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Take-home message

�2

Polarized neutrons can be used to enhance (nearly) any 
neutron scattering experiment, either by providing 

additional information (this lecture), or improving the 
resolution or range using Larmor precession (A. Faraone) 
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Overview
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• Principles of polarized neutron scattering

• What is a polarized neutron beam?

• How do polarized neutrons interact with matter?

• What extra information can be gained by using 
polarized neutrons?

• Practical polarized neutron scattering

• Polarized devices: polarizers/analyzers, flippers, 
and guide field

• Advanced applications of polarization analysis

• Magnetic diffraction and diffuse scattering

• SANS, reflectometry spectroscopy

I1I2



Principles of polarised neutron scattering −
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Spin angular momentum
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Neutrons possess an inherent magnetic moment related to their spin-angular 
momentum S = 1/2

quantum

classical

N

S

Stern, Gerlach (1922)

The spin has three components — x, y, and z. In a magnetic field, only the 
component along the field, conventionally z, is well defined. 

+1/2

−1/2

z

−=

+=

x y
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Vector and Scalar Polarization
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In a magnetic field, the polarization of a beam is a vector pointing in the direction of 
the field, with the length of the vector defined as the scalar polarization:

or P =
F � 1

F + 1
; F =

N+

N�
P =

N+ �N�
N+ +N�

To determine the polarisation of a beam, we insert a device that selects either ↑ or ↓ 
from the beam (e.g. another SG apparatus). This is called polarization analysis.

N+ = 2100A+ A− N− = 900

P =
1200

3000
= 40%; F =

7

3

N = 3000 N = 3000

Where F is the flipping ratio, a frequently measured experimental quantity. 
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Polarized neutron scattering
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Most samples also contain magnetic moments, originating either from nuclei or the 
electrons — magnetism.

The scattered polarization and cross section (intensity) depends on the relative 
orientation of the beam polarization and the magnetic moments in the sample.

Analyzing the scattered beam can provide us with this information!

Sample

Nuclear spin I

Nuclear

B

Magnetic

−

✓
d�

d⌦

◆

kf ;Pf

ki;Pi

Q = kf � ki
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Spin-flip and non-spin-flip scattering
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In most cases, it is sufficient to analyse the scattered polarization along the same 
direction as the incident. This is called longitudinal polarization analysis. 

We then only need to consider two types of process:

“+−” “−+”“−−” “++”

Non-spin-flip (NSF) Spin-flip (SF)
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Nuclear scattering
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The neutron interacts with the nucleus via the strong nuclear force (Squires Ch. 9 
and A. Boothroyd):

� = (2/~)S

I

b = A+B� · I
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Example 1: Polymer
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Consider a hydrocarbon polymer:

If we perform longitudinal polarization analysis, we can separate the contributions:

d�

d⌦

σcoh σSI
C 5.551 0.001
H 1.757 80.26

Q
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Example 1: Polymer
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Consider a hydrocarbon polymer:

If we perform longitudinal polarization analysis, we can separate the contributions:

d�
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H 1.757 80.26
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Magnetic scattering
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Magnetic scattering dominated by the neutron-dipole interaction (see N. Qureshi)

Magnetic

−

This means we now have to worry about the relative directions of the sample 
moment (magnetisation) M (often ordered), Q, and Pi. Complicated in general!

A Only measure 
components M⟂Q

M⟂
M

Q

M x Q

Squires Ch. 7

M? = Q⇥M(Q)⇥Q

B M⟂ || Pi - NSF
M⟂ ⟂ Pi - SF

M⟂
Pi

Pf

1. Rot. Pi 180° about M
2. Project onto Pi
3. Find ratio NSF:SF

Brown, Forsyth, Tasset

� ·Be

BeM
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Example 2: Paramagnetic scattering
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Let us consider the case where the electronic moments are disordered.

After averaging over the random direction of M, the magnetic elastic scattering cross 
section only depends on angle between the incident polarization Pi and Q:
✓
d�

d⌦
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Example 2: the || - ⟂ method
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Combining this with example 1, what if all three types of scattering are present? 

Pi

Pi || Q

0 : 1

x y

z

Magnetic

Spin incoherent

Nuclear

Q

1/3 : 2/3

1 : 0

Pi ⟂ Q

1/2 : 1/2

Pi

Q

1/3 : 2/3

1 : 0

(dσ/dΩ)NSF : (dσ/dΩ)SF
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MnF2
Moon, Riste, Koehler
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Example 3: collinear ferromagnet
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Another case involves the electronic moments in the sample all being aligned

Bragg peak cross section now depends on the orientations of the magnetisation M, 
Pi, and Q. It also includes both nuclear and magnetic contributions. For M || Pi ⟂ Q:

M || Pi ⟂ Q

+Pi

Q

M

−Pi

M

1. M ⟂ Q : measure all of M
2. Pi || M⟂ : all scattering NSF

    +Pi || M : 

    −Pi || M :
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>>>
>>:
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Squires Ch. 9, p. 181
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Example 3: magnetic crystal polarizer
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Cu2MnAl

M || Pi ⟂ Q

+Pi

Q

M

−Pi

M || (110)
Q = (1-11) 
FN = 7.2 fm
FM = 6.8 fm

e.g. Cu2MnAl

1. M ⟂ Q : measure all of M
2. Pi || M⟂ : all scattering NSF

    +Pi || M : 

    −Pi || M :
✓
d�

d⌦

◆

��
/ |FN + FM |2

✓
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d⌦

◆

++

/ |FN � FM |2⇠ 0.16 barns

⇠ 200 barns
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Summary
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Rules

1 The nuclear coherent and isotope incoherent scattering is entirely NSF

2 The spin incoherent scattering is 1/3 NSF and 2/3 SF

3 The components of the sample magnetisation perpendicular to Q and…

• … parallel to Pi : NSF

• … perpendicular to Pi : SF

Consequences

1 We can separate the components of the cross section (Examples 1,2) 

2 We are also sensitive to the direction of magnetic moments 



Practical polarised neuton scattering
I1I2
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What do we need?
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We have also seen that it can be useful to rotate the polarisation versus Q and M — 
guide field. The guide field also preserves the polarisation between the elements.

