)	Square of scattering length density 10 ⁻²¹ cm ⁻⁴	Ratio of incoherent to total scattering crosssection σ_{inc}/σ_s	Absorption cross section σ_{abs} (barns)* at $\lambda = 1.8$ Å)	Atomic mass A	Debye temperature $\theta_D(K)$	$\begin{array}{c} A\theta^2_{\ D} \\ (10^6 K^2) \end{array}$
Beryllium	h.c.p.	a: 2.2856 c: 3.5832	16.2	0.779(1)	9.25	6.5 x 10 ⁻⁴	0.0076(8)	9.013	1188	12.7
Iron	b.c.c.	a: 2.8664	23.5	0.954(6)	6.59	0.033	2.56(3)	55.85	411	9.4
Zinc	h.c.p.	a: 2.6649 c: 4.9468	30.4	0.5680(5)	1.40	0.019	1.11(2)	65.38	253	4.2
Pyrolytic graphite	layer hexag.	a: 2.461 c: 6.708	35.2	0.66484(13)	5.71	<2 x 10 ⁻⁴	0.00350(7)	12.01	800	7.7
Niobium	b.c.c.	3.3006	35.9	0.7054(3)	1.54	4 x 10 ⁻⁴	1.15(5)	92.91	284	7.5
Nickel (⁵⁸ Ni)	f.c.c.	3.5241	43.8	1.44(1)	17.3	0	4.6(3)	58.71	417	9.9
Copper	f.c.c.	3.6147	47.2	0.7718(4)	4.28	0.065	3.78(2)	63.54	307	6.0
Aluminium	f.c.c.	4.0495	66.4	0.3449(5)	0.43	5.6 x 10 ⁻³	0.231(3)	26.98	402	4.4
Lead	f.c.c.	4.9502	121	0.94003(14)	0.97	2.7 x 10 ⁻⁴	0.171(2)	207.21	87	1.6
Silicon	diamond	5.4309	160	0.41491(10)	0.43	6.9 x 10 ⁻³	0.171(3)	28.09	543	8.3
Germanium	diamond	5.6575	181	0.81929(7)	1.31	0.020	2.3(2)	72.60	290	6.1

*1 barn= 100 fm^2 .

Use well-characterized single crystals with large coherent scattering cross-section to select desired neutron wavelength.

Monochromator: Selecting the Neutron Wavelength

Double-Focusing for Small Samples

Smash your Crystal or Powder Diffraction

In this case, we do not need to orient our sample, which makes the experiment somewhat simpler.

Resolution of a Constant Wavelength Powder Diffractometer

DMC @ PSI

HRPT @ PSI (High Resolution Powder Diffractometer for Thermal Neutrons)

What makes HRPT higher resolution that DMC???

Resolution of a Constant Wavelength Powder Diffractometer

DMC @ PSI

(High Resolution Powder Diffractometer for Thermal Neutrons)

What makes HRPT higher resolution that DMC???

Wavelength Resolution of a Crystal Monochromator

A. Meyer et al., Review of Scientific Instruments 74, 2759 (2003)

Resolution of a Constant Wavelength Powder Diffractometer

DMC @ PSI

(High Resolution Powder Diffractometer for Thermal Neutrons)

What makes HRPT higher resolution that DMC??? Scattering Angle for HRPT closer to 90 degrees!!!

Diffraction: What are the parameters we want to control?

For a working diffractometer we need to:

- be able to control the wavelength
- Be able to control orientation of sample and counter
- be able to count neutrons (will come back to this later)

However, there seem to be a few more things:

- Neutron guide
- Filter
- Collimator

Single Crystal Diffractometer: Zebra @ PSI

beam stop

detector

Diffraction: What are the parameters we want to control?

For a working diffractometer we need to:

- be able to control the wavelength
- Be able to control orientation of sample and counter C
- ! be able to count neutrons (soon)

However, there seem to be a few more things:

- Neutron guide (soon)
- Filter (soon)
- Collimator (soon)

Neutron Time-of-Flight at Pulses Sources

For pulsed neutron sources we may use the time neutrons require to fly to select their wavelength.

Pioneers of Time-of-Flight Diffraction

James D. Jorgensen (1948–2006)

Dimitry N. Argyriou & Paolo G. Radaelli

Nature Materials 6, 97 (2007) Cite this article 257 Accesses Metrics

Pioneer of neutron diffraction and the structure of superconductors.

