

Chemical Applications of Neutron Scattering:

Lots of examples centred on 'adsorbed Layers'

ISIS Neutron School 2022

Stuart Clarke

BP Institute, Department of Chemistry, University of Cambridge, UK

Talk Outline

Neutron scattering

— Coherent scattering - structure

Incoherent scattering - dynamics

Examples of surfaces / neutron applications: **Adsorbed layers:**

In-plane structure – 2D diffraction (D20)

Out-of-plane structure – reflection (SURF, CRISP, **INTER, POLREF, OFFSPEC)**

What's adsorbed? (IQNS - dynamics) IRIS

Colloidal dispersions (dominated by surfaces)

What's on the surface? SANS (LOQ) **SE-SANS**

- What arrangement ?
- Liquid structure

PDF (SANDALS, NIMROD)

Conclusions

We use LOTS of different techniques to answer complex problems Too much to cover.... See how far we get..

Conclusions

Neutrons

Very powerful tool(s) for Structure (Dynamics)

- Contrast between H and D very useful: highlight
- Can 'see' Hydrogen: Highlight
- Excellent transmission (extreme/commerical conditions)

BUT.

- Tricky to get hold of/limited access

(complement with other methods)

Examples of Monolayers

- Academic and industrial issues: Colloidal stablisation, wetting behaviour, Slip agents, Corrosion,
 Academic and industrial issues: molecular patterning, detergency, liquid crystals.
 - Solid monolayers
- Mixtures / Multicomponent: Cheaper ...
- 'Buried' monolayers inaccessible to study: Need to get through bulk phase -neutrons have great transmission Unusual experimental approaches

Talk Outline

Examples of surfaces / neutron applications:
Adsorbed layers:

In-plane structure – 2D diffraction Out-of-plane structure – reflection What's adsorbed? (IQNS - dynamics) Colloidal dispersions (dominated by surfaces) What's on the surface? SANS What arrangement ? SE- SANS PDF (NIMROD) Liquid structure

3D diffraction: crystallography

- 'Work horse' of chemical community
- Crystal structures of minerals, materials, organic molecular structure determination.
- Neutrons very good at hydrogen (x-rays no so good)
- Adjacent elements (look the same to x-rays)

TODAY: 3D \rightarrow 2D diffraction

In-plane 2D Structure: X-ray and Neutron diffraction

5

Why Xrays AND neutrons are important.

Chloromethane monolayer: X-rays

Chlorine atoms

Where are CH₃ groups? *Guessed:*

Ferro electric ordering? Like bulk crystal plane...

Bulk Plane

Morishige, et al., Mol Phys, 72 395-411 (1991). 'The Structure of Chloromethane Monolayers Adsorbed on Graphite'.

Need neutrons to see CH₃ groups and full symmetry

Mixing: How do you tell if two species like each other?

1) They avoid each other \rightarrow phase separation:

Mixing ideally

Special relationship; stoichiometric complex Molecular compound

Structure: Diffraction from Mixed Monolayers How do molecules mix on a surface?

Angle \rightarrow (a) Phase sep.

Heptanol/nonanol

Heptanol/octanol

(c) Molecular compound

'Special, non-covalent bonding between molecules' Big topic of supramolecular self assembly

Donation of lone pair from nitrogen to lodine ataom

2D –diffraction: summary

- Can see in-plane molecular structure. (non-invasive)
- X ray and neutrons can be essential : Neutrons 'see' H
- Determine surface phase behaviour
- Characterise inter molecular bonding

Talk Outline

Examples of surfaces / neutron applications:
Adsorbed layers:

In-plane structure – 2D diffraction **Out-of-plane structure – reflection** What's adsorbed? (IQNS - dynamics) Colloidal dispersions (dominated by surfaces) What's on the surface? SANS What arrangement ? SE- SANS PDF (NIMROD) Liquid structure

Neutron Reflection: how does it work?

 Extend to new solid/liquid Interfaces: iron oxides, stainless, alumina, Ti oxides, Ni, Cu ...
(previously: silica, Al₂O₃)
New conditions:

applied shear

$$q = \frac{4\pi sin\theta}{\lambda}$$

nction of 'angle' (q)..