P ASFG G FG G

We’ve seen that we can polarise and analyse a beam with crystals like Cu2MnAl. 
However, these are normally fixed to accept only one state — need flippers

P- A-S −−F F
−

FP- A-S F −+

FP- A-S F −+

P- A-S F ++F

−

+

+

+ −
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Polarized neutrons in practice
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Moon, Riste, Koehler

Polarize +z

Guide field

Flipper 

Guide field || Q

Guide field ±z

Analyze +z

Guide field +x

The first instrument of this kind was built by Moon, Riste, and Koehler in 1968

Total

Nuclear + II

Magnetic
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Neutron polarizers and analyzers
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1. Magnetic crystal 
Cu2MnAl

If FN = FM, polarized beam!

P =
N+ �N�
N+ +N�

(see Example 3)

2. Polarizing mirrors

Reflectivity at the interface:

(see S. Langridge lecture)

Alternating nonmagnetic and 
magnetic layers

R =

✓
n0 � n±
n0 + n±

◆2

z
n0

n±

n

+ −

If n0 = |n±|, polarized beam!

n± /
p

⇢coh ⌥ ⇢mag

✓
d�

d⌦

◆

±±
/ |FN ⌥ FM |2
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Neutron polarizers and analyzers
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3. 3He spin filter 
3He (nuclear spin I = 1/2) has a spin-dependent absorption cross section:

neutron 3He

�abs ⇠ 6000 barns
<latexit sha1_base64="LL6gLwOil0elt5IdV9k4eulqd+w=">AAACFnicbZDLSgMxFIYz3q23qks3wSK4scyoqMuiG5cK9gJtKWfStAaTzJCcEcswvoQbX8WNC0XcijvfxvQiaOsPgZ/vnMPJ+cNYCou+/+VNTc/Mzs0vLOaWlldW1/LrGxUbJYbxMotkZGohWC6F5mUUKHktNhxUKHk1vDnr16u33FgR6SvsxbypoKtFRzBAh1r5vYYVXQWttIH8Do1KIbRZ5qCiR77v3//gEIy2WStf8Iv+QHTSBCNTICNdtPKfjXbEEsU1MgnW1gM/xmYKBgWTPMs1EstjYDfQ5XVnNShum+ngrIzuONKmnci4p5EO6O+JFJS1PRW6TgV4bcdrffhfrZ5g56SZCh0nyDUbLuokkmJE+xnRtjCcoew5A8wI91fKrsEAQ5dkzoUQjJ88aSr7xeCguH95WCidjuJYIFtkm+ySgByTEjknF6RMGHkgT+SFvHqP3rP35r0PW6e80cwm+SPv4xvxGaB6</latexit>

�abs ⇠ 0 barns
<latexit sha1_base64="zgk4CX23DHv84xU0IPvH5aGJPnY=">AAACE3icbZBNSwMxEIazflu/qh69BIsgHsquCnoUvXisYGuhW5bZNK3BJLsks2JZ1t/gxb/ixYMiXr1489+Y1gpqfSHw8swMk3njVAqLvv/hTUxOTc/Mzs2XFhaXllfKq2sNm2SG8TpLZGKaMVguheZ1FCh5MzUcVCz5RXx1MqhfXHNjRaLPsZ/ytoKeFl3BAB2KyjuhFT0FUR4iv0GjcohtUTioqH/7zWIw2hZRueJX/aHouAlGpkJGqkXl97CTsExxjUyCta3AT7Gdg0HBJC9KYWZ5CuwKerzlrAbFbTsf3lTQLUc6tJsY9zTSIf05kYOytq9i16kAL+3f2gD+V2tl2D1s50KnGXLNvhZ1M0kxoYOAaEcYzlD2nQFmhPsrZZdggKGLseRCCP6ePG4au9Vgr7p7tl85Oh7FMUc2yCbZJgE5IEfklNRInTByRx7IE3n27r1H78V7/Wqd8EYz6+SXvLdPc4yfxg==</latexit>

3He plasma

FLYNN, ISIS

unpolarized
beam

spin filter
~1 bar 3He

polarized
beam

Require high 3He polarization for good neutron polarization → lasers!
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Manipulating the polarization
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After creating polarised beam, need to guide/rotate it and flip its direction. This is 
done using magnetic fields.

If the direction of the magnetic field changes, the polarization Larmor precesses 
around the new field direction.

!L = �nB

Pi

B B

Larmor frequency

The angle of the cone depends on the angle between the original field direction and 
the new field direction.



OSNS, 06/09/2019

Manipulating the polarization
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Slow changes → field rotation. Fast changes → precession/flipping

Let us imagine we have a field changing at a rate ⍵B = dθB/dt. We may then identify 
two cases by comparing this rate with the Larmor frequency and neutron velocity:

Adiabatic (A > 10)
The spin follows the rotating field 
direction

B

P

x

beam

Non-adiabatic (A < 0.1)
The spin immediately begins 
precessing about the new direction

B

P

x
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Guide fields/field rotators
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Guide/rotating field is typically constructed using either permanent magnets or 
electromagnets:

Photo: J. KosataPhoto: R. Stewart

XYZ field rotator Guide field

y
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Non-adiabatic spin flippers
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Drabkin
I1I2

beam

Field changes direction in the middle.

B

Dabbs foil

I

B

B

Meissner screen (Nb or YBCO)

Cryoflipper
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Other types of spin flipper
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Alternatively, we can use Larmor precession combined with non-adiabatic trans.