When Jim Jorgensen wished to refocus the attention of a post-doc after the presentation of a 'novel' result he would say in a jovial but gentle manner "...nothing simulates a new effect quite like a mistake". In many ways, this anecdote exemplifies Jorgensen's clarity of mind, a quality that allowed him to develop neutron powder diffraction at spallation sources from a little-appreciated curiosity into a powerful investigative tool, which he then went on to apply, with extraordinary results, to the study of the structure– property relations of a variety of materials. Jorgensen's contribution has perhaps been most influential in the field of superconductivity, where he produced authoritative and highly cited papers on

Credit: ARGONNE NATIONAL LABORATORY

virtually all superconductors of the past 30 years. However, his wider legacy in neutron powder diffraction, crystallography, materials physics and solid-state chemistry is as relevant now as at any time in his career, as the scientific case for the next generation of spallation neutron sources in the US and Japan is based to a large extent either directly on his work or indirectly on the example and inspiration he was able to set.

Time-of-Flight Diffraction

Note that you can obtain an entire powder diffraction pattern with a single detector at one angle...

Time-of-Flight Diffraction

 \Rightarrow Add many more detectors to increase efficiency!

WISH @ ISIS

Time-of-Flight Resolution

Let's look at some more instrument components!

Neutron Detectors: Basic Principles

Efficient neutron converters a key component for neutron detectors

³He Gas Detectors (most common)

IN5 3He Detector Tubes @ ILL

- >1mm resolution
- High efficiency •
- Low gamma-sensitivity
- 3He supply problem •

Li Scintillator Detectors

Graphic courtesy of G. J. Sykora (ISIS)

n + ⁶Li→⁴He + ³H + 4.79 MeV

- <1mm resolution
- Medium efficiency
- Some gamma-sensitivity
- Magnetic-field sensitivity

Li Scintillator Detector at GEM @ ISIS

¹⁰**B** Detectors (new)

Graphic courtesy of Richard Hall-Wilton

$${}^{10}B + n \to {}^{7}Li^{*} + {}^{4}He \to {}^{7}Li + {}^{4}He + 0.48MeV\gamma \text{-ray} + 2.3 MeV \quad (94\%) \\ \to {}^{7}Li + {}^{4}He + 2.79MeV \quad (6\%)$$

Efficiency limited at ~5% (2.5Å) for a single layer

Neutron Guides – Why do we need them?

- 1) Transport neutrons to instruments without too much intensity loss.
- 2) Make space for more instruments by moving them further out.
- 3) Decrease background (fast neutrons, gammas, ...)

Neutron Guides – How do they work?

Neutron Supermirror

Graphics courtesy of Roland Gähler

State-of-the-Art Neutron Supermirrors

Focusing Geometries

New Focusing Guide for CNCS Spectrometer @ ORNL Optimized For Pressure Experiments

Pictures Courtesy of P. Böni & A. Podlesnyak

First Prototype of Focusing Guide 2005 @ PSI

Parabolic Guide for D1& @ ILL

Reducing Background: Curved Guides

 Distance: move away from fast neutron source ~ 1/R²

avoid direct line-of-sight
 avoid gammas

Neutron Filter

Higher order scattering at monochromator

 $n\lambda = 2d \sin(\theta) \Rightarrow \lambda/2, \lambda/3, ...$

Contamination of experimental data with highorder.

Be-Filter can be used as low-pass filter for small wavelength.

Other typical filters: PG

Neutron Collimator

Intermezzo: Sample Environment

Samples often need to be:

- cold (down to 10 mK)
- hot (up to 1000 of C)
- In magnetic fields (15 T +)
- Under pressure (several Gpa)
- Or other extreme stuff...

This poses an inherent problem:

- More things in the beam mean imply more background (bad)
- Scattering angles can be constrained
- Intensity goes down.

Strategies for Sample Environment Materials Background Management

$\circ \ \underline{\text{Aluminum}} \\ \sigma_{\text{coh}} = 1.495 \text{ (4) barn} \\ \sigma_{\text{inc}} = 0 \text{ barn} \\ \circ 2000 \text{ (0) barn}$

- $\sigma_{abs}=0.0382(8)$ barn
- \circ <u>Vanadium</u> $\sigma_{
 m coh}=$ 0.01838 (12) barn $\sigma_{
 m inc}=$ 5.08 (6) barn
 - ⇒ almost pure incoherent scatterer
 ⇒ scattering is isotropic
 - \Rightarrow can be "easily" subtracted

0 <u>TiZr</u>

- ⇒ scattering length of Ti and Zr are equal but opposite.
- \Rightarrow no coherent scattering at all.
- ⇒ no Bragg peaks!!!
- ⇒ Also high yield strength (good for pressure).
- Saphir (single xtal and sintered) Al₂O₃

Neutron Optics

cryogenic neutron lens

C. Klauser, et al, NIMAA: 953, 163188 (2020).

Two Experimental Strategies

Ernest Wollan (left) and Clifford Shull (right) work with a double-crystal <u>neutron diffractometer</u> at the ORNLX-10 Graphite Reactor in 1949.

