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Recommended Books:


• C G Windsor, Pulsed Neutron Scattering 

This is an excellent - and very complete - text on the practicalities of (pulsed) neutron scattering, 
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lot of material that other texts often miss out concerning the practicalities of neutron scattering
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presentation, estimation and propagation.  Includes a full account of Poisson statistics.  
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1. Before the Experiment: Optimising sample size & shape 
Calculating and optimising the size and shape of your sample is most important in neutron 
scattering.  Neutron beams worldwide are commonly low in flux - much much lower than x-ray 
beams for example.  So most of the time it is important to maximise the number of neutrons 
scattered by your sample - and hence the size of your sample - and therefore the number of 
scattering units.  This is not always the case however.


• Sometimes your sample may scatter too strongly for the detectors (dead-time)

• Perhaps you have absorbing materials in your sample - leading to self-attenuation

• Most modelling procedures make the assumption that the scattered neutrons have been 

scattered only once by the sample.  This is never true - but we still want to try and minimise 
multiple scattering if we can


Correction routines do exist (e.g. in Mantid) in order to correct for sample self-attenuation and 
multiple scattering, but these aren’t commonly used.  This is because they are tricky and time-
consuming calculations.  So most of the time we rely on minimising these effects.


1.1 Scattering units

In principle we can define the sample scattering unit in any way we like.  Often it is convenient to 
use the sample chemical formula unit for this.   We then can find the cross-sections per formula 
unit.


For example, the table below shows the cross-sections and formulas weights for one formula unit 
of poly-ethylene.


σcoh is the coherent cross-section
σinc is the incoherent cross-section
σabs is the absorption cross-section (*wavelength dependent)
Mf is the formula weight

The cross-sections per formula unit are just the sum over all the nuclei and can be found in tables 
on-line.


1.2 Number density and scattering length density

Number of scattering units in the sample (mass, m) is given by




Where NA = 6.022 x 1023 mol-1 is Avogadro’s Number.  Similarly the number density is given by


where ρ is the density of the sample.
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σcoh (b) σinc (b) σabs (b) Mf (amu)

C 5.55 0.001 0.3326 12.011

H 1.7568 80.26 0.0035 1.0079

C2H4 18.1272 321.042 0.6792 28.0536

Ns =
m

Mf
NA (1.1)

ns =
⇢

Mf
NA (1.2)



If we express NA in units of x1024 mol-1 then we get the number density in units of x1024 cm-3 = 
(barn.cm)-1.  The reason for the choice of these units will become clear later on.  


with ρ in units of g cm-3 Mf in g mol-1 and ns in (barn.cm)-1. 


Example:

For poly-ethylene

	 	 	 ρ = 0.93 g cm-3

	 	 	 Mf = 28.054 g mol-1

	 	 so	 ns ~ 0.02 (barn.cm)-1 or 2 x 1022 cm-3



The scattering length density is defined as the total scattering length per unit volume. 


where the subscript i runs over the number of atoms in the volume of interest, Vm.  The 
dimensions of the SLD are inverse area and given commonly in cm-2.   Since the volume Vm is 
arbitrary, it makes sense to recast it in terms of the mass of a formula unit, Mf, of the material 
divided by the density ρ.


The scattering length density can now be written as 


Example:

Poly-ethylene:

	 	 	 SLD ~ 2 x 1022 x (2 x 6.65x10-13 + 4 x -3.73x10-13)

	 	 	 = -3.24x10-9 cm-2


1.3 Transmission of neutrons

It is important to know that the chances of a neutron getting through your sample are high.  To 
calculate the transmission of a thin slab-shaped sample, we refer to the figure below of a thin slab 
of area A, and thickness dz.  The neutron intensity incident on the slab is Iz and the transmitted 
intensity is Iz + dIz .  (the change in intensity dIz is negative)


The slab consists of molecules, with a total cross-
section of σT per formula unit.  Therefore, from the 
definition of the number density there are

	 ns A dz 
formula units in the slab.  So the total absorption 
cross-section is


	 σT ns A dz.