B

Mezei

1. Non-adiabatic transition
2. Half a precession (π)
3. Non-adiabatic transition

1 2 3

OSNS 2007 - Polarized Neutrons

Radio-frequency flippers

EE00

Zeeman Zeeman splitting in field Bsplitting in field B00

�E = g�NB0

Resonance frequency ofResonance frequency of
transitions between transitions between ““upup”” and and
““downdown”” states is states is  thereforetherefore

  

� =
g�NB0

h
= �B

0

Which is just the Which is just the LarmorLarmor
precession frequency.precession frequency.
Transitions between up andTransitions between up and
down states occur on applyingdown states occur on applying
an RF field atan RF field at  ��LL perpendicular perpendicular
to the main fieldto the main field RF flipper installed onRF flipper installed on    the small-angle instrument D22 at thethe small-angle instrument D22 at the

ILLILL

B0

B1

Adiabatic Fast Passage

1 2

1. Reversal of Btot with RF field
2. Non-adiabatic transition

B0
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Example instrument: D7, ILL
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A

P

Polarizer
Supermirror 

bender

F
Flipper
Mezei

pho
photo: A. Wildes

INSTITUT MAX VON LAUE - PAUL LANGEVIN 

RF flipper!

Efficiency:     ~99% ! ! ! ! !100%!
Transmission:~98% ! ! ! ! !100%!

! ! ! ! !Possibility for statistical chopping!

G

Guide field
XYZ

INSTITUT MAX VON LAUE - PAUL LANGEVIN 

New Guide Fields!

With David Jullien, Régis Martin, Luc Didier!

Analyzer
Supermirror

(wide angle rare)
OSNS 2007 - Polarized Neutrons

Supermirrors

Approximately ten instruments at ILL currently use supermirror bender assemblies as
broad band polarization at cold neutron wavelengths (�>2.5 Å)

On the right are recent reflection and transmission results from a 590 layer m=3 Fe/Si
supermirror on a 0.5mm Si wafer (Hoghoj et al, Physica B 267-8 (1999) 355)

See also Boni et al, (Physica B 267-8(1999) 320 ) for the development of remnant supermirrorsStewart et. al.; Schärpf



Advanced polarised neutron scattering:
Generalising polarisation analysis

M⟂
Pi

Pf

x y

z
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Reminder: rules of polarised neutron scattering
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Nuclear

Magnetic

3

1

2

The nuclear coherent and isotope incoherent scattering is entirely NSF

The spin incoherent scattering is 1/3 NSF and 2/3 SF

The components of the sample magnetisation perpendicular to Q and…

• … parallel to Pi : NSF

• … perpendicular to Pi : SF
M⟂

Pi

Pf

x y

z
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Reminder: The || - ⟂ method
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Pi

Pi || Q

0 : 1

x y

z

Magnetic

Spin incoherent

Nuclear

Q

1/3 : 2/3

1 : 0

Pi ⟂ Q

1/2 : 1/2

Pi

Q

1/3 : 2/3

1 : 0

(dσ/dΩ)NSF : (dσ/dΩ)SF

✓
d�

d⌦

◆

mag

= 2

"✓
d�

d⌦

◆P||Q

SF

�
✓
d�

d⌦

◆P?Q

SF

#
e.g.



OSNS, 06/09/2019

2D XYZ polarization analysis
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In the case where we have a 2D detector, like in a powder diffractometer (e.g. D7), it 
is no longer possible to align Q and Pi for every detector. However:

Pi

Pi || x

x y

z

Magnetic

Spin incoherent

Nuclear

Q

1/3 : 2/3 1/3 : 2/3

1 : 0 1 : 0

(dσ/dΩ)NSF : (dσ/dΩ)SF

e.g.

Pi || y

Q

Pi

Pi || z ⟂ Q

Q

Pi

1/2 : 1/2

1/3 : 2/3

1 : 0

: 1/2(sin2α+1)1/2(cos2α) : 1/2(cos2α+1)

✓
d�

d⌦

◆

mag

= 2

✓
d�

d⌦

◆x

SF

+

✓
d�

d⌦

◆y

SF

� 2

✓
d�

d⌦

◆z

SF

�
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Examples: 2D XYZ PA
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This technique can be used to separate very small signals in magnetically 
disordered powders (scatter like paramagnets):

Frustrated magnets 

The analysis of the magnetic scattering cross section for
S2 and H3.28 shows clearly the presence of segregated MnO in
the ZnO matrix. In addition, a clear ferromagnetic behavior
was observed in the magnetisation measurements (Fig. 2). It is
therefore likely that ferromagnetism in these samples comes
from uncompensated surface spins on the MnO nanoparticles,
which has been observed in other studies.19,20

At 1.57% Mn2þ doping (Figure 4(c)), very weak and
narrow peaks are again observed at the same Q position.
Their intensity relative to the background is much lower than
for the higher doping, and would correspond to a MnO vol-
ume fraction in ZnO matrices of 0.06%. These peaks disap-
pear by 50 K, well below TN" 122 K for MnO, and their
peak width is smaller than the resolution, hence they may be
an artifact of the measurement, although the presence of a
small amount of bulk MnO cannot be excluded.

For Mn2þ dopings of 1.57% and below (Figs. 4(c)–4(e)),
the spectrum is dominated by diffuse form-factor-like scat-
tering, as expected for paramagnetic behavior. The cross
section of the more lightly doped samples H1.14 and H0.59

show only paramagnetic behavior in the measured Q range,
and were fitted with the Mn2þ form factor. Fig. 4(f) shows
the magnetic cross section for the pure ZnO sample, which
is zero as expected, providing a baseline for the other
measurements.

Within the assumption of paramagnetic behavior, the

Q¼ 0 amplitude of the magnetic cross section dr
dQ Q ¼ 0ð Þ

can be used to calculate the effective moment leff from
the spin-only equation for the magnetic cross section:21

dr
dQ ¼

2
3

cr0

2

! "2
N g2F2 Qð ÞS Sþ 1ð Þ. Mn2þ has 3d5 orbitals and

assumes a high-spin state with S ¼ 5
2. Taking into account

the Mn2þ concentration, Table II shows the Mn2þ effective
moment leff obtained from the form-factor fits of the lightly

doped samples. Broadly speaking, the values are close to the

expected lef f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2SðSþ 1Þ

p
¼ 5:92lB for Mn2þ.

Previous experimental results had placed Mn:ZnO in the
ferromagnetic phase of the magnetic phase diagram of the the-
oretical prediction mentioned in the introduction2 for doping
of 2.2% and for temperatures up to room temperature. This
theory suggests that the room temperature ferromagnetism
and other magnetic phase in DMS are caused by the coexis-
tence of defects and dopant cation at small doping. The band
created by the defects hybridizes with the d orbital of the dop-
ant, and the spin are polarised via Hund’s exchange.

