

17th Oxford School on Neutron Scattering

5 to 15 September, 2022

Introductory Theory

Andrew Boothroyd
Oxford University

Books on Neutron Scattering

- General (with introductory theory)

Willis, B.T.M. and Carlile, C.G.

Experimental Neutron Scattering, O.U.P., 2009, £37

General introduction to neutron scattering; v. good on experimental methods

Furrer, A., Mesot, J., Strässle, T.

Neutron Scattering in Condensed Matter Physics
World Scientific, 2009, £27
Basic principles of neutron scattering with applications in a range of different materials and phenomena

Carpenter, J.M. and Loong, C.-K.
Elements of Slow-Neutron Scattering
C.U.P., 2015, £42

Basic principles of neutron scattering and its application. More detailed than Furrer et al.

Boothroyd, A. T.
Principles of Neutron Scattering from Condensed Matter
O.U.P., 2020, £50

No introduction required.
Oxford Series on Neutron Scattering in Condensed Matter
O.U.P., 1988-2008

15 books on different individual fields of application of neutron scattering

- Theory

Lovesey, S.W. [formerly Marshall, W. and Lovesey, S.W.]
Theory of Neutron Scattering from Condensed Matter
O.U.P., 1984, 2 volumes, $\sim £ 78$ each

Definitive formal treatment, but not for the faint-hearted!
Squires, G.L.
Introduction to the Theory of Thermal Neutron Scattering
C.U.P., 1978 (reprinted 2012), ~£35;

More elementary than Lovesey, excellent for basic theory
Sivia, D.S.
Elementary Scattering Theory for X-ray and Neutron Users
O.U.P., 2011, £22

Basic principles of neutron scattering from a wave perspective

- Online: www.neutronsources.org

Community web site with wide range of neutron resources

Neutrons as Particles and Waves

Matter Wave:

- Oscillations \rightarrow wave

Envelope $\rightarrow \quad$ particle

- Increase ξ to define λ better:

Decrease ξ to define position better, but lose information on λ.

Cannot define both ξ and λ to arbitrary precision (Heisenberg's Uncertainty Principle)

- Kinematics - Einstein, de Broglie

1) Energy:

$$
\begin{aligned}
E & =h f \\
& =\hbar \omega
\end{aligned}
$$

$h=$ Planck's constant
$f=$ frequency $\hbar=h / 2 \pi, \quad \omega=2 \pi f$
2) Momentum: $\quad p=h / \lambda$

$$
\mathbf{p}=\hbar \mathbf{k}
$$

$$
\begin{aligned}
& \mathbf{k}=\text { wavevector } \\
&|\mathbf{k}|=k=2 \pi / \lambda
\end{aligned}
$$

Elastic Scattering from Bound Nuclei

Single nucleus

Weak disturbance of a plane wave
Result: plane wave + spherical wave

Model for neutrons interacting with a nucleus:

- Assumption - small fraction are scattered
- Justification - nuclear potential is short range most neutrons 'miss' nucleus

Born
 Approximation

- Formal theory uses a pseudopotential: $\left.\quad V(\mathbf{r})=\left(2 \pi \hbar^{2} b / m_{\mathrm{n}}\right) \delta(\mathbf{r}-\mathbf{R})\right]$

Wave interference from 2 slits:

Thomas Young's sketch to explain the interference pattern from two-slits, which he presented to the Royal Society in 1803.

Scattering from a line of nuclei

a) Normal incidence

What is the diffraction angle?
For constructive interference
the path difference $=\lambda$

$$
\sin \theta=\lambda / d
$$

Suppose path difference $=2 \lambda$:

$$
\sin \theta=2 \lambda / d
$$

In general:

$$
\sin \theta=n \lambda / d
$$

b) Incident angle $=$ diffracted angle
diffraction condition:

$$
n \lambda=2 d \sin \theta
$$

Notes

- At large distances, diffracted waves are plane waves
- $\quad N$ nuclei:
amplitude of diffracted wave $\sim N$
elsewhere, amplitude ~ 1

Elastic Scattering from a Crystal

a) Normal Incidence

In general, $A A^{\prime} \neq A B$, so diffraction from 2 nd column of atoms not usually in phase with diffraction from first.

Only achieve constructive interference when a and d are in special ratios.
b) Angle of incidence $=$ angle of reflection

This time, $\mathrm{AA}^{\prime}=\mathrm{BB}^{\prime}$, so always achieve constructive interference from successive columns of atoms.