Picture from:

Jeremy Rumsey "A history of neutron scattering at ORNL," Neutron News 29, 10-16 (2018)

B.N. Brockhouse with the first version of his triple-axis <u>spectrometer</u> at the NRU reactor (November 1958 – July 1959)

Picture from: Canadian Institute for Neutron Scattering (CINS) https://cins.ca/discover/brockhouse/

What can we learn?

Diffractometer

Yard stick for measuring correlations over interatomic distances r

Spectrometer

for detecting correlations over distances r and times t

Why do we want to perform Spectroscopy?

Example: Thermal conductivity in an insulator

- Collective lattice vibrations transfer energy (heat) from hot side to cold side of material.
- How well a material can do this depends on the "spring constants" (atomic-scale forces) that connect atoms.
- Neutron spectroscopy can probe these lattice vibrations allowing to understand heat transport microscopically!!!

Phonons: Collective Lattice Vibrations

a

M

 f_1

q

 $q=2\pi/\lambda$

For small deflections, the force applied by atoms in lattice plane (s+n) onto atoms in the plane *s* is proportional to $(u_{s+n}-u_s)$, where *u* is the deflection of the plane.

The total force on plane *s* is given by:

$$F_s \quad M \frac{d^2 u_s}{dt^2} \qquad f_n \quad u_s \quad u_s$$

The solution yields a relationship between the wave q number (or momentum) and the frequency (energy) of the phonon ω called a dispersion relation (for nearest neighbor forces):

$$\sqrt{\frac{4f_1}{M}} \left| \sin \frac{qa}{2} \right|$$

lattice parameter

— mass

— wavenumber ($q = 2\pi/\lambda$)

for
$$q = 0$$
: $V_g = -\frac{1}{q} = \sqrt{\frac{4f_1}{M}}$ (group velocity)

Spectroscopy: What are the parameters we want to control?

A neutron can create aa collective excitation with an energy $\hbar \omega$ and momentum **q** by transferring part of its momentum \mathbf{k}_i ($k_! = 2\pi/\lambda_!$) and energy $E_i = \frac{\#!}{\$\%} k_!$ ^{\$} during the scattering process.

This is what we want to know:

Momentum conservation: $\boldsymbol{Q} = \boldsymbol{\tau} + \boldsymbol{q} = \boldsymbol{k}_{!} - \boldsymbol{k}_{"}$ Energy conservation: $\hbar \omega = \frac{\#!}{\$\%} (\boldsymbol{k}_{!} - \boldsymbol{k}_{"})^{\$}$

This is what we want to measure

Triple Axis Spectroscopy - Modes of Operation

Pictures Courtesy of Roger Ecclestone

Time-Of-Flight Spectroscopy

Neutron Choppers

Time-Of-Flight Spectroscopy: Kinematic Conditions

TAS (here: SPINS @ NIST)

Good for:

- parametric studies
- highest resolution
- Low background studies

Good for:

- Obtaining complete overview quickly
- Identify signals that modulate weekly in momentum and energy

TAS (here: SPINS @ NIST)

Good for:

- parametric studies
- highest resolution
- Low background studies

VS.

Good for:

- Obtaining complete overview quickly
- Identify signals that modulate weekly in momentum and energy

Time-Of-Flight Spectroscopy: Inverse Geometry

Graphic courtesy of Ken Anderson (SNS)

Reminder:

- A monochromater used in backscattering geometry ($\theta \approx$ 90 degrees) has nearly perfect wavelength (or energy) resolution.
- Allows µeV resolution.

Novel Approaches: CAMEA @ PSI

Continuous Angle Multiple Energy Analysis

The Importance of Software

Jakob Lass

Triple Axis Spectroscopy – Resolution Focusing

Triple Axis Spectroscopy – Rowland Focusing

- \rightarrow Focusing increases the flux on the sample.
- → What happens to the resolution?

Triple Axis Spectroscopy – Rowland Focusing

Fig. 7. Energy distributions of neutrons scattered elastically from a vanadium sample. Circles correspond to measurements with the curved analyser set at different curvatures and no collimator. A comparison scan with flat analyser and a 0.6° Soller collimator is shown with full dots.

NUCLEAR INSTRUMENTS AND METHODS 143 (1977) 77-85;

→ Momentum resolution decreases (high flux).

Fig. 8. Neutron groups corresponding to coherent one-phonon scattering involving the transverse mode at the L point in Al, for several values of the curvature ρ . Also shown are peak intensity PI, peak width W and a comparison scan with flat analyser and collimator (note different scale).

→ However, energy resolution increases!!!