However, from these polarised neutron scattering
results, we do not observe any spin glass or ferromagnetic
phase in Mn:ZnO, which implies that either the defect con-
centration is too low, that the polaron radius is not suffi-
ciently large, or that the bands are not close enough to
hybridize. In that context, we thus conclude that Mn:ZnO is
restricted to the paramagnetic region of the phase diagram
for all cluster-free doping percentages even at 2 K, at least in
the case of these synthesis methods.

While magnetisation measurements show clear evidence
for ferromagnetism in S2, the 2% doped sample grown by
the solid state method, neutron polarisation analysis, and
XRD measurements confirm that there is segregation of
manganese into MnO and MnO nanoparticles. On the other

FIG. 4. Magnetic cross section. Blue
stars correspond to k¼ 4.1 Å (DNS),
blue circles to k¼ 3.1 Å (D7), and
green diamonds to k¼ 4.8 Å (D7).
Panel a shows the solid state method
sample, while panels b-e concern the
decomposition of hydrozincite sam-
ples. Pure ZnO is shown in panel f.
The solid red line is a fit with Voigt
functions for the magnetic peaks, and
the Mn2þ forms factor for the para-
magnetic background.

TABLE II. Effective moment of Mn2þ obtained from the Q¼ 0 intercept of

the magnetic cross sections.

Mn2þ doping [%] Estimated leff [lB /atom] Q¼ 0 intercept

1.57 4.87 6 0.05 1:82 & 10–2 6 3:10' 4

1.14 4.91 6 0.05 1:35 & 10–2 6 3:10' 4

0.59 4.62 6 0.28 6:18 & 10–3 6 7:10' 4

252405-4 Lançon et al. Appl. Phys. Lett. 109, 252405 (2016)

Magnetic semiconductors

Is the RT ferromagnetism intrinsic?
No! Clusters at high concentrations.

Zn0.97Mn0.03O

Zn0.994Mn0.006O

Lancon et. al.

D7

67% reduction from the expected S ¼ 1 spin-only moment
displayed by Lu2Mo2O7 [20]. This suggests that spin-orbit
coupling is significant in both of these 4d systems.
Heat capacity of Lu2Mo2O7 was measured on a 9.0 mg

pellet in a Quantum Design physical property measurement
system (PPMS). The high temperature data were modeled
by the Debye equation [Fig. 1(a)] which gave a Debye
temperature θD ¼ 540 K. Upon subtraction of this esti-
mated lattice contribution, a broad hump centered ∼50 K is
observed in the magnetic heat capacity Cmag, typical of a
spin glass system. Heat capacity of the oxynitride was
measured on a 8.9 mg sample over 0.5–30 K using a 3He
insert. Given the similar structure and formula weight of the
oxide and oxynitride phases, the lattice contribution esti-
mated for Lu2Mo2O7 was also used to extract the magnetic
heat capacity of the oxynitride. A comparison of the low
temperature magnetic heat capacities of the oxide and
oxynitride are shown in Fig. 1(b). The temperature
dependencies are markedly different with Cmag ∝ T2 for
the oxide and Cmag ∝ T for the oxynitride.
Diffuse magnetic neutron diffraction was measured for

both pyrochlores on the D7 Spectrometer at the Institut
Laue-Langevin [28]. xyz polarization analysis was used
to separate the components of total neutron scattering
[29,30]. Data were collected with an incident wavelength
λ ¼ 4.8 Å, at which final energies are integrated up to
E∼ 3.5 meV. A detailed experimental account is given in
the Supplemental Material [22]. Figure 2 shows the
magnetic scattering cross sections ðdσ=dΩÞmag of the oxide
and oxynitride at 1.5 K, well below Tf ∼ 16 K. The
magnetic diffuse scattering from the oxide displays a broad
peak centered around 0.6 Å−1 that indicates the presence of
static short ranged molybdenum spin correlations, which
were modeled by [31],
!
dσ
dΩ

"

mag
¼ 2

3
ðγnr0Þ2

!
1

2
gFðQÞ

"
2

×
!
SðSþ 1Þ þ

X

i

ZihS0 · Sii
sinQri
Qri

"
; ð1Þ

where hS0 · Sii gives the correlation between a spin and its
Zi nearest neighbors at a distance ri. γn, r0, and g take their
usual definitions and FðQÞ is the molybdenum form factor
[32]. The best fit to the data (Fig. 2) was obtained
by allowing for nearest-(r1 ¼ 3.581 Å, Z1 ¼ 6) and
next-nearest-neighbor (r2 ¼ 6.203 Å, Z2 ¼ 12) correla-
tions hS0 · S1i ¼ −0.029ð6Þ and hS0 · S2i ¼ −0.056ð7Þ,
respectively. In contrast, the magnetic diffuse scattering
of the oxynitride at 1.5 K is much weaker than that of the
oxide and appears to follow FðQÞ2. These data were thus
modeled using Eq. (1) with hS0 · Sii ¼ 0 for all i [33]. The
fit is shown as the solid line against the oxynitride data in
Fig. 2. The effective magnetic moment extracted from
the fit to the data, 0.11ð1ÞμB , corresponds to only 6% of the
expected S ¼ 1

2 spin-only value, suggesting that most of the
scattering from the oxynitride is inelastic and thus outside
the energy range over which D7 integrates energy [34].
To probe their full static and dynamic behavior, both

samples were studied on the Cold Neutron Chopper
Spectrometer (CNCS) [35] at the Spallation Neutron
Source of the Oak Ridge National Laboratory.
Measurements were performed on cooling to 1.5 K with
an incident neutron energy Ei ¼ 3.3 meV. The inset of
Fig. 2 shows the elastic scattering from the oxide and
oxynitride at 1.5 K, obtained by integrating the inelastic
spectra over the energy of the elastic line,
E¼ ½−0.1; 0.1&meV. A broad peak at low Q is observed
for the oxide, which can again be modeled by Eq. (1). To
confirm the consistency of the analyses of the CNCS and
D7 data sets, a scaled version of the fit to the CNCS data is
plotted with the D7 fit in the main panel of Fig. 2;
agreement is excellent. Remarkably, the scattering col-
lected for the oxynitride at 1.5 K within the narrowly
defined elastic window on the CNCS is consistent with no
elastic magnetic scattering, as shown in the inset to Fig. 2.