Hence, diffraction from a crystal occurs when

$$
n \lambda=2 d \sin \theta \quad(\text { Bragg's Law })
$$

The Braggs - founders of crystallography

W.H. Bragg (1862-1942)

W.L. Bragg
(1890-1971)

- Developed X-ray diffraction techniques for solving crystal structures (1913)
- Bragg's law:

$$
n \lambda=2 d \sin \theta
$$

Proceedings of the Cambridge Philosophical Society 17, 43 (1913)

- Measure diffraction peaks $\rightarrow d$-spacings
\rightarrow crystal structure
- Braggs shared Nobel Prize in Physics (1915)

Debye-Waller factor

In reality, nuclei are not stationary:

- causes decrease in intensity of diffracted beam because waves are not so well in phase.
- Effect worsens as $k(=2 \pi / \lambda)$ and θ increase
- Bragg's Law the same, but $d \rightarrow\langle d\rangle$.
- smearing increases with temperature:

$$
I=I_{0} \exp \left\{-\left\langle(\mathbf{Q} . \mathbf{u})^{2}\right\rangle\right\}=I_{0} \exp (-2 W)
$$

Debye-Waller
Factor

Single crystal diffraction data from
$\mathrm{Nd}_{0.5} \mathrm{~Pb}_{0.5} \mathrm{MnO}_{3}$ taken on the SXD
diffractometer, courtesy of Dr Dave Keen (ISIS).

Particle Waves (again)

2 assumptions of quantum mechanics:

1. A particle is represented mathematically by a complex wavefunction, $\psi(\mathbf{r})$.
2. Probability of finding the particle in a (infinitesimal) volume $\mathrm{d} V$ is $|\psi(\mathbf{r})|^{2} \mathrm{~d} V$.

Examples

(i) Infinite plane wave :

$$
\begin{aligned}
\psi & =\exp \{\mathrm{i} k z\} \quad(=\cos k z+i \sin k z) \\
|\psi|^{2} & =\psi \psi^{*} \\
& =\exp \{i k z\} \exp \{-\mathrm{i} k z\} \\
& =1
\end{aligned}
$$

$\rightarrow 1$ particle per unit volume everywhere
(ii) Spherical wave :

$$
\begin{aligned}
& \psi=-\frac{b \exp \{\mathrm{i} k r\}}{r} \\
& |\psi|^{2}=b^{2} / r^{2}
\end{aligned}
$$

\rightarrow density of particles falls off as $1 / r^{2}$

Flux of particles

$$
\begin{aligned}
I & =\text { number incident normally on unit area per sec. } \\
& =\text { particle density } \times \text { velocity } \\
& =|\psi|^{2} v \\
& =|\psi|^{2} \hbar k / m
\end{aligned}
$$

Scattering as a Fourier transform

Fermi's Golden Rule and Born approximation:

Scattering probability $\sim|M|^{2}$
where

$$
\begin{aligned}
M & =\int \exp \left(-\mathrm{i} \mathbf{k}_{\mathrm{f}} \cdot \mathbf{r}\right) V(\mathbf{r}) \exp \left(\mathrm{i} \mathbf{k}_{\mathrm{i}} \cdot \mathbf{r}\right) \mathrm{d}^{3} \mathbf{r} \\
& =\int V(\mathbf{r}) \exp (\mathrm{i} \mathbf{Q} \cdot \mathbf{r}) \mathrm{d}^{3} \mathbf{r} \quad\left(\mathbf{Q}=\mathbf{k}_{\mathbf{i}}-\mathbf{k}_{\mathrm{f}}\right) \\
& =V(\mathbf{Q}) \text {--- Fourier transform of } V(\mathbf{r})
\end{aligned}
$$

Neutron scattering is determined by the Fourier transform of the interaction potential (exception is reflectometry).

Summary of Lecture 1

- Nucleus provides a weak perturbation to the incident neutrons, scattered neutrons are described by spherical waves:

- Diffraction: interference pattern of neutron waves scattered from sample
- Diffraction from crystals:

$$
n \lambda=2 d \sin \theta
$$

Bragg's Law
$d=$ spacing between planes
$\theta=\underline{\text { half }}$ the scattering angle

- Thermal motion of atoms does not affect use of Bragg's Law, but does reduce peak intensities from their values for a perfectly rigid structure.
- Neutron scattering depends on Fourier transform of interaction potential

Cross-Sections

Total cross-section

Total cross-section σ is defined by, $\sigma=\frac{\text { total no. particles scattered in all directions per sec. }}{\text { incident flux }\left(I_{0}\right)}$
(i) Classical case - scattering from a solid sphere, radius a