The fraction of neutrons absorbed is the total 
absorption cross-section divided by the 
dimensional cross-section (the area A).  Therefore,
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ns =
⇢

1.661Mf

SLD =
⇢NA

Mf

X

i

bi = ns

X

i

bi
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Vm =
Mf

⇢NA
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(1.3)
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(1.5)

(1.6)

dIz
Iz

= ��Tnsdz
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(1.7)

Transmission through a slab



Integrating both sides of 1.7 with respect to z,


For a finite slab of total thickness, t, the limits of integration are z=0, t with I0 at z=0 and I1 at z=t. 
Therefore,


Finally, we take the exponential of both sides to find the expression for the neutron transmission





This is a form of the Beer-Lambert Law for optical attenuation.  For neutrons, the product 
is termed the attenuation coefficient (sometimes denoted by μ) and commonly given in units of 
cm-1.


Example:

Often it is desirable to limit the total scattered fraction of neutrons to less than 10%.  This ensures 
that multiple scattering is a small additional component of the neutron counts.  



To calculate how thick the 10% scattering sample should be we set Eq. 1.10 to 


Where σS denotes the total scattering cross-section, and we have assumed no absorption.


So. A 10% scattering poly-ethylene sample with

	 	 σS = 339.2 barns

	 	 ns = 0.02 (barn cm)-1   - we see now the usefulness of this strange unit


Has thickness		 t = 0.1 / 339.2 / 0.02  = 0.015 cm 


So only around 0.15 mm thickness of poly-ethylene scatters 10% of the beam.   This indicates the 
strength of the scattering of neutrons from hydrogen


1.4 Absorbing materials - optimum sample thickness

There are a few isotopes of elements which prove especially challenging for performing neutron 
scattering measurements, due to their massive absorption cross-sections.  They are - however - 

often very useful materials use in neutron instrument shielding and 
detectors. 


The table on the left shows examples of particularly highly absorbing 
materials (in their naturally occurring isotopic combinations).  These large 
absorptions are due to nuclear resonances in these materials, and hence 
the absorption cross-sections are, in general, dependent on the incident 
neutron wavelength.  The tabulated numbers on the left are the σabs 
values at a wavelength λ = 1.8 Å.  



At low energies σabs is taken to be linear in wavelength,


Sometimes it is possible to choose a non-absorbing isotope (e.g. B11 has 
a very low absorption cross-section σabs = 0.005 b).


�4

ln(Iz) = ��Tnsz + C
<latexit sha1_base64="XKx5mFLrJYnoPYB0vT286e9O/ds=">AAACB3icbVDLSsNAFJ3UV62vqEtBBotQEUtSBd0IhW50V6EvaEKYTCd16GQSZiZCG7pz46+4caGIW3/BnX/jtM1CWw9cOJxzL/fe48eMSmVZ30ZuaXlldS2/XtjY3NreMXf3WjJKBCZNHLFIdHwkCaOcNBVVjHRiQVDoM9L2B7WJ334gQtKIN9QwJm6I+pwGFCOlJc88dBgv3XqjE3gNzxxJ+yHyGpB7Eo7gKax5ZtEqW1PARWJnpAgy1D3zy+lFOAkJV5ghKbu2FSs3RUJRzMi44CSSxAgPUJ90NeUoJNJNp3+M4bFWejCIhC6u4FT9PZGiUMph6OvOEKl7Oe9NxP+8bqKCKzelPE4U4Xi2KEgYVBGchAJ7VBCs2FAThAXVt0J8jwTCSkdX0CHY8y8vklalbJ+XK3cXxWopiyMPDsARKAEbXIIquAF10AQYPIJn8ArejCfjxXg3PmatOSOb2Qd/YHz+ACt9ltw=</latexit>

ln(I1)� ln(I0) = (��Tnst+ C)� (��Tns0 + C)

= �ns�T t
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(1.8)

(1.9)

T =
I1
I0

= exp(��Tnst)
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element σabs

Gd 49700 b

B 767 b

Cd 2520 b

Li 70 b

Ir 425 b

Dy 994 b

Sm 5922 b
3He 5333 b

�abs(�) =
���=1.8

abs

1.8 (1.11)



Some of the above absorber materials, especially Cd and B, are used for shielding instruments 
and bits of your sample holder that you do not want to scatter from.