FIG. 1 (color online). (a) Total heat capacity C of Lu2Mo2O7

(open circles) with the estimated lattice (dashed line) and
magnetic Cmag (closed circles) contributions. (b) The magnetic
heat capacities of the oxide and oxynitride phases.

FIG. 2 (color online). The magnetic scattering cross sections of
the both samples at 1.5 K. The solid lines are fits to the data. The
inset shows the elastic magnetic scattering measured on CNCS at
1.5 K. A scaled version of the fit of Eq. (1) to the CNCS oxide
data is shown on top of the D7 data (dashed line).

PRL 113, 117201 (2014) P HY S I CA L R EV I EW LE T T ER S
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Magnetic frustration destroys 
magnetic order, only short range order
Lu2Mo2O5N2: 6% of S = 1/2!

Clark et. al.
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XYZ LPA: Magnetic single crystals
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If the scattering is not paramagnetic-like, we’re back to having to consider the 
directions of Q, M, and Pi. This is usually the case for single crystals. 

Other complications we may encounter are the presence of nuclear-magnetic 
interference (Example 3), and chiral scattering for non-collinear structures:

If we can set x || Q, and if we use two flippers, it is still possible (in most cases) to 
separate all of the components (see Blume, Ressouche for the maths).

SF cross section || Q contains 
handedness
✓
d�

d⌦

◆Pi||Q

+�
/ |M?Pi

? |2 � PMchi

CW

Mchi < 0

CCW

Mchi > 0

Not visible in unpolarized!
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Example: non-collinear structure
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Cabrera et. al.
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Coupled magnetic and ferroelectric domains in multiferroic Ni3V2O8

I. Cabrera,1, 2 M. Kenzelmann,3 G. Lawes,4 Y. Chen,2 W. C. Chen,2 R. Erwin,2

T. R. Gentile,2 J. B. Leão,2 J. W. Lynn,2 N. Rogado,5 R. J. Cava,6 and C. Broholm1, 2

1Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
2National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA

3Laboratory for Developments and Methods, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
4Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA

5DuPont Central Research and Development, Experimental Station, Wilmington, Delaware 19880, USA
6 Department of Chemistry and Princeton Materials Institute,

Princeton University, Princeton, New Jersey 08544, USA
(Dated: January 11, 2014)

Electric control of multiferroic domains is demonstrated through polarized magnetic neutron
diffraction. Cooling to the cycloidal multiferroic phase of Ni3V2O8 in an electric field E causes the
incommensurate Bragg reflections to become neutron spin polarizing, the sense of neutron polar-
ization reversing with E. Quantitative analysis indicates the E-treated sample has handedness that
can be reversed by E. We further show close association between cycloidal and ferroelectric do-
mains through E-driven spin and electric polarization hysteresis. We suggest that definite cycloidal
handedness is achieved through magneto-elastically induced Dzyaloshinskii-Moriya interactions.

PACS numbers: 75.25.+z, 75.60.-d, 75.80.+q, 77.80.-e

Materials that are both ferroelectric and magnetic are
classified as multiferroics. In some multiferroics where
the ferroelectric and magnetic phases coexist, spin and
charge are strongly coupled, leading to the possibility of
controlling magnetic properties through an electric field
E. Such a nonlinear magneto-electric response is of fun-
damental interest and holds the potential for applications
that include sensing, spintronics, and microwave commu-
nication [1]. Recent studies have shown that an external
E applied to multiferroics with non-collinear spin struc-
tures, such as TbMnO3 and LiCu2O2, favors a particular
handedness of the magnetic order [2, 3]. Other studies
have shown the E control of domain population related
to equivalent magnetic propagation vectors [4]. Here we
examine the suppression and promotion of cycloidal mag-
netic structures in Ni3V2O8 (NVO) by an applied E. Our
quantitative analysis of the polarized magnetic diffrac-
tion cross-section and hysteresis curve for this multifer-
roic material indicates that a clockwise cycloidal single
crystal can be generated and is stabilized by magneto-
elastically induced Dzyaloshinskii-Moriya interactions.

NVO is an insulating magnet with spin-1 Ni2+ ions ar-
ranged in a buckled kagomé-staircase geometry [5]. The
spins occupy two distinct crystallographic sites denoted
cross-tie and spine [See Fig. 1 (a)]. Competing nearest
and next-nearest neighbor interactions along the spines
yield a complex magnetic phase diagram [6]. Magnetic
inversion symmetry breaking was inferred in the so-called
low-temperature incommensurate (LTI) phase, where un-
polarized neutron diffraction data indicate a magnetic
cycloidal structure with spins in the a-b plane and py-
rocurrent measurements find concomitant electric polar-
ization along the b axis. A Landau mean field theory
was previously devised to account for this multiferroic

FIG. 1: (Color online) (a) NVO crystal sublattice showing
Ni2+ spine (red) and cross-tie (blue) sites. (b) Counter-
clockwise (top) and clockwise (bottom) spin cycloids prop-
agating along the a axis. The (green) vertical arrow indicates
the direction of P.

behavior [5, 7, 8]. The free-energy expansion is

F = a(T − TH)σ2
H + b(T − TL)σ2

L + O(σ4)

+(2χE)−1P2 + V.
(1)

Here, a and b are constants, T is temperature, σH and
σL are the magnetic order parameters in the high-T in-
commensurate and LTI phases, respectively, χE is the
electric susceptibility, and P is the electric polarization.
The last term is the lowest order (trilinear) symmetry-
allowed multiferroic interaction, which in the LTI phase
is given by VLTI =

∑
γ aγσHσLPγ . Minimizing F with

respect to P, one finds that Pb = b̂ · P varies with T
in proportion to the product of the two magnetic order
parameters (Pb ∝ abχEσLσH), as observed experimen-
tally [9]. The theory also suggests that ferroelectric and
magnetic domains are coupled in NVO. Here we examine
this hypothesis by probing the magnetic and ferroelectric
response to an applied E in the multiferroic phase.