Neutron Reflection Theory

Neutron Reflection Theory

Neutron Reflection Theory

Thin layer reflection: Add amplitudes

$$\frac{n_1}{n_0} = \frac{\cos\theta_0}{\cos\theta_1} \qquad \qquad \frac{n_1}{n_0} = \cos\theta_c$$

$$r_{ij} = \frac{n_i \sin\theta_i - n_j \sin\theta_j}{n_i \sin\theta_i + n_j \sin\theta_j} \quad t_{ij} = 1 - r_{ij}$$

$$R(Q) = \left| \frac{r_{01} + r_{12}e^{-2i\beta}}{1 + r_{01}r_{12}e^{-2i\beta}} \right|^2$$
$$n_i = 1 - \frac{\lambda^2}{2\pi}\rho_i$$

 $\beta_i = (2\pi/\lambda)n_i d \cos\theta_i$

Tutorial problem: geometric series

Neutron: 'Magic'

- Contrast matching..
- Making things disappear!
- Unique structural solution.
- → BIG advantage of neutrons

- Need to make sure complete exchange of solutions.. Not always easy..
- Ask me about 'baby oil'?

BUT: bio-molecules very complicated/hard to prepare. (dedicated facilities at some Institutes)

Reflection Example #1

Calcite (CaCO3)
Very important mineral
Scale in your kettle
Oil reservoirs
Overbasing agent in engines

What adsorbs and how? In oil? In water? Polymers? Surfactants?

(Birefringent...! Double refraction)

Neutron reflection: Example #1 Surfactant, AOT, on Calcite (CaCO3) in oil

Adsorption of a monolayer on a surface:

(The bare surface, monolayer and bilaye

What adsorbs in water....?

Reflection Example : Additives on calcite..

Reflection Example : Mineral Surfaces mica

(Kate Miller) Layered silicate: mineral books

Mica:

Clays are key component of many oil reserviors

Very common in AFM/SFA studies

Many attempts to study with neutron reflection failed

- ➔ To hard to get a beam through
- ➔ Can't deposit through vapour
- → Thin sheets too flexible/break.. So..?

Support very thin layers on solid substrate and 'peel'

Does it work?...... Can we see adsorption on mica in solution?...

Surfactant adsorption on mica

Example: Layers under Shear

(steady and oscillatory shear) Modest shear rates < 500s⁻¹ (pipe flow, or flow over rock-beds)

Shear/Flow: AOT on Alumina/water

Thin layers

Effects of Shear: neutron reflection: Thin layer

Very thin layer - too thin for significant shear effects. (Same result under oscillatory shear).

Critical shear rate that delaminate the layers

Talk Outline

Examples of surfaces / neutron applications:
Adsorbed layers:

In-plane structure – 2D diffraction Out-of-plane structure – reflection What's adsorbed? (IQNS - dynamics) Colloidal dispersions (dominated by surfaces) What's on the surface? SANS What arrangement ? SE- SANS PDF (NIMROD) Liquid structure
Quasi-elastic neutron scattering

• Diffusive motions

• How long to move out of your 'box'

Incoherent Neutron Scattering

• Actually get a distribution of scattered neutron energies:

Hydrogen and Deuterium are different

Quasi-elastic Incoherent Neutron Scattering (IQNS) – 'Dynamics'

Isotopic substitution to distinguish components (H>>D)

- Dynamics to differentiate adsorbed from non-adsorbed materials
- Neutrons can exchange energy with sample nuclei:

Intensity of elastic scattering -> Amount of adsorbed, 'NOT-MOVING' material

Adsorbed Molecules are different

Use mobility to distinguish adsorbed layers

Incoherent quasi-elastic neutron scattering (IQNS)

IQNS Results: Octane on Graphite

What's adsorbed: (IQNS) Results from mixtures

Talk Outline

Examples of surfaces / neutron applications:
 Adsorbed layers:

In-plane structure – 2D diffraction Out-of-plane structure – reflection What's adsorbed? (IQNS - dynamics)

Colloidal dispersions (dominated by surfaces)

What's on the surface? SANS

What arrangement ?SE- SANSLiquid structurePDF (NIMROD)

What are Colloids?

Want to know What shape are the separate colloids What orientation What arrangement

Soft-matter: SANS a key approach: Characterisation of polymers/emulsions/gels

Neutron Transmission

'nanoparticles'

Form and Structure Factors

SANS: single colloid scattering (Dilute) What's on the surface

Mixtures: Contrast matching: 'magic'

'See' each component of a mixture separately Simplify complex systems

Small Angle Scattering: - P(Q) Dilute core-shell particles Thin water layer on calcite colloids in oil

P(Q) form factor for core-shell more complex Structure: core/water/surfactant/oil

'Contrast variation' H_2O and D_2O mixtures change 'colour' of different bits

Thanks to Richard Heenen and co

Contrast variation:

• Enhance sensitivity to each bit by selective deuteration

IF TIME SANS: Single particle orientation

• SANS of plate-like particles

Anisotropic Particles

Completely random particle distribution => 'powder' ring

Perfectly aligned => single 'spot'