Example:

How much Cd is needed to absorb 99.9% of thermal neutrons?


	 	 ns = 0.046 (barn.cm)-1

	 	 σabs = 2520 barns


Therefore	 	 t = - ln(T) / σabs / ns = - ln(0.001) / 115.9 = 0.6 mm


If a sample has some absorption then it’s not quite so simple to work out the optimal thickness for 
scattering as it was for poly-ethylene using Eq. 1.10.  In general, it will not be possible to get a 
10% scatterer, because the sample will become too thick and the neutrons will not escape.  If we 
assume a uniform shape to the sample (e.g. a slab-shaped sample for SANS or a cylinder for 
diffraction) then we can make a rough approximation that all neutron traverse the sample with the 
same path length.  



In that case we can write the fraction of neutrons scattered as


Where Tabs is the absorption dependent sample transmission given by Eq. 1.10 with the 
absorption cross-section σabs and TS is the scattering dependent transmission given by Eq. 1.10 
with the (total) scattering cross-section σT.  Expanding 1.12 we get


So - in order to maximise the scattered fraction of neutrons, we differentiate 1.13 and set to zero 
to find the turning point and therefore the optimal thickness of the absorbing sample







Example:

Manganese metal has a moderately large 
absorption cross-section of 13.3 b @ 1.8 Å.  
Suppose we are doing an experiment on the IN5 
time-of-flight spectrometer at the ILL with a 
incident neutron wavelength of λ = 5.1 Å.  What in 
this case would be the optimum sample thickness?


	 	 σabs = 13.3 * 5.1 / 1.8 = 37.7 barns

	 	 σT = 2.15 barns

	 	 ns = 0.08 (barn cm)-1


Therefore


	 	    = 3.2 mm


This occurs at a sample transmission of 38%

For broad wavelength bands - optimise for 
maximum desired wavelength.
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⌃ = T (1� exp[�ns�T t])
= exp[�ns�abst]� exp[�ns(�abs + �T )t] (1.13)

d⌃
dt

= ns(�abs + �T ) exp[�ns(�abs + �T )t]� ns�abs exp[�ns�abst] = 0

) exp[�ns�T t] =
�abs

�abs + �T

) t =
ln(�abs + �T )� ln(�abs)

ns�T

(1.14)

t =
ln(37.7 + 2.15)� ln(37.7)

0.08 ⇤ 2.15
<latexit sha1_base64="YDodGrYWrtRzuube1dULgKLbN8s="></latexit>

Scattered neutrons from Mn metal at λ = 5.1 Å



1.5 Optimising the sample shape

So far we have considered only the transmission of the direct beam at zero scattering angle.  
However what we really need to know is what is the transmission of the scattered neutrons as a 
function of scattering angle.  In order to calculate that we need to know the shape of the sample 
accurately, and then average over all the possible scattering paths.


As an example (and the only example which is tractable) we take the case of a slab shaped 
sample (which we assume is much wider than it is thick).


The incident neutrons make an angle γ with 
the face of the slab, and the neutrons 
scatter from a thin layer of thickness dx at a 
depth x within the slab.


We can write the initial and final path lengths 
before and after scattering as




The incoming flux φ0 is attenuated along L1


The outgoing beam is attenuated along L2 (and here we assume that the wavelength doesn’t 
change)


Outgoing number of neutrons is proportional to cross-section into solid angle ΔΩ, flux, ns, 
thickness of slab Δt and is attenuated along L2


So total neutrons scattered is found by integrating above wrt. x between x=0 and x=t, and then 
the transmission is given by dividing by the total neutrons scattered in the limit of zero-absorption, 
N0.  Finally we end up with


This is one of the very few solvable cases for transmission as a function of scattering angle.  And, 
as you can see it is a complex expression.  It also assumes that the slab is infinitely wide, which is 
of course not really the case. 