NVO crystals were grown from a BaO-V2O5 flux [6].
The buckled kagomé layers span the a-c crystallographic
plane and form the largest crystalline surfaces. A 0.58
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FIG. 2: (Color online) Full polarized magnetic diffraction in
an electric field under opposite spin-flip scattering conditions.
Statistical uncertainties represent one standard deviation. (a)
Cooling in a field E= +300 kV/m from 11 K to 5 K (E-
cooling) favors cycloidal domains that predominantly diffract
neutrons polarized antiparallel to Q. (b) Reversing E yields
the opposite polarized intensity asymmetry.

g, 120 mm3 crystal was selected for this experiment. A
parallel-plate capacitor was formed by evaporating a 5
nm Cr/40 nm Au layer on each large face of the crys-
tal, hence normal to the ferroelectric axis. Au wires were
attached to each side of the sample using silver epoxy
paste. Polarized neutron diffraction measurements were
carried out on BT-7 at NIST. A 14.7 meV neutron beam
was polarized and analyzed by 3He neutron spin filters
[10]. Helmholtz coils were used to generate a guide field
at the sample position, thus defining the neutron spin
quantization axis. In the vertical field (VF) configura-
tion the field strength was 0.4 mT, oriented normal to
the scattering plane to within 0.07 rad. In the horizon-
tal field (HF) configuration, the field strength was 0.8
mT, oriented within 0.1 rad of the horizontal plane and
parallel to wave vector transfer Q = ki − kf to within
0.2 rad. Mezei neutron spin-flippers were mounted be-
fore and after the sample, providing access to a total of
eight configurations for the incoming and outgoing neu-
tron spin. The nomenclature used is as follows: (+) refers
to a flipper off and (−) refers to a flipper on. With both
flippers off the neutron spin nominally points up for VF
and parallel to Q for the HF configuration.

HF spin-polarized diffraction data are shown in Fig.
2. There is a strong asymmetry in the intensity be-
tween the (+/−) and (−/+) spin-flipper configurations
which reverses with E. This demonstrates in a quali-
tative fashion the E-driven suppression and promotion
of cycloidal magnetic domains [11]. Examining the data
more carefully, we note that a finite peak remains under
the (+/−)[(−/+)] spin-flip scattering condition, even af-
ter cooling in a +300 [−300] kV/m field. Similar ef-

TABLE I: Spin components on Ni2+ spine (s) and cross-tie
(c) sites describing CW and CCW cycloids. The inversion
operator I converts a CW cycloid into a CCW as follows:
for α = a or c, I[mα

si] = ∓(mα
si)

∗ and for the b-component,
I[mb

si] = ±(mb
si)

∗ (upper sign for i = Γ1 and lower sign for
i = Γ4). For all cross-tie sites I[mci] = (mci)

∗. There are
six additional atoms in the conventional unit cell, obtained
by translating di by ( 1

2
, 1

2
, 0). Asterisks denote complex con-

jugation.

di mdi mdi

= (l, m, n) (CW) (CCW)

( 1
4
, -0.13, 1

4
) md1

= (ma
s1, mb

s1, mc
s1) + (ma

s4, mb
s4, mc

s4) (md3
)∗

( 1
4
, 0.13, 3

4
) md2

= (ma
s1, m̄b

s1, m̄c
s1) + (m̄a

s4, mb
s4, mc

s4) (md4
)∗

( 3
4
, 0.13, 3

4
) md3

= (m̄a
s1, mb

s1, m̄c
s1) + (ma

s4, m̄b
s4, mc

s4) (md1
)∗

( 3
4
, -0.13, 1

4
) md4

= (m̄a
s1, m̄b

s1, mc
s1) + (m̄a

s4, m̄b
s4, mc

s4) (md2
)∗

(0, 0, 0) md5
= (ma

c1, 0, 0) + (0, mb
c4, mc

c4) (md5
)∗

( 1
2
, 0, 1

2
) md6

= (m̄a
c1, 0, 0) + (0, m̄b

c4, mc
c4) (md6

)∗

fects have been seen in [2, 3], but have not been fully
accounted for. Note that, because the strong diffraction
cross-section is suppressed by both the incident and the
final beam 3He neutron spin filters, the residual inten-
sity cannot be accounted for by finite beam polarization.
Quantitative analysis of the polarized diffraction cross-
section is needed to account for this effect.

Within a single domain, the magnetic structure of
NVO in the LTI phase can be described as follows:

SRdi = mdie
iqm·(R+di) + md

∗
i e

−iqm·(R+di). (2)

Here, qm is the magnetic propagation vector, R is a vec-
tor from the origin to the unit cell, di are position vectors
for Ni2+ ions within the conventional unit cell, and mdi

transform according to irreducible representations of the
magnetic space group and specify the time-averaged mag-
netic moments on Ni2+ sites. In the LTI phase, where
electric polarization is present, the spin structure was
previously described by the Γ1 and Γ4 irreducible repre-
sentations with best fit basis vectors for spine and cross-
tie sites msi and mci, i = 1, 4 [7]. The resulting spin
structure is a clockwise (CW) cycloid, progressing along
a [see Fig. 1 (b)]. Spatial inversion is a symmetry op-
eration of the paramagnetic phase that converts a CW
cycloid into a counterclockwise (CCW) cycloid. The set
of complex mdi for CW and CCW cycloids are listed in
Table I. We expect that domains in NVO are associated
with these symmetry-related structures.

To quantitatively characterize the cycloidal domains,
we employed Blume’s equations for elastic scattering of
polarized neutrons [11]. The polarization-resolved differ-

Mchi < 0Mchi > 0

In the multiferroic Ni3V2O8, we can select handedness by applying an electric field: 
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Spherical polarimetry
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In some cases, crystal symmetry means that different magnetic structures look 
identical in LPA. This is a result of the projection onto the Pi (field) direction:

M⟂
Pi

Pf M⟂

Pi

Pf

In spherical polarimetry, projection avoided by placing sample in zero field, and 
carefully controlling Pi and Pf with fields and flippers (see Brown, Forsyth, Tasset).

