

Neutron Instrumentation

Oxford School on Neutron Scattering 5th September 2019

Summary

- Neutron instrument concepts
 - time-of-flight
 - Bragg's law
- Neutron Instrumentation
 - guides
 - monochromators
 - shielding
 - detectors
 - choppers
 - sample environment
 - collimation
- Neutron diffractometers
- Neutron spectrometers

The time-of-flight (TOF) method

$$\frac{\cos\theta}{\cos\theta'} = \frac{v_1}{v_2} = \frac{n'}{n} = n'$$

$$\frac{\cos \theta}{\cos \theta'} = \frac{v_1}{v_2} = \frac{n'}{n} = n'$$

$$\theta' = 0: \text{ critical angle of total reflection } \theta_c$$

$$\frac{\cos \theta}{\cos \theta'} = \frac{v_1}{v_2} = \frac{n'}{n} = n'$$

$$\theta' = 0: \text{ critical angle of total reflection } \theta_c$$

$$\begin{cases} cos\theta_c = n'/n = n' \\ n' = 1 - \frac{N\lambda^2 b}{2\pi} \\ cos\theta_c \approx 1 - \theta_c^2/2 \end{cases} \Rightarrow \theta_c = \lambda \sqrt{Nb/\pi}$$

$$\frac{\cos \theta}{\cos \theta'} = \frac{v_1}{v_2} = \frac{n'}{n} = n'$$

$$\theta' = 0: \text{ critical angle of total reflection } \theta_c$$

$$\begin{array}{l} cos\theta_{c} = n'/n = n' \\ n' = 1 - \frac{N\lambda^{2}b}{2\pi} \\ cos\theta_{c} \approx 1 - \theta_{c}^{2}/2 \end{array} \} \Rightarrow \theta_{c} = \lambda\sqrt{Nb/\pi}$$

for natural Ni,

$$\theta_{c} = \lambda [\text{Å}] \times 0.1^{\circ}$$
 $Q_{c} = 0.0218 \text{ Å}^{-1}$

$$Q_{c} = 0.0218 \text{ Å}^{-1}$$

Courtesy of J. Stahn, PSI

Courtesy of J. Stahn, PSI

Neutron Supermirrors

Courtesy of J. Stahn, PSI

Neutron Supermirrors

Neutron Supermirrors

State-of-the-art Supermirrors

State-of-the-art Supermirrors

Neutron guides

Background Reduction

Guides can be used to reduce background

- Distance:
 - move away from fastneutron source ~ 1/R²

Background Reduction

Guides can be used to reduce background

Distance:

 move away from fastneutron source ~ 1/R²

Curved Guides:

- avoid direct line-of-sight
- avoid gammas
- avoid fast neutrons

Guides can also be used to increase flux

Converging guide increases flux, but increases divergence

Shielding

- Shielding functions:
 - allow safe operation
 - keep background down
 - reduce activation
- Radiation components:
 - Slow neutrons
 - Fast neutrons
 - Gammas

Shielding: radiation units and numbers

Unit	Description
Curies	Decay rate: 3.7×10 ¹⁰ Bq (decays/s)
Gray	Energy dose: J/kg
Sievert	Biological effect of radiation

Roentgen, rad	d, rem –	legacy units
---------------	----------	--------------

Average Person	Dose
Radon	2 mSv/year
Cosmic	0.28 mSv/year
Terrestrial	0.28 mSv/year
Internal	0.4 mSv/year
Medical x-rays	0.39 mSv/year
Nuclear medical	0.14 mSv/year
Consumer products	0.1 mSv/year
Other	0.03 mSv/year
Total	3.62 mSv/year

Source: Günter Muhrer, Los Alamos, New Mexico

Examples	Dose
Dental x-ray	10 μSv
Abdominal CAT scan	10 mSv
Airline flight crew members	10 mSv/year
50% probability of death	5 Sv
Neutron experimental halls	< 3 μSv/hour