Below is plotted the transmission given by expression 1.14 for the case of a monochromatic 
beam at normal incidence - i.e. γ = 90° with a thickness of 1 cm, and a range of values of the 
attenuation coefficient of between 0.01 and 0.5 cm-1. 
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Scattering from an “infinite” slab



 

At low angles the 2θ dependence is weak with the transmission being well approximated by the 
zero-angle transmission.  However, as the scattering angle approaches 90° there is a very strong 
absorption.  For this reason, slab shaped samples are popular in SANS experiments, and often in 
neutron spin-echo measurements.   Beyond 2θ = 90° there is another equivalent expression for 
the transmission.


With the advent of large detector arrays which commonly surround the sample (in the equatorial 
plane) cylindrical sample geometries have become more common.  Sometimes an annular 
cylinder is used to fill beam, but minimise absorption.  In these cases there is no analytical 
expression for the transmission as a function of angle - it must be calculated numerically (i.e. 
lookup tables or Monte-Carlo algorithms are commonly used)


In the case of a solid cylinder or sphere with an attenuation coefficient of < 1 cm-1, a good 
approximation (better than 0.5% accuracy) is given by the expression


Where R is the radius of the cylinder / sphere and the coefficients a1, b1, a2 and b2 have the 
values, 


See, A Hewat, Acta. Cryst. A 35 (1975) p248


This gives a much flatter transmission as a function of angle, and so is a good sample shape for 
neutron instruments which count neutrons over a wide angular range.  Commonly, the sample 
transmission is assumed to be constant over the whole range of scattering angles in this 
geometry.  Below is the transmission through a 1cm radius cylinder for a range of attenuation 
coefficients between 0.01 and 0.5 cm-1
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(1.15)

a1 b1 a2 b2

cylinder 1.7133 -0.0368 -0.0927 -0.3750

sphere 1.5108 -0.0315 -0.0951 -0.2898

Transmission of 1cm thick slab at normal incidence to the beam






1.6 Sample Holders

Choice of material of the sample holders / containers is crucial and depends on the type of 
neutron measurement being attempted.  This also applies to external sample environments (such 
as cryostats, pressure cells, etc.)


Ideally the sample holders and sample environment should be made as thin as possible to reduce 
the mass of extraneous materials in the beam.  They should also be shielded where possible 
using absorbing materials such as Cd or B4C (boron carbide).  


The table below shows a selection of sample holders for different applications.
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Material Comment

Powder diffraction vanadium no Bragg peaks, large σinc 
some absorption

Inelastic scattering Al / Cu low scattering cross-
sections, low incoherent 
scattering (Cu for low T)Polarized neutrons Al / Cu

Liquids / glasses vanadium / TiZr no Bragg peaks 
TiZr is a “null-matrix”

SANS Quartz very low small angle 
scattering

Single crystals Small pin (Al) sample holds own shape

Transmission of 1cm radius solid cylinder



2. During the experiment: Counting Neutrons 

2.1 Neutron Histograms.

Neutron instruments include detectors which count neutrons as a function of scattering angle 
and/or neutron time-of-flight.   Note that the scattering angle is in general composed of two 
variables - in the case of spherical polar coordinates these are the in-plane and azimuthal angles 
θ and φ.  In both of these cases the neutron data is stored - in memory and on disk - in the form 
of a histogram.


A histogram is a representation of data in which the data is sorted in increasing order as a 
function of some continuous variable, but which as been subdivided into predetermined intervals 
- often called ranges or bins.  There is a mini-tutorial on histograms at: 

https://www.mathsisfun.com/data/histograms.html


The detector solid angle element, dΩ, naturally defines a histogram bin width.  Remember that the 
solid angle is just defined by an area (in this case, the detector window) divided by the squared 
distance between the sample and the detector.   For time-of-flight the histogram bins are 
determined by the counting electronics - and can generally be set as broad or as narrow as 
desired.  There is no requirement that the histogram bin ranges be constant, though in practice 
they often are.  If the bin-widths are not the same, then the neutron counts must be divided by the 
bin widths to create a distribution function.  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This is a neutron time-of-flight distribution from 
LET (ISIS).  It is a distribution because the 
neutron counts have been divided by the time-
of-flight bin width (giving units of μs-1).  The bin 
width is 200 μs.