No. particles scattered per sec. $=I_{0} \times \pi a^{2}$

$$
\rightarrow \sigma=\pi a^{2}
$$

(ii) Quantum case - scattering from an isolated stationary nucleus

$$
\begin{array}{lrl}
\text { Incident wave, } & \psi_{0} & =\exp \{\mathrm{i} k z\} \\
\text { Incident flux, } & I_{0} & =\left|\psi_{0}\right|^{2} v=v \\
& & \\
\text { Scattered wave, } & \psi^{\mathrm{sc}}=-\frac{b \exp \{\mathrm{i} k r\}}{r} \\
\text { Scattered flux, } & I^{\mathrm{sc}}=\left|\psi^{\mathrm{c}}\right|^{2} v=b^{2} v / r^{2}
\end{array}
$$

$$
\text { at distance } r
$$

Total no. particles scattered per sec. $=I^{\text {sc }} \times \times \quad$ total area $=b^{2} v / r^{2} \times 4 \pi r^{2}$ $=4 \pi b^{2} v$

$$
\rightarrow \sigma=4 \pi b^{2}
$$

Notes:

- σ is the effective area of the target as viewed by the incident neutrons
- if the target is a nucleus, then b is the nuclear scattering length; b is the effective range of the nuclear potential
- units of b : Fermi (f)
" " σ : barn (b)
1 Fermi $=10^{-15} \mathrm{~m}$
1 barn $=10^{-28} \mathrm{~m}^{2}$

Differential cross-section

Differential cross-section, $\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}$ is defined by,

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{\text { No. particles scattered into solid angle } \mathrm{d} \Omega \text { per sec. }}{I_{0} \times \mathrm{d} \Omega}
$$

Solid angle subtended by detector at sample is $\Delta \Omega=A / L^{2}$
From definition of $\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}$, no. particles detected per sec. $=I_{0} \Delta \Omega \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}$ but also,

$$
\rightarrow \frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{\left|\psi^{\mathrm{sc}}\right|^{2}}{\left|\psi_{0}\right|^{2}} L^{2}
$$

Example: isolated nucleus
At detector scattered wave is $\psi^{\beta c}=-\frac{b \exp \{i k L\}}{L}$

$$
\rightarrow \frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=b^{2}=\frac{\sigma}{4 \pi}
$$

Note:

- units of $\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}: \quad$ barns (steradian) $)^{-1} \quad\left(\mathrm{~b} \mathrm{sr}^{-1}\right)$

Scattering cross-section for an assembly of stationary nuclei
Recall : $\quad \frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}=\frac{\left|\psi^{\kappa c}\right|^{2}}{\left|\psi_{0}\right|^{2}} L^{2}$

At detector,

$$
\begin{aligned}
& \psi_{O}^{\mathrm{sc}}=-\frac{b_{0} \exp \{\mathrm{i} k L\}}{L} \\
& \psi_{n}^{\mathrm{sc}}=-\frac{b_{n} \exp \left\{\mathrm{i} k\left(L+\Delta L_{n}\right)\right\}}{\left(L+\Delta L_{n}\right)}
\end{aligned}
$$

What is ΔL_{n} ?

$$
\begin{aligned}
\Delta L_{n} & =A n+n B \\
& =\frac{\mathbf{k}_{\mathrm{i}} \cdot \mathbf{r}_{n}}{k}-\frac{\mathbf{k}_{\mathrm{f}} \cdot \mathbf{r}_{n}}{k} \\
\rightarrow k \Delta L_{n} & =\left(\mathbf{k}_{\mathrm{i}}-\mathbf{k}_{\mathrm{f}}\right) \cdot \mathbf{r}_{n \prime} \\
& =\mathbf{Q} \cdot \mathbf{r}_{n}
\end{aligned}
$$

Total scattered wave,

$$
\psi^{s c}=\sum_{n} \psi_{n}^{s c}=-\frac{\exp \{\mathrm{i} k L\}}{L} \sum_{n} b_{n} \exp \left\{\mathrm{i} \mathbf{Q} \cdot \mathbf{r}_{n}\right\}
$$

Cross-section :

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\left|\sum_{n} b_{n} \exp \left\{\mathbf{i} \mathbf{Q} \cdot \mathbf{r}_{n}\right\}\right|^{2}
$$

Bragg diffraction from a rigid crystal

Crystal is a periodic array of atoms.
Lattice is a periodic array of points representing the periodicity of the crystal. The lattice points are displaced from the origin by lattice vectors

$$
\mathbf{l}=n_{1} \mathbf{a}+n_{2} \mathbf{b}+n_{3} \mathbf{c}, \quad\left(n_{1}, n_{2}, n_{3} \text { integers }\right)
$$

Basis (or motif) is the collection of atoms associated with each lattice point.
Unit cell is a lding block from which the crystal is constructed.
Usually it is a parallelepiped with edges $\mathbf{a}, \mathbf{b}, \mathbf{c}$:

Cross-section :

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\left|\sum_{n} b_{n} \exp \left\{\mathbf{i} \mathbf{Q} \cdot \mathbf{r}_{n}\right\}\right|^{2}
$$