Preferred orientation => 'arc' of intensity

Measuring orientational order of plates

Orientational order of the plates in flow

Dense Clay pastes under static and cross-flow conditions

Two colour cars

END of EXTRA BIT

SANS: Interference Between Objects

• Consider scattering as distribution of spheres

- Isolated object, e.g. spheres (P(Q))
- S(Q) is called the interference or 'structure factor': interference from different colloids.
- Measured intensity is:

 $I(Q)=P(Q) \times S(Q)$

- Other systems:
 - Crystal unit cells repeat on a regular lattice

Colloidal crystals of spheres

Diffract light ... Gives 'diffraction patterns'
→ Use diffraction to give structure

Colloidal Spheres under flow

IF – TIME EXTRA BIT SE- SANS

TRICKY!!!!

SANS -> SE-SANS VERY BIG objects

Big objects are seen at **small** scattering angles ('Reciprocal space') To see scattering by SANS at small angles need VERY tightly collimated beam: BUT THEN NO FLUX!!

Spin echo SANS → Keep wide open beam and Encode the scattering angle in the neutron spin!!

(VERY CLEVER IDEA THIS!!)

Spin Echo -SANS Encode scattering angle in the neutron polarisation Polarised neutron beam Polarised neutron beam Gives an 'echo' Precesses in magnetic field

Anisotropic magnetic fields

Collect intensity as a function of 'z' (combination of field angle, wavelength etc) (Precession usually in horizontal plane) Andersson 2008

SE SANS technique: Basic approach

- Beam polarised in and out
- Polarisation rotates one way and then back
- Depends upon time in the magnetic fields
- If neutrons don't change direction → big echo
- If neutrons change direction (funny shaped field) →
 Weaker 'echo' or depolarised.
- Spin echo to encodes the angle (q')

➔ Actually Measure:

Real space, density-density correlation function, G(z)

Example: Silica particles in polymer matrix

J. Baumberg Samples:

Hexagonal layers of 200nm silica in polymer matrix, 0.47 volume fraction.

Layers oriented and regularly stacked

Volume fraction 0.47 silica spheres Ordered by 'bending' process Stacked in layers.

• 'Ordered' array of spheres: SE-SANS

- (i) Core radius (big!): 90nm (good agreement)
- (ii) Vol fract as $z \rightarrow \infty$, 0.22 in reasonable agreement.

(iii) First correlation peak is less ordered than expected.

(iv) Higher order correlations of a true crystal are lost.

Clearly indicates significant positional disorder in the 'crystal'.

End SE-SANS extra bit

Talk Outline

Examples of surfaces / neutron applications:
 Adsorbed layers:

In-plane structure – 2D diffraction Out-of-plane structure – reflection What's adsorbed? (IQNS - dynamics) Colloidal dispersions (dominated by surfaces) What's on the surface? SANS What arrangement ? SE- SANS Liquid structure PDF (NIMROD)

Can we 'understand' liquid structure?

No long range order: NO diffraction??
 Oh dear!!

But still a lot of structure..
Radial distribution function

Liquid species

Radial distribution function

Liquid species

How many species in this shell at distance r from the central one: g(r)

Pair distribution function: g(r)

(normalised)

- 'Hard' core...
- Nearest neighbour shells..

Pair distribution function: g(r), FT of scattering data

Can we 'understand' liquid structure? See all Atom-Atom distances • Separate different atom contributions by isotopic exchange (H and D):

a) First difference (big circles exchanged):

b) Second difference:

➔ ONLY solute-solute distances!!

PDF example: Acetonitrile

 See correct molecular structure at short distances

Solvent shells at
Longer distances

Supercapacitors: lons in acetonitrile

- TPA Br in acetonitrile:
- See 'ion pairs'

Talk Outline

Neutron sources

- Coherent scattering - structure

Incoherent scattering - dynamics

Examples of surfaces / neutron applications: Adsorbed layers:

In-plane structure – 2D diffraction Out-of-plane structure – reflection What's adsorbed? (IQNS - dynamics) Colloidal dispersions (dominated by surfaces) What's on the surface? SANS What arrangement ? SE- SANS Liquid structure PDF (NIMROD)

Conclusions

Thanks..

- Adam Brewer Halogen bonding:
- Kate Miller/Lucy Griffin/Seung Lee: Calcite and Mica
- Beth Howe/ Becky Welbourne (Phoebe Allen): PDF
- Tom Arnold (DIAMOND): Alkane diffraction

ILL/ISIS / KEK/ LLB/ Berlin..etc. – neutron Time DIAMOND/SLS – SAXS time All the (Long suffering) beamline scientists

Thank YOU !