This is a neutron scattering angle 
histogram from D7 (ILL).  The Y-
axis is just raw neutron counts, and 
the scattering angle bin size is ~1°

https://www.mathsisfun.com/data/histograms.html


2.2 Systematic error and random uncertainty

The measured histograms in a neutron experiment are subject to experimental error and 
uncertainty.


Systematic error can arise due to bad calibration and setup of the detectors (e.g. non-linearity), 
incorrect calibration of the detector angles or the time-of-flight counting electronics.  It could even 
be said that it could be due to a bad sample…


The best way to check for systematic errors in your measurement is to repeat it.  Perhaps on a 
different batch of sample and/or on a different instrument.  Most rigorous is independent 
corroboration of the measurement.  Unfortunately, independent corroboration and experimental 
repetition is very rare in the neutron scattering - since beam time is scarce and priority is given to 
experiments not already attempted.


Random uncertainty (often this is incorrectly called random error) is due to the unpredictability of 
the measurement.  In the case of neutron scattering, we cannot predict in advance how many 
neutrons will be scattered into a detector in a certain time interval.  We can only provide a 
probability that this will occur.   The way to reduce random uncertainty in such a measurement is 
to repeat the measurement many times - and build up an average number of neutron counts per 
bin, and a spread in that value.  The more times we repeat the measurement, the smaller the 
spread in the measured values.   Multiple repetitions of a measurement build up a so-called 
probability distribution - of which the measured values are random samples.


2.3 Probability distributions - Expectation, Variance, Covariance

Neutrons arriving in a detector in a certain time interval (the counting time) can be considered as 
random samples of a probability distribution p(n), where n is the count number and is therefore 
always an integer.  



The expectation of n - also called the mean value of the probability distribution is given by


The variance of the distribution is defined as the expectation of the squared difference from the 
mean


The square root of the variance of the distribution is called the standard deviation and it is this 
that is used as an estimate of the random uncertainty.


Lastly - imagine that we have performed two measurements and we want to add them up.  


First measurement:	 	 mean: μ1,  variance: σ12

Second measurement:	 mean: μ2,  variance: σ22 

Summed measurements:	 mean: μT,  variance: σT2 

The expectation of the summed measurement is:
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n
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While the variance of the summed measurement is:




where cov(n1,n2) is the called the covariance of n1 and n2.


We can simplify the expression for the covariance:




If the two measurements, n1 and n2 are independent, then the covariance is zero.  This is because 
two variables are said to be independent if their joint expectation is equal to the product of their 
expectation.  In this case; 


Following this, we can say, from the definition of the variance above, that if two variables are 
independent and are added (or subtracted), then their uncertainties add in quadrature 


2.4 Combining measurements

In order to combine the results from various measurements in different ways, we start with the 
expression for the total differential.


where f is a function of variables x1, x2, … .  In what follows we take f to be a combination of 
neutron measurements, each of which is independent from the other so that we can take the 
covariance to be zero.  Under this assumption (and also, making the assumption that the 
uncertainties are small - for a first order expansion) we can take the square of Eq. 2.8 to obtain


2.4.1 Addition / Subtraction 

This is just a check on what we did in the previous section.  Two measurements n1 and n2 added 
together.


2.4.1 Multiplication (or division) by a constant

This happens when we normalise data (against monitor counts or time for example; see §3.1).
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2.4.2 Multiplication or division of measurements

Multiplication of neutron measurements is not a common operation… but division is very 
common.  Neutron data is very commonly divided by a vanadium measurement.  It is used for 
correcting the data for detector efficiency, solid angle and flux profile (see §3.2)


Let’s deal with multiplication first - for this we need to remember the product rule for 
differentiation (https://www.mathsisfun.com/calculus/derivatives-rules.html)




For two measurements multiplied together; 
 

 
We can divide both sides by f2 to obtain


So, in the case of multiplied measurements the combined fractional uncertainty is the addition 
of the individual fractional uncertainties in quadrature.


For the case of division of data sets we might want to use the quotient rule (see above link).  
However, I can never remember that one - so I just keep using the product rule…







This looks a lot more complicated, until we again divide both sides by f2 to give


which is Eq. 2.14 again.  So in the case of both multiplication and division of measurements, the 
fractional uncertainties are added in quadrature.