Position of nucleus \mathbf{r}_{n} :

$$
\begin{aligned}
\mathbf{r}_{n} & = \\
\rightarrow \quad \frac{\mathbf{l}}{\mathrm{d} \Omega} & =\left|\sum_{\mathbf{l}} \exp \{\mathrm{i} \mathrm{Q} \cdot \mathrm{l}\} \sum_{\mathbf{d}} b_{\mathrm{d}} \exp \{i \mathrm{Q} \cdot \mathrm{~d}\}\right|^{2}
\end{aligned}
$$

Coherent (Bragg) scattering occurs when all terms in 1 sum are equal, i.e.

$$
\exp \{i Q .1\}=\mathbb{1} \text { for all } 1
$$

Which values of \mathbf{Q} satisfy this equation? Answer:

$$
\mathbf{Q}=h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*} \quad(h, k, l \text { integers })
$$

where,

$$
\mathbf{a}^{*}=\left(2 \pi / v_{0}\right) \mathbf{b} \times \mathbf{c}, \quad \mathbf{b}^{*}=\left(2 \pi / v_{0}\right) \mathbf{c} \times \mathbf{a}, \quad \mathbf{c}^{*}=\left(2 \pi / v_{0}\right) \mathbf{a} \times \mathbf{b}
$$

and

$$
v_{0}=\mathbf{a} . \mathbf{b} \times \mathbf{c}=\mathbf{b} . \mathbf{c} \times \mathbf{a}=\mathbf{c} . \mathbf{a} \times \mathbf{b} .
$$

Note also that $\mathbf{a} \cdot \mathbf{a}^{*}=\mathbf{b} \cdot \mathbf{b}^{*}=\mathbf{c} \cdot \mathbf{c}^{*}=2 \pi$, and $\mathbf{a} \cdot \mathbf{b}^{*}=\mathbf{a} \cdot \mathbf{c}^{*}=\ldots=0$

Now consider summation over position vector d.
Write \mathbf{d} in terms of fractional coordinates $\left(x_{\mathrm{d}}, y_{\mathrm{d}}, \mathrm{z}_{\mathrm{d}}\right)$ of nucleus

$$
\mathbf{d}=x_{\mathrm{d}} \mathbf{a}+y_{\mathrm{d}} \mathbf{b}+z_{\mathrm{d}} \mathbf{c}
$$

When \mathbf{Q} satisfies the condition $\mathbf{Q}=h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}$, then

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} & =N^{2}\left|\sum_{\mathbf{d}} b_{\mathbf{d}} \exp \left\{\mathrm{i}\left(h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}\right) \cdot\left(x_{\mathrm{d}} \mathbf{a}+y_{\mathrm{d}} \mathbf{b}+z_{\mathrm{d}} \mathbf{c}\right)\right\}\right|^{2} \\
& =N^{2}\left|\mathrm{~F}_{h k l}\right|^{2} \quad(N \text { is the no. unit cells in the crystal })
\end{aligned}
$$

where,

$$
\mathrm{F}_{h k l}=\sum_{\mathbf{d}} b_{\mathbf{d}} \exp \left\{2 \pi \mathrm{i}\left(h x_{\mathrm{d}}+k y_{\mathrm{d}}+l z_{\mathrm{d}}\right)\right\}
$$

$\mathrm{F}_{h k l}$ is known as the structure factor for the reflection $h k l$.

Reciprocal Lattice

Paul Peter Ewald (1888-1985)
The inventor of the reciprocal lattice

Strong elastic scattering occurs when

$$
\mathbf{Q}=\mathbf{G}_{h k l}
$$

(Laue condition)
where,

$$
\mathbf{G}_{h k l}=h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}
$$

The set of all vectors $\left\{\mathbf{G}_{h k l}\right\}$ is called the Reciprocal Lattice.

2 properties:

Max von Laue (1879-1960)
Nobel Prize (1914)
(i) $\mathbf{G}_{h k l}$ is normal to the plane $(h k l)$.
(ii) $\left|\mathbf{G}_{h k l}\right|=2 \pi / d_{h k l}$

Bragg \equiv Laue:

$$
\left.\begin{array}{rlrl}
|\mathbf{Q}| & =\left|\mathbf{G}_{h k l}\right| & & \text { Laue Condition } \\
\rightarrow & & & \\
\rightarrow & & \frac{4 \pi}{\lambda} \sin \theta & =2 \pi / d_{h k l}
\end{array}\right)=2 d \sin \theta \quad \text { Bragg's Law }
$$

Summary of Lecture 2

- $\sigma=$ total scattering cross-section
- probability that the neutron is scattered
- $\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}=$ differential scattering cross-section
- probability that the neutron is scattered into a specified direction
- For elastic scattering from a rigid structure

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\left|\sum_{n} b_{n} \exp \left\{\mathbf{i} \mathbf{Q} \cdot \mathbf{r}_{n}\right\}\right|^{2}
$$

