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Lecture 1 Objectives

In Lecture 1 we will explore:

1. The building blocks of crystalline materials, including the lattice, basis and unit cell, 
and how to describe them using fractional coordinates,

2. Symmetry in crystals, including lattice symmetry, point group symmetry and space 
group symmetry,

3. How we can demonstrate the principles of diffraction in two-dimensions through 
lattice planes and Bragg’s law,

4. How we can extend these concepts to consider diffraction in three-dimensions 
using the reciprocal lattice and Ewald construction,

5. What determines Bragg peak intensities, including the structure factor and 
systematic absences,

6. The complementarity of neutron and X-ray diffraction, including a case study of a 
novel Li-ion battery material.

The material covered in this lecture links to tutorial questions C1, C4 and C5. 



Functional Solid-State Materials

In the solid state, most elements and inorganic compounds form crystalline phases

The properties and applications of such solids directly depend on their crystal structure

By characterising this structure, we aim to develop new materials with targeted functions

Diffraction is the process by which characterise the structure of crystalline materials

Battery 
technology

Global 
health

Renewable 
energy

Hydrogen 
economy



What is a Crystal?

Crystals are a regular, periodic arrangement of atoms, ions or molecules

Crystal Unit cell Crystal structure

This is in contrast to non-crystalline or glassy materials, which lack long-range periodicity



The Building Blocks of Crystalline Materials 

The lattice imparts the characteristic periodicity of a crystal and its translational symmetry

A set of atoms, ions or molecules that may dress the points of a lattice is known as a basis

The combination of a lattice and a basis that generates a crystal structure

Basis Lattice Crystal structure+ =



Primitive Lattices

The lattice is an infinite array of equivalent lattice points

The underlying periodicity defined by the lattice can be described mathematically by:

𝒓′ = 𝒓 + 𝑛1𝒂 + 𝑛2𝒃 + 𝑛3𝒄

A lattice is primitive if any two points 𝒓′ and 𝒓 with the same environment 
within the lattice obey this relationship with integer values of 𝑛1, 𝑛2 and 𝑛3

𝒂

𝒄
𝒃

= the unit cell

The unit cell is a repeating unit that can generate 
the entire crystal by translation in 3-dimensions

Its size and shape are defined by the 
unit cell parameters 𝑎, 𝑏, 𝑐, 𝛼, 𝛽 and 𝛾



Primitive Lattices

The number of independent unit cell parameters depends on the lattice symmetry

Lattice symmetry gives rise to seven crystal systems

Cubic

Tetragonal

Orthorhombic

4 × 3-fold axes
𝑎 = 𝑏 = 𝑐
𝛼 = 𝛽 = 𝛾 = 90°

1 × 4-fold axis
𝑎 = 𝑏 ≠ 𝑐
𝛼 = 𝛽 = 𝛾 = 90°

3 × 2-fold axes or
3 × mirror planes
𝑎 ≠ 𝑏 ≠ 𝑐

𝛼 = 𝛽 = 𝛾 = 90°

Monoclinic

Triclinic

Rhombohedral 

1 × 2-fold axis or
1 × mirror plane
𝑎 ≠ 𝑏 ≠ 𝑐
𝛼 = 𝛾 = 90°, 𝛽 ≠ 90°

None
𝑎 ≠ 𝑏 ≠ 𝑐
𝛼 ≠ 𝛽 ≠ 𝛾 ≠ 90°

1 × 3-fold axis
𝑎 = 𝑏 = 𝑐
𝛼 = 𝛽 = 𝛾 ≠ 90°

Hexagonal

1 × 6-fold axis
𝑎 = 𝑏 ≠ 𝑐
𝛼 = 𝛽 = 90°, 𝛾 = 120°

𝑎
𝑏

𝑐

𝛽𝛼
𝛾



Lattice Symmetry

120° 240° 360°

Cubic lattice symmetry is defined by its 4 × 3-fold rotation axes

Each symmetry axis cuts through a body diagonal of the cube

Looking down this axis we can observe the 3-fold rotational symmetry operation 



Lattice Symmetry

90° 180° 270° 360°

Tetragonal lattice symmetry is defined by  a single 4-fold rotation axis

Orthorhombic lattice symmetry is defined 3 orthogonal 2-fold rotation axes



Fractional Coordinates

The positions of atoms, ions or molecules within the a unit cell are described by 
fractional coordinates (𝑥, 𝑦, 𝑧), which are fractions of unit cell lengths 𝑎, 𝑏, 𝑐