2.5 The Poisson distribution and error estimation

If we repeat a neutron measurement a few times how do we calculate the mean and the variance.  
Both of these depend on the shape of the probability distribution p(n) which (remember) is the 
probability of counting n neutrons as a function of n.  
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https://www.mathsisfun.com/calculus/derivatives-rules.html


Whenever the measurement involves counting objects (like the number of flowers in a field per 
unit area, or the number of neutrons in a detector per unit time), then p(n) takes the form of the 
Poisson distribution.  



Then integrating this according to Eqs. 2.1 and 2.2 we find the mean and variance,


This means that the standard deviation estimate of the uncertainty in neutron counts is just 
given by the square-root of the number of counts.   

Below is a plot of the Poisson distribution giving the probability that exactly n neutrons are 
counted in a given time interval, assuming that the average count-rate is 10 neutrons per time 
interval.  


In this case the estimated standard error would be ±√10 = 3.16 neutrons per time interval.  


Obviously the longer we count (in other words, adding up consecutive time intervals) the larger 
the average number neutrons and uncertainty.  However the fractional uncertainty, which for the 
Poisson distribution is given by


where N is the total (integrated) number of neutrons counted (i.e. the un-normalised mean over 
many small time intervals), decreases (slowly) as N increases.


Example:

Some useful numbers to remember about fractional uncertainty in neutron scattering….

If you want to count until the fractional uncertainty is 3% (0.03) then the number of counts 
required is


Say now that we have decided we actually want to achieve a smaller uncertainty by a factor of 2, 
i.e. 1.5% (0.015).  This means we need


counts.  So we have to count 4 times longer to halve the experimental uncertainty.   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µP = µ

�2
P = µ
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3. After the experiment: Data Correction 
The correction of neutron data is primarily intended to deal with sources of systematic error.  The 
aim is to turn the measured neutron intensities into measured neutron cross-sections - sometimes 
on an absolute scale.  Do do this we need to know things like -

• how long did we count for? 

• How big are our detectors

• what is our sample mass / thickness / volume?

• are there any sources of background counts?

• what is the sample transmission?



The expression for the total number of counts is,


	 N 	 	 	 	 [neutrons]

	 φ 	 incident neutrons	 [neutrons]

	 E(λ) 	 detector efficiency	 [dimensionless]

	 ΔΩ	 detector solid angle	 [dimensionless]

	 ns 	 number density	 [e.g. (barn.cm)-1]

	 t	 sample thickness	 [cm]

	 dσ/dΩ	cross-section	 	 [barns]

	 T	 transmission	 	 [dimensionless]


In this part of the lecture we will go through the very basics of correcting neutron data - both at 
pulsed and continuous sources.  Much data correction is done using pre-made scripts in 
whatever analysis package is available (e.g. Mantid, LAMP, DAVE…).


3.1 Normalisation to monitor / time / current

The total number of neutrons counted in a measurement will depend on uninteresting factors.  
The least interesting of these is φ, the number of incident neutrons.  Obviously the longer we 
count for, or the higher the incident flux, the more neutrons we will count.  So we need to divide 
the measured neutron counts by a number, which indicates how many neutrons were available to 
be scattered.  


Option 1: Counting Time 
If the flux of the neutrons can be taken to be constant in time over the period of the measurement, 
then it is acceptable to divide the neutron counts by the counting time.  However this is only really 
an option on continuous sources such as the ILL.  On spallation sources, the neutron beam fluxes 
can be quite variable over the experiment.


Option 2: Integrated proton beam current 
At a spallation source such as ISIS, a common method to normalise data is to use the integrated 
proton beam current to normalise the data.  The beam current is generally recorded in units of μΑ 
or mΑ, and the time integral of this (which is the total proton charge) is recorded (units of μΑ.Hrs).  
Assuming that the proton monitors accurately reflect the current and integrated charge, then this 
can be used to normalise the data.  This method is very commonly used at ISIS.