In this case, LPA is insufficient, and we need to measure all components of the 
scattered polarization. This is achieved by performing spherical polarimetry
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Advanced polarized neutron scattering: 
Beyond (magnetic) diffraction
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PA beyond magnetic diffraction
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Figure 2 | Summary of the polarized neutron scattering data.
a–c,e–g, Energy dependence of the total, transverse and longitudinal
contributions to the dynamic structure factor, respectively, at constant
wavevectors q=(⇡ ,0) (a–c) and q=(⇡/2,⇡/2) (e–g) measured by
polarized neutron scattering on CFTD. The solid lines indicate
resolution-limited Gaussian fits, while the dashed lines are empirical
lineshapes used as guides-to-the-eye. d,h, Transverse dynamic structure
factor with subtracted resolution-limited Gaussian fits at (⇡ ,0) and
(⇡/2,⇡/2), respectively. Error bars correspond to one standard deviation.

(Fig. 2g). In contrast, the response at (⇡ , 0) exhibits a pro-
nounced high-energy tail, starting right above the peak maximum
at !/J =2.19(2), and extending up to !/J ⇡ 3.8. This tail carries
40(12)% of the total spectral weight at (⇡ , 0) (Fig. 2a), and is
evident in both the transverse (Fig. 2b) and longitudinal (Fig. 2c)
channels. To isolate the continuous component in the transverse
channel we subtract resolution-limited Gaussians corresponding to
sharp, single-particle responses, with the results shown in Fig. 2d,h.
This analysis reveals the important fact that the transverse contin-
uum at (⇡ , 0) is within error twice the longitudinal contribution
(Fig. 2d). Thus, we can conclude that the continuum at (⇡ , 0)
arises from correlations which are isotropic in spin space, with
S

?(q, !) = 2Szz(q, !), whereas by contrast the continuum con-
tribution at (⇡/2, ⇡/2) is fully contained in the longitudinal
channel (Fig. 2h).

The pronounced asymmetric and non-Lorentzian line shape of
the continuum at (⇡ , 0) cannot be accounted for by conventional
e�ects, even including instrumental resolution. SWT predicts that
magnon interactions transfer up to 20% of the transverse spectral
weight at the zone boundary from the sharp one-magnon peak
to a higher energy continuum of three-magnon states17. However,
the resulting line shape di�ers radically from our observations,
does not coincide with the longitudinal response, and does not
seem to depend significantly on the wavevector along the zone
boundary. Spontaneous magnon decays can in principle produce
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Figure 3 | Schematic representation of local spin flip and spatially
separated quasiparticle-pair excitations in the Gutzwiller-projected
approach. a, The mean-field wavefunction | MFi is shown as a
resonating-valence-bond liquid (for better visualization, all singlets are
shown as nearest-neighbour and the Néel order is ignored). Configurations
containing doubly occupied sites (right-hand side) are discarded by the
Gutzwiller projection PG. b, Local spin flips create triplets out of resonating
singlets. Configurations from | MFi originally containing doubly occupied
sites are still projected out (right-hand side). c, Non-local quasiparticle-pair
excitations are constructed as projected particle–hole excitations. At a
non-zero separation r, they contribute by annihilating a doubly occupied
site with a hole, leaving two separated spin ups. After projection, the only
configurations left are the ones constructed from | MFi that contained one
empty and one doubly occupied site (right-hand side).

an asymmetric line shape, but are prohibited in this case by the
collinearity of the magnetic order16,44. Instead, recent quantum
Monte Carlo work45 suggests looking for explanations of the contin-
uum contribution to the dynamic structure factor at (⇡ , 0) involving
the deconfinement of fractional excitations. This is further moti-
vated by the observed coexistence of sharp two-spinon bound states
with a broad multi-spinon continuum, at comparable energy ranges
but di�erent wavevectors, in the quasi-2D materials Cs2CuCl412,46
and LiCuVO4

47, made of strongly coupled Heisenberg chains.
To explore whether fractionalization of magnons can account for

the (⇡ , 0) anomaly in the QSLHAF, we use a theoretical approach
based on Gutzwiller-projected variational wavefunctions48,49. In this
approach, spin operators are transformed into pairs of S = 1/2
fermionic operators so that equation (1) becomes

H=� J
2

X

hi,ji,� ,� 0
c†
i� cj� c

†
i� 0ci� 0 +constant (2)

where c†
i� (ci� ) creates (annihilates) an electron with spin �

at site i. This transformation embeds the original spin Hilbert
space into an electronic Hilbert space which also contains non-
magnetic sites occupied by zero or two electrons. As a result,
equations (1) and (2) are only equivalent on the restricted
electronic subspace with half electron filling and no empty sites
or double occupancies. This constraint can be enforced exactly
by the so-called Gutzwiller projector PG. The advantage of this
approach is that pairs of fractional S=1/2 quasiparticles (for
the original spin Hamiltonian) can be naturally constructed
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remanence results from incomplete helices. Upon relaxing 
the field this suggests that the sample returns to its initial (as 
grown) phase or a nearly compensated non-collinear state. 
The in-plane loop shows a wasp-waisted feature, which can 
imply some coupling between magnetic phases with different 
coercivity. This is consistent with the anisotropy of the surface 
moments being weaker than the bulk.

The key aspect for the interpretation of the PNR is twofold. 
Firstly, that the Er retains a bulk like moment above 9 Bµ /atom 
and secondly, that this large moment is mostly compensated to 
give a low net average remanent moment.

This behaviour is quite different to its neighbour in the 
periodic table holmium, which in thin films saturates in-plane 
at fields of typically only 300 mT, after which the squareness 
of its hysteresis loop suggest a long-ranged ferromagnetic 
ordering takes over and spiral magnetism does not reform 
[18, 20]. This difference is most likely due to the c-axis crys-
talline anisotropy in the hcp structure being more important, 
or certainly being retained to a greater extent, in thin film Er.