𝑎
𝑏

𝑐

(0, 0, 0)
(1, 0, 0)

(1, 1, 0)

(0, 1, 0)

(0, 0, 1)

(0, 1, 1)

(1, 0, 1)

(1, 1, 1)

𝑥

𝑦

𝑧

(½, ½, ½)

When counting the contents of a unit cell, we 
have to remember the crystal is infinite:

• Lattice points on cell corner shared by 8 cells
• Lattice points on cell edge shared by 4 cells
• Lattice points on cell face shared by 2 cells
• Lattice points fully within cell are not shared

Here, there are (8 × 1/8) lattice points on corners and (1 × 1) lattice points within the cell

Thus, there are two lattice points in total at (0, 0, 0) and (½, ½, ½)

This is known as a body-centred cell



Centred Cubic Lattices

A body-centred cell (I) has two lattice points

(𝑥, 𝑦, 𝑧) and (𝑥+½, 𝑦+½, 𝑧+½)

A face-centred cell (F) has four lattice points

(𝑥, 𝑦, 𝑧), (𝑥+½, 𝑦+½, 𝑧), 
(𝑥+½, 𝑦, 𝑧+½) and (𝑥, 𝑦+½, 𝑧+½)

I and F lattices are not primitive (P), as the condition 𝒓′ = 𝒓 + 𝑛1𝒂 + 𝑛2𝒃 + 𝑛3𝒄
with 𝑛1, 𝑛2 and 𝑛3 being integer values no longer holds

Note that a P cell has one lattice point at (𝑥, 𝑦, 𝑧)

Generally, we take (𝑥, 𝑦, 𝑧) to be (0, 0, 0)   



Bravais Lattices

Combining the symmetries of the seven crystal systems with lattice centring 
gives rise to fourteen unique Bravais lattices 

Cubic Tetragonal Orthorhombic Monoclinic Triclinic Rhombohedral Hexagonal

P

I

F

C



Bravais Lattices

Why is there no C-centred cubic lattice?



Point Groups

How do we consider the non-translational symmetry elements of a crystal, 
i.e. reflection, proper or improper rotations about a fixed point? 

The set of all symmetry operations of a finite object, 
e.g. a molecule, is known as a point group

CH2Cl2 has two mirror planes (𝑚) and a proper 2-fold axis (2)

In international (Hermann–Mauguin) notation
the point group of CH2Cl2 is 𝑚𝑚2

𝑚𝑚2

2

1

4

3

1

2

3

4

180°

CH4 2-fold proper rotation (2) 

90° 𝑚

CH4 4-fold improper rotation (ത4) 

4
3

21

34

21

1
2

34



Crystallographic Point Groups

Because crystals have periodic lattices, their rotational symmetry is restricted 
to 1-, 2-, 3-, 4- and 6-fold proper and improper rotation axes

This allows for 32 possible combinations of proper and improper rotational axes, 
which are known as the 32 crystallographic point groups

A crystallographic point group is denoted in international notation by up to three symbols 
that describe the symmetry along different directions of the crystal system

Crystal System Crystallographic Point Groups Notes

Triclinic 1, ത1 Describes the presence (ത1) or absence (1) of an inversion centre.

Monoclinic 2, 𝑚, 2/𝑚 Describes the symmetry along the 𝑦-axis direction.

Orthorhombic 222, 𝑚𝑚2, 𝑚𝑚𝑚 Describes the symmetry along the 𝑥-, 𝑦- and 𝑧-axis directions, respectively.

Tetragonal
4, ത4, 4/𝑚, 
422, ത42𝑚, 4𝑚𝑚, 4/𝑚 𝑚𝑚

The first place describes the symmetry of the 𝑧-axis. If in the x𝑦-plane there are 
also any symmetrical directions, they are described in the second and third place.