Slow neutrons

- easy to absorb (few mm B, Cd, Gd, ..)
- emit gammas when absorbed
- easily detected

Fast neutrons

- can require several m of material for absorption
- alternatively, thermalise using hydrogenous material (e.g. wax or polyethylene) then absorb
- both require multiple (10s) of collisions
- visualise as a gas, filling both solids and air
- difficult to detect

Gammas

WISH @ ISIS-TS2

- high-energy photons
- absorbed by any material
- absorption length scales inversely with density: Pb 11.3 kg/m³, steel 7.9 kg/m³, concrete 2.4 kg/m³

Diffractometers

- Measure structures (d-spacings)
- Very general method:
 - crystals
 - powders
 - polycrystalline materials
 - liquids
 - large molecules or structures
 - surfaces
- Ideal diffractometer:
 - measure k_i of each incident neutron
 - measure $\mathbf{k_f}$ of the same neutrons

Diffractometers

- Measure structures (d-spacings)
- Very general method:
 - crystals
 - powders
 - polycrystalline materials
 - liquids
 - large molecules or structures
 - surfaces
- Real diffractometer:
 - measure $\mathbf{k_i}$ or $\mathbf{k_f}$ of the beam
 - time-of-flight
 - Bragg diffraction
 - assume $k_i = k_f$

Powder diffractometers

- Measure crystal structure using Bragg's law
 - Rietveld refinement
- Large single crystals are rarely available

$$Q = \frac{2\pi}{d} \qquad \lambda = 2d\sin\theta$$

Polycrystal

Time-of-flight (TOF) Method

Time-of-flight (TOF) Method

Time-of-flight (TOF) Method

Time-of-flight Resolution

Time-of-flight Resolution

$$d = \frac{\lambda}{2\sin\theta}$$

$$(\Delta d)^2 = \left(\frac{\partial d}{\partial \lambda} \Delta \lambda\right)^2 + \left(\frac{\partial d}{\partial \theta} \Delta \theta\right)^2$$

To improve the resolution:

- increase the length: long guide
- move to a sharper moderator
- reduce the beam divergence

$$\Delta \lambda [\text{Å}] = \Delta t [\text{ms}] \times 3.956 / L[\text{m}]$$

time

Crystal Monochromators

Graphite 002

	d-spacing
Germanium 333	1.089 Å
Copper 200	1.807 Å
Silicon 111	3.135 Å
Graphite 002	3.355 Å

Copper 200

Pulsed source time structures (λ=5Å)

Pulsed source time structures (λ=5Å)

Constant-Wavelength Diffraction

- Powder diffraction
 - chemical crystallography
 - disordered materials
 - engineering: strain scanning
- Single-crystal diffraction
 - magnetic ordering
 - diffuse scattering
 - large unit cells protein crystallography
- Small Angle Neutron Scattering (SANS)
 - soft matter macromolecules in solution
 - nanomaterials
- Reflectometry
 - surfaces and interfaces
 - both planar and in-plane structures

Sample environment

neutron penetration: good

sample volume: bad

range as varied as the science

magnetic fields

- low temperatures
- high temperatures
- pressure cells (TiZr)
- sample changers
- stress rigs
- in-situ chemistry
- flow cells
- Langmuir troughs

– ...

EUROPEAN SOURCE

Neutron Spectroscopy

- Excitations: vibrations and other motions
 - lattice vibrations
 - magnetic excitations
 - quasi-elastic scattering: diffusion & relaxation

Neutron Spectroscopy

- Excitations: vibrations and other motions
 - lattice vibrations
 - magnetic excitations
 - quasi-elastic scattering: diffusion & relaxation
- Ideal spectrometer:
 - measure $\mathbf{k_i}$ of each incident neutron
 - measure $\mathbf{k}_{\mathbf{f}}$ of the same neutrons