- For a rigid crystal, Bragg scattering occurs when

$$
\mathbf{Q}=\mathbf{G}_{h k l} \quad \text { (Laue condition) }
$$

where,

$$
\mathbf{G}_{h k l}=h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*} \quad \text { (reciprocal lattice vectors) }
$$

The cross-section for Bragg scattering is given by

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=N^{2}\left|\mathrm{~F}_{h k l}\right|^{2}
$$

where,

$$
\mathrm{F}_{h k l}=\sum_{\mathbf{d}} b_{\mathbf{d}} \exp \left\{2 \pi \mathrm{i}\left(h x_{\mathrm{d}}+k y_{\mathbf{d}}+l z_{\mathrm{d}}\right)\right\} \quad \text { (structure factor) }
$$

- Corollary: for a non-rigid crystal:

$$
\mathrm{F}_{h k l}=\sum_{\mathbf{d}} \exp \left(-W_{\mathrm{d}}\right) b_{\mathbf{d}} \exp \left\{2 \pi \mathrm{i}\left(h x_{\mathrm{d}}+k y_{\mathbf{d}}+l z_{\mathrm{d}}\right)\right\}
$$

Coherent and Incoherent (nuclear) Scattering

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\left|\sum_{n} b_{n} \exp \left\{\mathrm{i} \mathbf{Q} \cdot \mathbf{r}_{n}\right\}\right|^{2}
$$

Recall: b_{n} characterizes the range of the neutron-nucleus interaction. b_{n} depends upon:
(i) which element;
(ii) which isotope;
(iii) relative spins of neutron and nucleus.

In principle, we can calculate $\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}$ exactly if we know the isotope and spin state of every nucleus. Not feasible in practice.

Simplifying assumption

Assume that distribution of isotopes and spin states is random and uncorrelated between the sites.
$\rightarrow \frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}$ for one particular sample is the same as the average over many samples with same nuclear positions

$$
\rightarrow \quad \frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} \quad \approx \quad \frac{\overline{\mathrm{~d} \sigma}}{\mathrm{~d} \Omega} \quad \text { ensemble average }
$$

In order to proceed we need \bar{b} and \bar{b}^{2}

Ensemble averaging

Suppose sample contains only 1 type of atom, which has 3 different isotopes:

	isotope	natural abundance \qquad	$\begin{gathered} \text { scattering } \\ \text { length } \\ b_{r} \end{gathered}$	
	\bullet	50 \%	$b_{\text {B }}$	
	\bullet	25 \%	$b_{\text {R }}$	
	-	25 \%	b_{G}	
$\bar{\square}$	$=$	$0.5 b_{\text {B }} \quad+$	$0.25 b_{\mathrm{R}} \quad+$	$0.25 b_{\text {G }}$
b^{2}	$=$	$0.5 b_{B}^{2}+$	$0.25 b_{R}^{2}+$	$0.25 b_{\mathrm{G}}^{2}$

In general (see Section E of tutorial problems),

$$
\begin{aligned}
& \bar{b}=\sum_{r} c_{r} b_{r}=\sum_{r} c_{r}\left(w_{r}^{+} b_{r}^{+}+w_{r}^{-} b_{r}^{-}\right) \\
& \overline{b^{2}}=\sum_{r} c_{r} b_{r}^{2}=\sum_{r} c_{r}\left[w_{r}^{+}\left(b_{r}^{+}\right)^{2}+w_{r}^{-}\left(b_{r}^{-}\right)^{2}\right]
\end{aligned}
$$

Note that, $\quad \frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}=\left|\sum_{n} b_{n} \exp \left\{\mathbf{i} \mathbf{Q} \cdot \mathbf{r}_{n}\right\}\right|^{2}$

$$
=\sum_{n} \sum_{m} b_{n} b_{m} \exp \left\{\mathbf{i} \mathbf{Q} \cdot\left(\mathbf{r}_{n}-\mathbf{r}_{m}\right)\right\}
$$

Ensemble averaging \rightarrow replace $b_{n} b_{m}$ by ${\overline{b_{n}} b_{m}}$

$$
=\quad \vec{b}_{n}^{2} \quad \text { if } n=m
$$

Therefore,

$$
\begin{aligned}
\frac{\overline{\mathrm{d} \sigma}}{\mathrm{~d} \Omega} & =\sum_{n \neq m} \sum_{n} \bar{b}_{n} \sigma_{m} \exp \left\{\mathrm{iQ} \cdot\left(\mathbf{r}_{n}-\mathbf{r}_{m}\right)\right\} & +\sum_{n=m} \overline{b_{n}^{2}} \\
= & \sum_{n} \sum_{m} \bar{b}_{n} \sigma_{m} \exp \left\{\mathbf{i Q} \cdot\left(\mathbf{r}_{n}-\mathbf{r}_{m}\right)\right\} & +\sum_{n=m}\left(\overline{b_{n}^{2}}-b_{n}^{2}\right) \\
\text { coherent scattering } & & \text { incoherent scattering }
\end{aligned}
$$

coherent - correlations between the same, and different scattering nuclei - interference, structure (also collective dynamics)
incoherent - no information on structure scattering
'flat background' (also dynamics of single particles)