Rhombohedral 3, ത3, 32, 3𝑚, ത3𝑚 Point group conventions are as in tetragonal system.

Hexagonal
6, ത6, 6/𝑚,
622, ത62𝑚, 6𝑚𝑚, 6/𝑚 𝑚𝑚

Point group conventions are as in tetragonal system. Note, an axis with a 
perpendicular mirror plane is denoted as a fraction, e.g. 6/𝑚.

Cubic 23, 𝑚ത3, 432, ത43𝑚, 𝑚ത3𝑚
Cubic point groups are distinguished by a 3, which denote the symmetry of the 
body-diagonals of a cube. The first place describes symmetry of equivalent 𝑥-, 𝑦-
and 𝑧-axis, and the third describes any symmetry between these axial directions.



Space Groups

The translational symmetry of a crystal combined with crystallographic point group 
symmetry results in additional symmetry operations with translational components

These are known as screw axes and glide planes

Screw axis (𝑁𝑛) = rotation (𝑁) + translation (𝑛/𝑁)
e.g. 𝑁 = 4, 𝑛 = 1, 41 screw axis

Glide plane = reflection + translation
e.g. 𝑎 glade plane ǁ 𝑥-axis

¼ 𝑐

𝑧

0

1
𝑦

𝑥

0

1

1

½ 𝑎

The rotational, reflectional and translational symmetry of crystals allow for
230 possible combinations of symmetry operations known as space groups



How to Read and Understand the 
International Tables of Crystallography

Each of the 230 space groups describes the symmetry of a crystal belonging to that group

A full description of each is given in Vol. A of the International Tables of Crystallography

For further details, please see How to Read (and Understand) Vol. A of the International 
Tables of Crystallography by Dauter & Jaskolski, J. Appl. Cryst. 43, 1150 – 1171 (2010)

Space group symbol 
(international notation) 

Space group number 
(1 – 230) 

Diagram of 
symmetry operations

Diagram of 
equivalent positions

Crystal system

Point group

Space group symbol 
(Schönflies notation) 

Screw axes ǁ 𝑧

Rotational axes  ⊥ 𝑧

Screw axes  ⊥ 𝑧

Rotation, translation 
and position of each 
symmetry operation

Position of 
unit cell origin

Projections along 𝑧

Possible choice of 
asymmetric unit



Lattice Planes and Miller Indices

The three-dimensional array of lattice points within a crystal may be connected by a 
lattice plane, with each lattice point lying on one or more of these planes

Each lattice plane is representative of a set of equally-spaced parallel planes, 
separated by a distance known as the d-spacing, dhkl

Each family of planes is labelled by a set of Miller indices written as (ℎ, 𝑘, 𝑙)

dhkl



Lattice Planes and Miller Indices

To determine the Miller indices of a set of lattice planes we must:

1. Define the unit cell origin
2. Find where the plane intercepts each unit cell axis
3. Express these intercepts as fractions of unit cell lengths 𝑎/ℎ, 𝑏/𝑘, 𝑐/𝑙
4. Take the reciprocals of this fraction to find the (ℎ, 𝑘, 𝑙) of the plane 

Origin 
(0, 0, 0)

Intercepts 
𝑥 at 𝑎/1

Intercepts 
𝑦 at 𝑏/2

Intercepts 
𝑧 at 𝑐/1

Intercepts 𝑎/ℎ, 𝑏/𝑘, 𝑐/𝑙 = 𝑎/1, 𝑏/2, 𝑐/1

Taking reciprocals to find (ℎ, 𝑘, 𝑙) = (1, 2, 1) 

(1, 2, 1) is the Miller index of this plane

𝑥

𝑦

𝑧



Lattice Planes and Miller Indices

To determine the Miller indices of a set of lattice planes we must:

1. Define the unit cell origin
2. Find where the plane intercepts each unit cell axis
3. Express these intercepts as fractions of unit cell lengths 𝑎/ℎ, 𝑏/𝑘, 𝑐/𝑙
4. Take the reciprocals of this fraction to find the (ℎ, 𝑘, 𝑙) of the plane 

Origin 
(0, 0, 0)