Neutron Spectroscopy

- Excitations: vibrations and other motions
 - lattice vibrations
 - magnetic excitations
 - quasi-elastic scattering: diffusion & relaxation
- Real spectrometer:
 - measure \mathbf{k}_{i} and \mathbf{k}_{f} of the beam
 - time-of-flight
 - Bragg diffraction
 - Larmor precession
 - Fix k_i and scan through k_f "direct geometry"
 - Fix k_f and scan through k_i "indirect geometry"

Chopper Spectrometers

Neutron Choppers

Disk choppers

f < 300 Hz

 $\Delta t > 10 \mu s$

- General-Purpose Spectrometers
 - Incident energy ranges from 1meV to 1eV
- Huge position-sensitive detector arrays
 - Single-crystal samples

Detectors

³He gas tubes

 $n + {}^{3}He \rightarrow {}^{3}H + {}^{1}H + 0.764 MeV$

>1mm resolution

High efficiency

Low gamma-sensitivity

³He supply problem

Scintillators

 $n + {}^{6}Li \rightarrow {}^{4}He + {}^{3}H + 4.79 MeV$

<1mm resolution

Medium efficiency

Some gamma-sensitivity

Magnetic-field sensitivity

Detectors

¹⁰B detectors

n + ${}^{10}B \rightarrow {}^{7}Li + {}^{4}He + 0.48 \text{ MeV}$ massive development programme none yet in operation many different types

boron layer thickness limited to \sim 1 μ m => \sim 5% efficiency

perpendicular blades

$$\vec{Q} = \overrightarrow{k_i} - \overrightarrow{k_f}$$

$$\vec{Q} = \overrightarrow{k_i} - \overrightarrow{k_f}$$

$$E = \frac{p^2}{2m} = \frac{\hbar^2 k^2}{2m}$$

$$\vec{Q} = \vec{k_i} - \vec{k_f}$$

$$E = \frac{p^2}{2m} = \frac{\hbar^2 k^2}{2m}$$

$$\frac{\hbar Q^2}{2m_n} = E_i + E_f - 2\sqrt{E_i E_f} \cos 2\theta$$

Direct-Geometry Kinematics

Alternative to Direct Geometry

fix k_f – usually by analyser crystals scan through k_i by time-of-flight

Indirect-Geometry Kinematics

Vibrational Spectroscopy

TOSCA@ISIS

Density-of-states measurements

High Resolution 1: Backscattering

$$\frac{\lambda = 2d \sin \theta}{\Rightarrow \frac{\Delta \lambda}{\lambda} = \frac{\Delta d}{d} + \cot \theta \Delta \theta}$$

$$\theta \to \frac{\pi}{2}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta} \to 0$$

Use single crystals in as close to backscattering as possible to define k_f .

Scan through k_i with as good energy resolution.

Backscattering

OSIRIS@ISIS PG002 25μeV

High Resolution 2: Neutron Spin Echo

- Single-crystal excitations
- Very flexible
- Measures a single point in \vec{Q} -E space at a time
- Scans:
 - Constant \overrightarrow{Q} : Scan E at constant $\mathbf{k_i}$ or $\mathbf{k_f}$
 - Constant E: Scan $\,\mathcal{Q}\,$ in any direction

Collimation

TAS E and Q resolution adjusted by collimation

Collimation

- TAS E and Q resolution adjusted by collimation
- SANS resolution also adjusted by collimation

IN20 flat-cone multi-analyser

Neutron Imaging

Summary

- Neutron instrument concepts
 - time-of-flight
 - Bragg's law
- Neutron Instrumentation
 - guides
 - monochromators
 - shielding
 - detectors
 - choppers
 - sample environment
 - collimation
- Neutron diffractometers
 - powder diffraction
- Neutron spectrometers
 - direct and indirect geometry time-of-flight
 - backscattering
 - triple-axis
 - spin-echo
- Imaging

Thank you!