Values of \bar{b} and $\overline{b^{2}}$ are tabulated (e.g. Neutron News vol. 3 No. 3 (1992) 29-37;
http://www.ncnr.nist.gov/resources/n-lengths/; A. T. Boothroyd,
Principles of Neutron Scattering from Condensed Matter, Appendix A).
Often written as

$$
\sigma_{\mathrm{coh}}=4 \pi b^{2}
$$

and

$$
\sigma_{\mathrm{inc}}=4 \pi\left(\bar{b}^{2}-b^{2}\right)
$$

Examples

hydrogen

$\sigma_{\text {coh }}$ (barns)	$\sigma_{\text {inc }}$ (barns)
1.8	80.2
5.6	0
0	5

Examples of coherent and incoherent scattering

(i) Bragg diffraction from a powdered crystal
(i) Elastic scattering from a liquid or glass

Magnetic Scattering

- Neutron is uncharged, but possesses a magnetic dipole moment μ_{n} $\left(\sim 0.001 \mu_{\mathrm{B}}\right)$ which can interact with magnetic fields from unpaired electrons via:
(i) the intrinsic spin dipole moment of the electron,
(ii) magnetic fields produced by orbital motion of electrons.
- Strength of magnetic interaction: $\sigma_{\text {mag }} \sim r_{0}{ }^{2} \sim 0.1$ barn
" " nuclear " $\sigma_{\text {coh }} \sim b^{2} \sim 1$ barn so similar magnitude ($r_{0}=$ classical electron radius $=2.82 \mathrm{fm}$)
- Theory similar to nuclear scattering except scatter from magnetic moments in sample, and this occurs via a vector interaction

$$
\begin{aligned}
V_{\mathrm{M}}(\mathbf{r}) & =-\mu_{\mathrm{n}} \cdot \mathbf{B}(\mathbf{r}) \\
V_{\mathrm{M}}(\mathbf{Q}) & =-\boldsymbol{\mu}_{\mathrm{n}} \cdot \mathbf{B}_{\perp}(\mathbf{Q}) \\
& =-\mu_{0} \boldsymbol{\mu}_{\mathrm{n}} \cdot \mathbf{M}_{\perp}(\mathbf{Q})
\end{aligned}
$$

- Neutron probes component of the magnetization perpendicular to \mathbf{Q}.
- Neutrons scatter from electrons in atomic orbitals :

Smeared out in space
\rightarrow weaker scattering at higher angles
(like Debye-Waller factor)
Intensity fall-off described by a magnetic form factor (similar to atomic form factor used in x-ray diffraction)

Diffraction from a Magnetic Structure

1. Ferromagnet

$$
T>T_{\mathrm{m}}
$$

$$
T<T_{\mathrm{m}}
$$

(a)

$\boldsymbol{\mu} \| \mathbf{Q}$
Nuclear scattering only

(b)

$I_{\mathrm{M}} \propto \sin ^{2} \theta\left|F_{\mathrm{M}}\right|^{2}$
(θ is angle between $\boldsymbol{\mu}$ and \mathbf{Q})
where,

$$
F_{\mathrm{M}}=\sum_{j} f_{j}(Q) \mathrm{e}^{-W_{j}} \mu_{j} \exp \left(\mathbf{i} \mathbf{Q} \cdot \mathbf{r}_{j}\right) \quad \text { Magnetic structure factor (collinear) }
$$

2. Antiferromagnet
$T>T_{\mathrm{m}}$
(a)

$$
T<T_{\mathrm{m}}
$$

(b)

$\boldsymbol{\mu} \perp \mathbf{Q}$
Nuclear and magnetic scattering
Magnetic planes have twice the d spacing

Neutron Polarization

- Neutron has spin $1 / 2$, so moment is \uparrow or \downarrow relative to a magnetic field. Can have different scattering cross-sections according to the neutron spin state before and after scattering:

- Torque on magnetic dipole moment in magnetic field \mathbf{B} is

$$
T=\mu \times B
$$

Eq. of motion:
Torque $=$ rate of change of angular momentum and angular momentum $\propto \mu$

$$
\rightarrow \quad \frac{\mathrm{d} \boldsymbol{\mu}}{\mathrm{~d} t} \quad \propto \quad \mu \times \mathbf{B}
$$

