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Motivation

How to make a complex problem simple?

Complex crystal structure
(24 magnetic ions in unit cell)
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@ Fe3tet.
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Even more complex
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Motivation

How to benefit from macroscopic properties?
CuO (multiferroic)

collinear AF magnetic spiral

Cannot induce P! Can induce P! Kimura et al. (2008) Nat. Mater. 7 291
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Motivation

How to benefit from macroscopic properties?

SYMMETRY
cANWELBA
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Outline

» Magnetic symmetry
symmetry operators, time inversion

» Group theory
irreducible representations

» Magnetic structure refinement
single irrep, mixed irrep, SDW, cycloid, ...

» Conclusion
V[ {
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Magnetic symmetry

Crystallographic and magnetic space groups

230 crystallographic space groups 1651 magnetic space groups

it.iucr.org iucr.org/publ/978-0-9553602-2-0

space groups are groups in the mathematical sense =% group theory .ll
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Magnetic symmetry

Conventional symmetry operators

Rotations (order n: 2z/n) Mirror planes (m) Inversion (1)

T —

Roto-inversion (n) Screw axes (rot + trans) Glide planes (mirror + trans)
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Magnetic symmetry
Magnetic symmetry operators

Magnetic symmetry operations = “usual” crystallographic symmetries + time inversion

A magnetic moment transforms like an axial or pseudo vector

2: la || 2 conserved, po L 2 inverted m: [ || m inverted, ta L m conserved

, /. / ) ! /.
2': la || 2" inverted, o L 2 conserved m’: Ha | M conserved, po L m inverted
7/ §
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Magnetic symmetry

Magnetic symmetry operators

Magnetic moments on special Wyckoff positions have less degrees of freedom.

pon2 —» only K pon2 — only 1

Not using the magnetic symmetry is like treating the crystal structure in P1! '.ll
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Magnetic symmetry

Magnetic symmetry operators

Mathematical description (polar vectors):

x’ Ri1 Ri2 Ris x 131
Y | =R Roa Ros |- |y |+ |t
2! R31 R3z Rss z i3

Seitz notation: (R]|t)

Symmetry contained in the coordination triplet:
e.g. 21 screw axis along c: -x, -y, z+1/2

u! Rin Ri2 Ris u
Axial vectors: vV | =det(R)- T [ Ra1 Roa Rog|-|v
w’ R31 R3a2 Rss w

16th Oxford School on Neutron Scattering | Navid Qureshi THE EUROPEAN

NEUTRON SOURCE

/4
NEUTRONS
FOR SOCIETY



Group theory

Definitions

Physical systems (crystals and magnetic structures) are provided with a certain symmetry,
which needs to be reflected correctly in a mathematical way.

Definition of a group:

A group G of order n is a set of distinct elements g1, g2, ..., gn. Any two elements gi and gj combined by an
operation called the group multiplication (o) should satisfy the following four axioms:

» closed under multiplication: the unique product g; o gj also belongs to G
» the associative law holds: gk o (gj © gi) = (gk © gj) © gi

» there exists an identity element: Eog=goE =g

» there exists an inverse element: glog=gogl!l!=E

Space groups fulfil those four axioms!

If any two elements commute, then the group is Abelian: gj o gi = gi © gj
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Group theory

Definitions

Physical systems (crystals and magnetic structures) are provided with a certain symmetry,
which needs to be reflected correctly in a mathematical way.

Definition of a subgroup:

H is a subgroup of G, if it is a group itself (fulfils the 4 axioms) and if all elements h; are elements of G.

Definition of a class:

Group elements which are conjugate to each other can be classified into classes.
An element b is conjugate to a if there is a group element g so that b = gag-1.

In Abelian groups every group element builds a class of its own:

gag ' =g¢7la=Ea=a
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Group theory

Example - Ni3V20s

Space group Cmce, magnetic Ni ions on Wyckoff sites 4a (0,0,0) and 8e (1/4,y,1/4)

Symmetry operators:

(1)1 (2)

(3) 2(0,1/2,0) 0,y,1/4 (4)2 =,0,0
(5)-1 0,0,0 (6)b x,y,1/4
() c x,1/4, 2 (8) m 0,y, z

Generators selected:

t(1/2,1/2,0), (2), (3), (5)
t(1, 0, 0), £(0, 1, 0), £(0, 0, 1)
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Group theory
Example - Ni3V20s

identify the symmetry operators of the space group which are
compatible with the magnetic translation symmetry — little group (subgroup)

R-q=q+ G
Propagation vector g=(0.5 0 0)

Symmetry operators:

(1)1 (2) 2(0, D=t T/4, 2
, 1/4 ( 1 0 0 0.5 0.5 0.5 1
( 0 —1 0 o]l=( o |=[o0]-10
0 0 -1 0 0 0 0

. . o /
not with C centring! 'll
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Group theory

Example - NizV20s

identify the symmetry operators of the space group which are
compatible with the magnetic translation symmetry — little group (subgroup)

R-q=q+G

Propagation vector g=(0.5 0 0)

Symmetry operators:

(2) 2(0,@9}(/4, z Representative elements of the little group:
(3) 20, T/Zo8)=tiy, 1/4 (4) 2 2, 0,0 » (1) identity
(6) bz, v, 1/4 » (4) 2-fold rotation axis along x
» (6) glide plane within xy plane
(7) " 1/4’ ® M » (7) glide plane within xz plane
/4
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Group theory

Definitions

Definition of a representation:

If the square matrices IN'(gi) associated with each element gi of group G of order n satisfy the homomorphism rule
I'(g;)T(g:) = T(gx)
for the corresponding relation of the group elements
9i9i = 9k

then the set of matrices I'(gi), I'(gi), ..., I'(gi) is called a representation of the group G.

The size of the matrices is the dimension d of the representation.

Every representation I(gi) has an equivalent representation: €2(g) = P_lf‘(g)P
y/
V7 /4
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Group theory

Definitions

Reducible and irreducible representations:
If a representation I(g) can be block-diagonalized according to

I'(g) = <F1()(g) on(g)>

with the dimension being dr=dr1+dr2, then I(g) is called reducible.

If no equivalence transformation (P-1I'(g)P) can achieve such a block-diagonalization,
then the presentation is called irreducible.

/(4
16th Oxford School on Neutron Scattering | Navid Qureshi THE EUROPEAN NEUTRON SOURCE E'OEQJSTORC?E"R



Group theory

Definitions

Character of a representation:

The character of a matrix representation I(g) is its trace:

x(g) = Tr[I'(g)] = ZFi,i(g)

The trace is invariant under equivalence transformations.

Tr[P~'T(9)P] = Tr[[(g)PP '] = Tx[I(g)]

- The character is suited to show the equivalence between matrix representations.
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Group theory

The orthogonality theorem

An outcome of the Schir lemmas is the orthogonality theorem

Z I‘gl (g> [I‘Z’m(g)} ) = Z—iaUv(Sjn(Slm
geG

The orthogonality theorem together with the properties of characters yield fundamental relations
from which the character table of a group can be constructed.
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Group theory
Character tables

» The number of inequivalent irreducible representations nr is equal to the number of classes nq.
Ny = Ny

» The sum of squares of the dimensions of inequivalent irreducible representations is equal to the order
ne of the group.
Z 2

» First orthogonality of characters
> XY(9) XY (9)] = naduv

geG

7 T ng -
> X INF] = o é{{>0(),‘f'

U
» Relation for characters resulting from class multiplication

n(Ce)n(Cr)xI (9)xF (9) = du Y c¥n(Cu)Xx5(9)

[/ {
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Group theory

Character tables - Example

» The number of inequivalent irreducible representations nr
is equal to the number of classes nq.

Ny = TNl

Little group contains 4 elements (nc=4). Using b = gag?
shows that each of the elements builds a class.

G={E, 2;,b, c}

—P 4 inequivalent irreducible representations
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Group theory

Character tables - Example

» The sum of squares of the dimensions of inequivalent irreducible
representations is equal to the order ne of the group. -“
I'1 1 1 1 1
2
> di =nc r 1

r 1

I 1

— 4 one-dimensional representations including the identity representation X (9)=1

- the identity E is necessarily represented by XU(E) =1
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Group theory

Character tables - Example

» First orthogonality of characters

> xY(9) xV(9)]” = neduv

geG

U=sv=2: 1-141-14(=1)-(=1)+(=1)-(-=1) =4

u=1,v=2: 1-141-14+1-(-1)+1-(-1)=0
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1 1
1 -1
-1 1
-1 -1
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Group theory
Basis functions

A set of functions {y1, w2, ... yaU} is called a basis for a representation I'Y, if

du e.g: {(a,0,0), (0,b,0), (0,0,c)}
gy = Z%UF% (gx) {(a,a,0), (0,0,0)}
1=1 {(a,a,a)}

i.e. if the basis is closed within itself under operations g € G

An arbitrary function f contains, in general, components of various irreducible representations:
_ U, .U
f=2_2.4
u J