Polarised neutron reflectometry

By measuring the neutron reflectivity as a function of the 
wavevector transfer and neutron spin eigenstate, PNR allows 
the scattering length density (SLD) to be obtained. Careful 
fitting to the two obtained reflectivity curves in PNR allows 
the extraction of depth dependent magnetisation. Structural 
information can also be extracted, but in this work the XRR 
model was imported as a starting point for the fit. PNR has 
been widely employed in the successful characterisation of 
spintronic materials [21].

Figure 4 shows the obtained PNR curves for the sample 
with the corresponding fit to each spin state. The structural 
properties were imported from the XRR fit and the magnet-
isation of each layer was a fitting parameter. Despite the  
in-plane saturation moment of the sample being high (con-
sistent with bulk), there appears to be very little splitting 
between the two spin states in the PNR data. This is also seen 
in the spin asymmetry (figure 5(a)) which is the difference 
between the two spin states normalised to their sum.

The sample was field cooled to a temperature 5 K in 
a 10 mT in-plane field needed to guide the neutrons. At 
this field and temperature, Er is expected to be in a highly 

non-collinear or spiral magnetic phase. It is not expected field 
cooling in such a small applied field will have an impact on 
the magnetic state of the Er. As fields much larger than the 
maximum available field on the beamline would be needed 
to change the magnetic state of the Er, the 10 mT applied 
field was maintained for the measurement. Atomic scale anti-
ferromagnetism is too short a lengthscale for neutron reflec-
tivity to probe, and as such is seen as net zero moment. In 
Er, however, the spiral repeat distance (equivalent to the anti-
ferromagnetic lengthscale) is several atomic layers long; this 
is still too short for full depth dependence, but allows some 
insight. The Er (as with most RE ferromagnets) is likely to 
contain chiral magnetic domains [22, 23]. The measurement 
technique employed in this work, however, will not be sensi-
tive to the chirality of the domains.

Two fitting techniques are employed on the data. The first 
technique treats the magnetic moment inside the Er layer as 
being constant with depth, and will return the average moment 
inside the Er (model 1). The second technique allows the 
moment to be a depth dependent free parameter (model 2). 
In both cases, positive magnetisation corresponds to moments 
pointing in the direction of applied field. For a saturated, 
ordered, ferromagnet both fitting techniques would return that 
the magnetisation of the entire layer is positive.

The spin asymmetry and results of the two fitting tech-
niques are presented in figure 5. The differences between the 
two models are too subtle to observe in the reflectivity data, 
and even in the spin asymmetry there are only very small 
differences at low Q. Notably at higher Q ( 0.08>  Å

1−
) the 

models begin to separate, with model 2 providing a closer fit 
in this region.

Model 1 (shown in figure 5(b)) returns a constant magnetic 
moment inside the sample of 0.3 B µ− /atom. This is far lower 
then the moment possessed by the individual Er atoms (over 
9  Bµ /atom). The returned moment is also negative. This solu-
tion is therefore likely a returned ‘average’ magnetisation due 
to an inhomogeneous magnetic state within the Er layer.

Model 2 (shown in figure 5(c)) returns a small total moment, 
but a large, oscillating, depth dependent internal moment. 
The oscillation between positive and negative magnet isation 
values returned from this fitting technique is a good approx-
imation for spiral magnetisation inside the Er layer. The 
average moment of this model (returned by integration) is 

Figure 5. (a) Spin asymmetry for the PNR data in figure 4 with two models (see text) for the magnetism in the Er layer. The magnetic 
depth profile for model 1 is plotted in (b) and model 2 in (c).

J. Phys.: Condens. Matter 29 (2017) 055801

Satchell J. Phys.: Condens. Matter
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Example: Inelastic scattering
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One of the most promising future applications is inelastic polarised neutron 
scattering on wide-angle inelastic spectrometers. 

D2O (LET, ISIS)

Arbe et. al.

Polarized neutrons allow for the separation of collective Scoh(Q,E) and single-
particle dynamics Sinc(Q,E). This has resulted in a revision of the model for 
the dynamics in water.
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• Polarized neutron beams interact with magnetic moments (both 
nuclear and electronic) in samples. The scattered polarization and 
cross section depends on the type of scattering process 
(nuclear coherent, spin incoherent, or magnetic). 

• Polarized neutron beams can therefore be used to:

• Separate cross section components

• Determine magnetic moment orientations

• Access parts of the cross section inaccessible to 
unpolarised neutrons

• Polarized neutron beams can also be used to improve the resolution 
of neutron scattering (A. Faraone)
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DevicesBasic theory
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LPA: Moon, Riste, Koehler Phys Rev. 181 (1969) 920

Multiferroic Ni3V2O8: Cabrera et. al. Phys. Rev. Lett. 103 (2009) 087201

Theory

Examples

Instrumentation

Polarimetry: Brown, Forsyth, Tasset, Proc. Roy. Soc 442 (1969) 147

D7 and 2D XYZ: Stewart et. al. J. Appl. Cryst. 42 (2009) 69

2D XYZ: Schärpf and Capellmann, phys. stat. sol. a 135 (1993) 359

LPA+Polarimetry: Ressouche Collection SFN 13 (2014) 02002  

LPA: Moon, Riste, Koehler Phys Rev. 181 (1969) 920

LPA: Blume, Phys. Rev. 130 (1963) 1670

Ionic liquids: Burankova J. Phys. Chem. B 118 (2014) 14452

Frustrated magnet Lu2Mo2O5N2: Clark et. al. Phys. Rev. Lett. 113 (2014) 117201 

Magnetic semiconductor Mn:ZnO: Lancon et. al. Appl. Phys. Lett. 109 (2016) 252405

Polarimetry: Tasset, Physica B 267 (1999) 69
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Take-home message
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Polarized neutrons can be used to enhance (nearly) any 
neutron scattering experiment, either by providing 

additional information (this lecture), or improving the 
resolution or range using Larmor precession (A. Faraone) 