Consider 2 cases :
(i) μ parallel to \mathbf{B}
no change in neutron spin state ('non- spin-flip scattering')
(ii) μ perpendicular to \mathbf{B}

Neutron Inelastic Scattering

Kinematics (again)

Scattering triangle ($\mathbf{k}_{\mathrm{i}} \neq \mathbf{k}_{\mathrm{f}}$):
$\mathbf{k}_{\mathbf{i}}=$ incident wavevector
$\mathbf{k}_{\mathrm{f}}=$ final scattered wavevector

Q = scattering vector

- Momentum transfer $\hbar \mathbf{Q}=\hbar\left(\mathbf{k}_{\mathrm{i}}-\mathbf{k}_{\mathrm{f}}\right)$
- Energy transfer $\hbar \omega=\mathrm{E}_{\mathrm{i}}-\mathrm{E}_{\mathrm{f}}=\frac{\hbar^{2}}{2 m}\left(k_{\mathrm{i}}{ }^{2}-k_{f}{ }^{2}\right)$

A scattering event is characterised by (\mathbf{Q}, ω)
Accessible region of (\mathbf{Q}, ω) space :

Neutron Cross-Section

Suppose detector can analyse energy of neutrons.
Define the double differential scattering cross-section :

$$
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{~d} E_{\mathrm{f}}}=\frac{\begin{array}{l}
\text { No. particles scattered per sec. into solid angle } \mathrm{d} \Omega \\
\text { with final energies between } E_{\mathrm{f}} \text { and } E_{\mathrm{f}}+\mathrm{d} E_{\mathrm{f}}
\end{array}}{I_{0} \times \mathrm{d} \Omega \times \mathrm{d} E_{\mathrm{f}}}
$$

Numerator depends implicitly on 5 factors:
(i) $\mathrm{d} \Omega$
(ii) $\mathrm{d} E_{\mathrm{f}}$
(iii) speed of scattered neutrons, $v_{\mathrm{f}}=\hbar k_{\mathrm{f}} / m$
(iv) density of incident neutrons $\left|\psi_{0}\right|^{2}$
(v) $S(\mathbf{Q}, \omega)$, the probability that system can change its energy by an amount $\hbar \omega$, accompanied by a momentum change $\hbar \mathbf{Q}$

In denominator, remember $I_{0}=\left|\psi_{0}\right|^{2} v_{\mathrm{i}}=\left|\psi_{0}\right|^{2} \hbar k_{\mathrm{i}} / m$

Hence, these factors together give

$$
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{~d} E_{\mathrm{f}}}=\frac{k_{\mathrm{f}}}{k_{\mathrm{i}}} S(\mathbf{Q}, \omega)
$$

Notes:

- $S(\mathbf{Q}, \omega)$ contains all the physics of the system
- scattering function/ response function/ dynamical structure factor
- the $k_{\mathrm{f}} / k_{\mathrm{i}}$ factor is sometimes important, for example if the neutron loses a lot of energy $\left(k_{\mathrm{f}} \ll k_{\mathrm{i}}\right)$ then the intensity is much reduced.

Scattering from lattice vibrations in a crystal (Example of coherent inelastic scattering)

Phonon - quantum of lattice vibrational energy

Consider 1-d chain of identical atoms:
(1) Transverse vibrational mode
(2) Longitudinal vibrational mode (sound wave)

- Equivalent wavevectors

In general,
\mathbf{k}_{ph} and $\mathbf{k}_{\mathrm{ph}}+\mathbf{G}$ represent the same mode of vibration

- Phonon dispersion curve

Energy $\hbar \omega_{\text {ph }}$ of a phonon depends on $\boldsymbol{k}_{\mathrm{ph}}$

- Scattering from phonons

Peaks occur when

$$
\left\{\begin{array}{l}
\hbar \omega=\hbar \omega_{\mathrm{ph}} \\
\hbar \mathbf{Q}=\hbar\left(\mathbf{k}_{\mathrm{ph}}+\mathbf{G}\right)
\end{array}\right.
$$

(1) Longitudinal :
(2) Transverse:

- Inelastic scattering cross-section for phonons

Consider a static sinusoidal distortion of the lattice:

Position of $n^{\text {th }}$ atom $\quad x_{n}=n a+u \sin \left(k_{\mathrm{ph}} n a\right)$
Elastic scattering cross-section :

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} & =\left|\sum_{n} b_{n} \exp \left\{\mathbf{i Q} \cdot \mathbf{r}_{n}\right\}\right|^{2} \\
& =\mid \sum_{n} b \exp \left\{\left.\mathrm{i} Q\left(n a+u \sin \left(k_{\mathrm{ph}} n a\right)\right\}\right|^{2}\right.
\end{aligned}
$$