Option 3: Neutron Incident Beam Monitor 
In most neutron spectrometers, there is a low efficiency detector placed upstream of everything 
else.  This is called the incident beam monitor and it typically has a counting efficiency of around 
1 neutron in every 10 000.   On continuous sources this monitor will accurately reflect the 
integrated number of neutrons incident on the sample during the measurement.  On pulsed 
sources, this monitor will - in addition - give the time-of-flight (wavelength) profile of the incident 
beam.  Normalisation to monitor is arguably the most reliable method of the 3 choices, depending 
on the stability in time of the monitor. 
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3.2 Normalisation of the detector

The detector solid angle, ΔΩ, the wavelength dependent efficiency, E(λ), and the wavelength 
dependent (and now normalised) intensity, φ0(λ), can be removed from Eq. 3.1 by dividing by a flat 
scatterer; that is, a sample whose angle (and wavelength) dependent differential cross-section, 
dσ/dΩ, is a constant.  





For most applications, the flat scatterer is chosen to be vanadium.  As shown in the table below, 
the scattering from vanadium is dominated by incoherent scattering (due to the nuclear spin), and 
is therefore flat.


Unfortunately, vanadium cannot be used to normalise SANS or reflectivity data since there is a lot 
of small-angle scattering from grains and oxide layers in metallic vanadium.  For SANS 
instruments the scattering from water is sometimes used (flat at low Q), while for reflectivity, 
glassy carbon can be used. 


Examples:

Vanadium normalisation on D7 at the ILL.   Amorphous silica before and after division by a 
vanadium measurement.  D7 is a monochromatic instrument, so the correction is mostly to do 
with differences in solid angle.  Each individual detector has a different effective solid angle and 
efficiency - so the data before correction looks pretty ugly.


Vanadium normalisation on POLARIS at ISIS.  Below we see the sample (silicon powder) and 
vanadium spectra as a function of time-of-flight.  We are seeing only one detector spectrum 
(grouped).  So this time the correction is mainly to do with energy efficiency and wavelength 
dependent neutron intensity.  The corrected spectrum has been converted into d-spacing.
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(3.2)

abund. % σcoh σinc σabs

50V 0.25 7.3 0.5 60
51V 99.75 0.0203 5.07 4.9

V - 0.038 5.06 5.04

Nnorm =
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3.3 Absolute normalisation

The cross-section and number density of vanadium is well known,


	 (dσ/dΩ)V 	 = 5.06 / 4π (barns st-1 f.u-1)

	 ns 	 	 = 0.0685 (barn cm)-1


therefore we should be able to work out the constant term in Eq. 3.1 provided we know the 
vanadium thickness (and therefore the transmission). 


where TV is the vanadium transmission and tV is the vanadium thickness.  Re-arranging we have,


The ratio of sample and vanadium thicknesses and number-densities can be replaced by masses 
and formula weights if required. 


3.4 Background Subtraction

There are many possible sources of background scattering in a typical neutron instrument.  These 
can include; cosmic ray background scattering; neutrons escaping from the source; vacuum 
windows (often made of aluminium) in the beam path; sample environment such as cryostats, 
magnets, pressure-cells; sample holders; air in the beam path; … 

These are depicted in the diagram below of a typical continuous source powder diffractometer.
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¾Fig. 2.27 Time-of-flight spectra

for a) vanadium,

b) polycrystalline silicon and

c) vitreous germania. Also shown

are the normalised spectra for

d) polycrystalline silicon and

e) vitreous germania.

the data by some kind of smoothing process).

In practice the differential cross-section for

the sample is determined from performing

the following operation with the measured

time-of-flight spectra;
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(A fully corrected dataset will also have been

corrected for such effects as attenuation,

multiple scattering and detector dead-time.

A discussion of these corrections is beyond

the scope of this article.) Figure 2.27

illustrates the effect of flux normalisation for

pulsed diffraction data. The vanadium time-

of-flight spectrum is closely related to the

flux distribution � �) O  arising from the

moderator. The upturn in � �) O  at low

times is due to high energy epithermal

neutrons whilst the broad peak at

intermediate times is the peak of a

Maxwellian distribution whose position

depends on the moderator temperature.

The spectra measured on a reactor

diffractometer do not need to be normalised

to a flux distribution, but a vanadium

standard may still be used in an experiment

in order to achieve an absolute normalisation

of the differential cross-section.