Parallel to 𝑥 ∴
intercepts at ∞

Intercepts 
𝑦 at 𝑏/1

Intercepts 𝑎/ℎ, 𝑏/𝑘, 𝑐/𝑙 = ∞, 𝑏/1, ∞

Taking reciprocals to find (ℎ, 𝑘, 𝑙) = (0, 1, 0) 

(0, 1, 0) is the Miller index of this plane

𝑥

𝑦

𝑧

Parallel to 𝑧 ∴
intercepts at ∞



Lattice Planes and Bragg’s Law

The typical d-spacing between the lattice planes of a crystal is dhkl ≈ 10–10 m

Lattice planes act as a diffraction grating for waves (e.g. neutrons or X-rays) with λ ≈ 10–10 m

Waves are diffracted by the lattice planes of a crystal at certain angles of incidence, 
at which the conditions for constructive wave interference are met

Bragg’s law relates the d-spacing of lattice planes with the angles where diffraction is observed

dhkl

𝑛 × λ

𝑛𝜆 = 2𝑑 sin 𝜃

Bragg’s law



The Reciprocal Lattice

The periodicity of crystals gives rise to diffraction patterns with very sharp and 
well-defined maxima of scattering intensity, known as Bragg peaks

Thus, the diffraction pattern generated when waves are scattered by a periodic array of lattice 
planes can also be represented by a lattice, the reciprocal lattice 

d1

d2

1/d1

1/d2

Real lattice
(crystal lattice)

Reciprocal lattice
(diffraction pattern)



Ewald Sphere

Bragg’s law is a useful demonstration of the principle of diffraction from crystals in 
two-dimensions but in reality, diffraction from a crystal is three-dimensional

Another model that helps us think about diffraction in three dimensions is the Ewald sphere

Constructing an Ewald sphere:

1. A 3-D crystal generates a 3-D reciprocal lattice, with each reciprocal lattice 
point representing constructive interference from a set of (ℎ, 𝑘, 𝑙) planes.

2. Radiation with wavelength 𝜆 passing through the reciprocal lattice creates 
a sphere of radius 1/𝜆 in reciprocal space, known as the reflecting sphere 
or Ewald sphere. Any reciprocal lattice points of the crystal within the 
Ewald sphere can be seen by the incoming radiation. 

3. Reciprocal lattice points on the surface of the Ewald sphere satisfy Bragg’s 
law, and hence give rise to constructive interference.

4. Rotating the crystal within the beam brings different lattice points into the 
Ewald sphere, meaning different (ℎ, 𝑘, 𝑙) reflections can be observed.

5. Decreasing 𝜆 increases 1/𝜆, allowing access to more reflections. OP = d*hkl = 1/dhkl and OQ = 2 × 1/𝜆 = 2/𝜆

sin 𝜃 = OP/OQ = (1/dhkl)/(2/𝜆) = 𝜆/2dhkl

2dhkl sin 𝜃 = 𝜆⟹ Bragg’s law!

1/𝜆

𝜃

(ℎ, 𝑘, 𝑙) 

(0, 0, 0)

O

P

Q2𝜃

Incident 
beam

Diffracted 
beam

Watch here for more!

https://www.youtube.com/watch?v=jvovCGHu9c8


Structure Factor and Systematic Absences

Bragg’s law gives us the condition required for diffraction from a crystal, 
but what determines the intensity of a Bragg peak from a given lattice plane?

The intensity of a Bragg peak 𝐼ℎ𝑘𝑙 is given by 𝐼ℎ𝑘𝑙 ∝ |𝐹ℎ𝑘𝑙|
2, where 𝐹ℎ𝑘𝑙 the structure factor

The proportionality above includes parameters such as Debye-Waller factors, 
multiplicity of (ℎ, 𝑘, 𝑙) planes, sample volume, beam intensity and measuring time

The structure factor defines the relationship between the position and nature 
of scattering matter within the crystal unit cell and the intensity of the Bragg peaks 