When the projection operator Oy is applied to the function f, it picks up the symmetry-adapted function lDJU

d .
Oy = n—U > @] g Ouf=civy
G geG
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Group theory

Basis functions - Example

We are interested in the spin orientation ——®» f=S= [ 5,

d x
Projection operator: Oy = - Z [FU'(Q)] g Ouvf = c§-]¢§]

) 1 Slar;
wl = Z 1- Sly
Slz
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Group theory

Basis functions - Example

Sz
We are interested in the spin orientation ——®» f=S= [ 5,
S
d %
Projection operator: Oy = v Z [ng (9)] g Ouvf = C?W
na geG
1 Slar; Slx
qpizz 1- Sy, | +1-| -5,
Slz _Slz
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Group theory

Basis functions - Example

Sz
We are interested in the spin orientation ——®» f=S= [ 5,
S
d %
Projection operator: Oy = v Z [ng (9)] g Ovf= c§-]¢§]
na geG
1 Slar; Slx _SZx
¢%:Z Lo Sy | +1- =Sy | +1-| =52
Slz _Slz S2Z

- only x-component of spin (antiferromagnetically coupled)
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Group theory

Magnetic models - 1

4 refinable coefficients instead of 36 .ll
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Group theory

Magnetic models - I

4 refinable coefficients instead of 36 .ll
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Group theory

Magnetic models - s

0] 0}
2 4
+ -
+ + 2
1
3
1

5 refinable coefficients instead of 36 .ll
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Group theory

Magnetic models - 4

(0] (0]
2 4
+ +
N 2
1
3
1

5 refinable coefficients instead of 36 .ll
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Group theory

Magnetic models

HEEERE HEEER
SV + - - + + o+ - -

- & o -
00+-+- ++++++

HEEEE HEEEE
++++++ OO+-+-
/4
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Group theory

Literature
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PhD thesis
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Data analysis

Freely available programs

The symmetry-adapted magnetic model (least possible coefficients)
has to be refined using e.g. a least-squares algorithm.

We measure | — F2 i.e. we loose the information about the phase.

FullProf Suite (including Baslreps for calculation of irreducible representations)
https://www.ill.eu/sites/fullprof/

Cambridge Crystallographic Subroutine Library

https://www.ill.eu/sites/ccsl/html/ccsldoc.html

Jana http://jana.fzu.cz GSAS-11 https://subversion.xray.aps.anl.gov/trac/pyGSAS

Mag2Pol https://www.ill.eu/instruments-support/instruments-groups/instruments/d3/software/
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Data analysis

Freely available programs

Qureshi (2019) J. Appl. Cryst. 52 175

Mag2Pol https://www.ill.eu/instruments-support/instruments-groups/instruments/d3/software/
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Magnetic structure refinement

Set up nuclear structure

» atomic positions etc. usually are determined during
the experiment
» extinction coefficients depend on sample

» Scale factor is important to determine size of

magnetic moment
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Magnetic structure refinement

Set up magnetic symmetry

EEEEE NS

;. - -

Representative elements of the little group:
» (1) identity
» (4) 2-fold rotation axis along x
» (6) glide plane within xy plane
» (7) glide plane within xz plane
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Magnetic structure refinement

Load data and refine structure

» data are (hkl) vs intensity and sigmas

» eventually apply absorption correction

» equivalent reflections should be merged

» however, true magnetic symmetry not known at
beginning of analysis —> treat in P1

» refine allowed and reasonable components
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Magnetic structure refinement

Mixed representations
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I I =
1 1 1

1

1 1 -1 -1
1 -1 1 -1
1 -1 -1 1

» two irreps can be combined -> symmetry
reduction
» cycloids/helixes are usually explained with two
irreducible representations
» e.g.: one real Fourier coefficient modulated by
'3 and one imaginary Fourier coefficient
modulated by N1
/4
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Magnetic structure refinement

Magnetic symmetry induces electric polarization

PRB 88 174412 (2013)

Qureshi et al.,

I,
2K
I' +TI's
HTI: sinusoidal modulation
LTI: cycloidal modulation
Iy
——» Mixed representation: reduction of symmetry
7K
I's Iy + T
4 cycloid chains with same handedness
such a magnetic structure can induce a ferroelectric
polarization due to the absence of inversion symmetry
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Conclusions

Symmetry, symmetry, symmetry ...

» refinement of complex magnetic structures without considering
symmetry is hopeless

» magnetic symmetry = nuclear symmetry + propagation vector
+ time inversion

» group theory yields all necessary tools

» use macroscopic knowledge to facilitate analysis

» trial and error
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