One of the most important concerns for a

diffraction experiment on a disordered

material is the Q-range. Theoretically the

Fourier transformation of Equation 2.28

extends from Q = 0 to infinity, but this is not

possible in reality. By the use of low scattering

angles, 2θ, the data should be measured

down to as low a Q-value as possible, so that

they may be extrapolated reasonably down to
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the data by some kind of smoothing process).

In practice the differential cross-section for

the sample is determined from performing

the following operation with the measured

time-of-flight spectra;
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(A fully corrected dataset will also have been

corrected for such effects as attenuation,

multiple scattering and detector dead-time.

A discussion of these corrections is beyond

the scope of this article.) Figure 2.27

illustrates the effect of flux normalisation for

pulsed diffraction data. The vanadium time-

of-flight spectrum is closely related to the

flux distribution � �) O  arising from the

moderator. The upturn in � �) O  at low

times is due to high energy epithermal

neutrons whilst the broad peak at

intermediate times is the peak of a

Maxwellian distribution whose position

depends on the moderator temperature.

The spectra measured on a reactor

diffractometer do not need to be normalised

to a flux distribution, but a vanadium

standard may still be used in an experiment

in order to achieve an absolute normalisation

of the differential cross-section.

One of the most important concerns for a

diffraction experiment on a disordered

material is the Q-range. Theoretically the

Fourier transformation of Equation 2.28

extends from Q = 0 to infinity, but this is not

possible in reality. By the use of low scattering

angles, 2θ, the data should be measured

down to as low a Q-value as possible, so that

they may be extrapolated reasonably down to
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(A fully corrected dataset will also have been

corrected for such effects as attenuation,

multiple scattering and detector dead-time.

A discussion of these corrections is beyond

the scope of this article.) Figure 2.27

illustrates the effect of flux normalisation for

pulsed diffraction data. The vanadium time-

of-flight spectrum is closely related to the

flux distribution � �) O  arising from the

moderator. The upturn in � �) O  at low

times is due to high energy epithermal

neutrons whilst the broad peak at

intermediate times is the peak of a

Maxwellian distribution whose position

depends on the moderator temperature.

The spectra measured on a reactor

diffractometer do not need to be normalised

to a flux distribution, but a vanadium

standard may still be used in an experiment

in order to achieve an absolute normalisation

of the differential cross-section.

One of the most important concerns for a

diffraction experiment on a disordered

material is the Q-range. Theoretically the

Fourier transformation of Equation 2.28

extends from Q = 0 to infinity, but this is not

possible in reality. By the use of low scattering
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One might expect that in order to subtract the background scattering, all you need to do is 
measure an empty sample holder in exactly the same conditions as the sample measurement 
(i.e. filled sample holder).  This is in fact true for samples which have a very good neutron 
transmission. 



In general though the measured neutron counts with a sample in the beam is a sum of three 
terms,


where, Nm is the measured count, Ns is the count due to sample scattering, NbgA is the count due 
to background sources which have passed through the sample and is hence attenuated, and NbgB 
is the count due to background sources which bypass the sample (unattenuated).  Since Ns and 
NbgA are attenuated by the sample they have to be multiplied by the sample transmission Ts.   This 
is depicted in Fig. (a) below.




Fig. (b) depicts the situation for an empty sample holder measurement.  In this case we are 
measuring both the NbgA and NbgB contributions - but the NbgA term is no longer attenuated by the 
sample.  Therefore the empty sample holder counts, NE are;


Fig. (c) shows the situation when we measure a totally absorbing sample (such as Cd) in the 

sample holder.  In this case, the NbgA background term is blocked by the sample, giving;
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Depiction of a typical continuous source powder diffractometer



Combining Eqs. 3.5 and 3.6 we can write,




And therefore re-arranging 3.4 and substituting 3.7 and 3.6 we get,


Note that when the sample transmission is close to 1, then the NCd terms subtract, and all that is 
required is the empty sample holder measurement.   Sometimes, NCd is quite close to zero (e.g. in 
SANS experiments) but it is still checked.  In wide angle diffraction experiments NCd can be very 
large (almost as large as NE).
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