𝐹ℎ𝑘𝑙 = ෍

𝑗

𝑓𝑗 exp 2𝜋𝑖 ℎ𝑥𝑗 + 𝑘𝑦𝑗 + 𝑙𝑧𝑗

= ෍

𝑗

𝑓𝑗 cos 2𝜋(ℎ𝑥𝑗 + 𝑘𝑦𝑗 + 𝑙𝑧𝑗) + 𝑖sin 2𝜋(ℎ𝑥𝑗 + 𝑘𝑦𝑗 + 𝑙𝑧𝑗)

𝑓𝑗 is the scattering factor for atom j at fractional coordinates (𝑥𝑗, 𝑦𝑗 , 𝑧𝑗) in unit cell

Sum is over all atoms 𝑗 in the unit cell

For centrosymmetric crystals, i.e., for crystals in which for every (x, y, z) there is an identical (–𝑥, –𝑦, –𝑧), the sine term cancels to zero



Structure Factor and Systematic Absences

Is scattering intensity from all (ℎ, 𝑘,𝑙) planes present in a diffraction pattern?

The symmetry of a crystal can lead to destructive interference from certain (ℎ, 𝑘,𝑙) planes, 
resulting in their reflections being systematically absent from a diffraction pattern

A good illustration of systematic absences stems from lattice centring

For example, consider the scattering from the (1, 0, 0) lattice plane of elemental calcium, 
which adopts a face-centred cubic structure

(ℎ, 𝑘, 𝑙) = (1, 0, 0)

(𝑥, 𝑦, 𝑧) = (0, 0, 0), (½, ½, 0), (½, 0, ½), (0, ½, ½)

𝐹100 =෍

𝑗

𝑓𝑗 cos 2𝜋(ℎ𝑥𝑗 + 𝑘𝑦𝑗 + 𝑙𝑧𝑗)

= 𝑓𝑗 cos 2𝜋 1 × 0 + 0 × 0 + 0 × 0

+ 𝑓𝑗 cos 2𝜋 1 × 1/2 + 0 × 1/2 + 0 × 0

+ 𝑓𝑗 cos 2𝜋 1 × 1/2 + 0 × 0 + 0 × 1/2

+ 𝑓𝑗 cos 2𝜋 1 × 0 + 0 × 1/2 + 0 × 1/2

= 𝑓𝑗 cos 0 + cos 𝜋 + cos 0 + cos𝜋

= 𝑓𝑗 1 + (−1) + 1 + (−1) = 0

𝐹100 = 0 ⇒ 𝐼100 = 0

(1, 0, 0) is absent

Lattice 
Centring

Systematic Absences

P None

F
To observe a peak, ℎ, 𝑘, 𝑙
must be all even or all odd

I
To observe a peak, 
ℎ + 𝑘 + 𝑙 = 2𝑛



Neutron vs. X-ray Diffraction

A key difference between the diffraction of X-rays and neutrons from crystals stems 
from their distinct interactions with matter, resulting in different in 𝑓𝑗 in 𝐹ℎ𝑘𝑙

Neutrons X-rays

Neutron scattering length, b

X-ray form factor, f(Q)

• Short-range nuclear interaction
• No angular dependence
• Isotopic specific
• No simple variation with atomic number

• Long-range electromagnetic interaction
• Decreases monotonically with scattering 

angle, 𝜃
• Proportional to atomic number

These differences lead to the complementarity of neutron and X-ray diffraction, with the study 
of complex phenomena in functional crystalline materials often requiring combined insight



A Case Study

Materials grand challenge:
A high-performance all-solid-state 

Li-ion battery

Research aim:
Exploit versatile structure-property 

relationships in the perovskites, ABX3, 

to maximise performance at solid 
electrolyte-electrode boundary

Research hypothesis:
Li+ must occupy both A and B sites 

in novel perovskite (La1.5Li0.5)(LiM)O6

to yield observed Li-ion mobility

Research outcome:
New material tuned from solid electrolyte 
(M = Te6+) to electrode (M = W6+), paving 

the way for new battery technology

X-ray Neutron

O2–

M = 
W6+, Te6+

Li+(1)

La3+

Li+(2)

Dominant X-ray scatterers: 
La3+, Te6+, W6+

Dominant neutron 
scatterers:

Li+, O2–

Combined X-ray and 
neutron diffraction analysis

M. Amores et al., Nat. Commun. 11, 6392 (2020)