Can make Taylor expansion in $Q u$ when $Q u \ll 1$:
$\rightarrow \quad \frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}=\left|\sum_{n} b\left[1+\mathrm{i} Q u \sin \left(k_{\mathrm{ph}} n a\right)+\ldots\right] \exp \{\mathrm{i} Q n a\}\right|^{2}$
(1)
(2)

1st term (1)
$\rightarrow \quad$ Bragg peak at $Q=m(2 \pi / a) \quad(m=$ integer $)$ Intensity $\propto b^{2}$

2nd term (2): write $\sin x=\left(\mathrm{e}^{\mathrm{i} x}-\mathrm{e}^{-\mathrm{i} x}\right) / 2 \mathrm{i}$
$\rightarrow \quad\left|\sum_{n} b Q u\left[\exp \left\{\mathrm{i}\left(Q+k_{\mathrm{ph}}\right) n a\right\}-\exp \left\{\mathrm{i}\left(Q-k_{\mathrm{ph}}\right) n a\right\}\right]\right|^{2}$
$\rightarrow \quad$ peaks at $Q=m(2 \pi / a) \pm k_{\mathrm{ph}}$ Intensity $\propto b^{2} Q^{2} u^{2}$

Lattice vibration - dynamic, sinusoidal distortion of the lattice

Inelastic scattering cross-section as for static case but conserve energy as well
$\rightarrow \quad$ Peaks in $\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{~d} E_{\mathrm{f}}}$ when $\begin{cases}\hbar \omega & = \pm \hbar \omega_{\mathrm{ph}} \\ \hbar \mathbf{Q} & =\hbar\left(\mathbf{G} \pm \mathbf{k}_{\mathrm{ph}}\right)\end{cases}$

Intensity $\quad \propto b^{2} Q^{2} u^{2}$

$$
\propto \frac{b^{2}(\mathbf{Q} \cdot \widehat{\boldsymbol{u}})^{2}}{\omega_{\mathrm{ph}}} \quad\left(u^{2} \propto 1 / \omega_{\mathrm{ph}}\right)
$$

Spin Waves

Ground state of ferromagnet:

Displace one spin:

Displacement propagates through lattice as wave with wavevector $k_{\text {mag }}$

Magnon dispersion curve :

Notes

- Angular momentum (spin) of the crystal is reduced by 1 unit (of \hbar)
\rightarrow spin of neutron changes by 1 unit to conserve angular momentum
$\rightarrow \quad$ spin flip scattering
- Intensity varies with magnetic form factor - decreases with $|\mathbf{Q}|$.

Principle of Detailed Balance

General property of $S(\mathbf{Q}, \omega)$
Consider neutron energy loss and energy gain processes:

For any neutron inelastic scattering process,

$$
S(\mathbf{Q},-\omega)=\exp \left(-\hbar \omega / k_{\mathbf{B}} T\right) \times S(\mathbf{Q}, \omega)
$$

neutron energy gain neutron energy loss

Principle of Detailed Balance

Summary of Coherent Inelastic Scattering

- Double differential scattering cross-section :

$$
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{~d} E_{\mathrm{f}}}=\frac{k_{\mathrm{f}}}{k_{\mathrm{i}}} S(\mathbf{Q}, \omega)
$$

- Propagating excitations (e.g. lattice vibs., spin waves) $S(\mathbf{Q}, \omega)$ has peaks

$$
\text { when }\left\{\begin{array}{l}
\hbar \omega= \pm \hbar \omega_{\mathrm{ph}} \\
\hbar \mathbf{Q}=\hbar\left(\mathbf{G} \pm \mathbf{k}_{\mathrm{ph}}\right)
\end{array}\right.
$$

- The size of the peaks in $S(\mathbf{Q}, \omega)$ varies according to
(i) Phonons
$S(\mathbf{Q}, \omega) \propto \exp \{-2 W(Q, T)\} \times\left|\mathrm{Fph}_{\mathrm{ph}}(\mathbf{Q})\right|^{2} \times\left[n\left(\omega_{\mathrm{ph}}\right)+1\right] \times \frac{1}{\omega_{\mathrm{ph}}} \times(\mathbf{Q} . \widehat{\boldsymbol{u}})^{2}$
(ii) Spin waves
$S(\mathbf{Q}, \omega) \propto \exp \{-2 W(Q, T)\} \times\left|F_{\operatorname{mag}}(\mathbf{Q})\right|^{2} \times\left[n\left(\omega_{\text {mag }}\right)+1\right] \times \frac{1}{\omega_{\text {mag }}} \times f^{2}(Q)$
- Excitations can be measured in neutron energy loss or neutron energy gain, but remember that $S(\mathbf{Q}, \omega)$ has the property,

$$
S(\mathbf{Q},-\omega)=\exp \left(-\hbar \omega / k_{\mathbf{B}} T\right) \times S(\mathbf{Q}, \omega)
$$

