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Summary

• Neutron instrument concepts
– time-of-flight
– Bragg’s law

• Neutron Instrumentation
– guides
– monochromators
– shielding
– detectors
– choppers
– sample environment
– collimation

• Neutron diffractometers
• Neutron spectrometers
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The time-of-flight (TOF) method
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for natural Ni, 

θc = λ[Å]×0.1°

Qc = 0.0218 Å-1
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Neutron Supermirrors
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Neutron Supermirrors
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State-of-the-art Supermirrors
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Mirrotron



State-of-the-art Supermirrors

21

Mirrotron

Swiss Neutronics



WISH @ ISIS

Neutron guides

Swiss Neutronics guides for NIST



Distribution by GuidesNeutron Guides: 
Creating space for instruments 



Background Reduction

• Distance:
– move away from fast-

neutron source ~ 1/R2

Guides can be used to reduce background



Background Reduction

• Distance:
– move away from fast-

neutron source ~ 1/R2

• Curved Guides: 
– avoid direct line-of-sight
– avoid gammas
– avoid fast neutrons

Guides can be used to reduce background



Focusing
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Converging guide increases flux, 
but increases divergence

Guides can also be used to increase flux



Shielding

• Shielding functions: 
– allow safe operation
– keep background down
– reduce activation

• Radiation components:
– Slow neutrons
– Fast neutrons
– Gammas

27



Shielding: radiation units and numbers

Unit Description

Curies Decay rate: 3.7×1010 Bq (decays/s)

Gray Energy dose: J/kg

Sievert Biological effect of radiation

Roentgen, rad, rem – legacy units
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Average Person Dose

Radon 2 mSv/year

Cosmic 0.28 mSv/year

Terrestrial 0.28 mSv/year

Internal 0.4 mSv/year

Medical x-rays 0.39 mSv/year

Nuclear medical 0.14 mSv/year

Consumer products 0.1 mSv/year

Other 0.03 mSv/year

Total 3.62 mSv/year
Source: Günter Muhrer, Los Alamos, New Mexico

Examples Dose

Dental x-ray 10 μSv

Abdominal CAT scan 10 mSv

Airline flight crew members 10 mSv/year

50% probability of death 5 Sv

Neutron experimental halls < 3 μSv/hour
× 2000 hours: < 6 mSv/year

ISIS-TS2



Shielding: slow & fast neutrons
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slow epithermal fast

• Slow neutrons
– easy to absorb (few mm B, Cd, Gd, ..)
– emit gammas when absorbed
– easily detected

• Fast neutrons
– can require several m of material for 

absorption
– alternatively, thermalise using 

hydrogenous material (e.g. wax or 
polyethylene) then absorb

– both require multiple (10s) of 
collisions

– visualise as a gas, filling both solids 
and air

– difficult to detect
• Gammas

– high-energy photons
– absorbed by any material
– absorption length scales inversely 

with density: Pb 11.3 kg/m3, steel 7.9 
kg/m3, concrete 2.4 kg/m3

cold   thermal

ESS Target Monolith: 11m diameter

WISH @ ISIS-TS2
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Diffractometers

• Measure structures (d-spacings)
• Very general method:

– crystals
– powders
– polycrystalline materials
– liquids
– large molecules or structures
– surfaces

• Ideal diffractometer: 
– measure ki of each incident neutron
– measure kf of the same neutrons

33
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Diffractometers

• Measure structures (d-spacings)
• Very general method:

– crystals
– powders
– polycrystalline materials
– liquids
– large molecules or structures
– surfaces

• Real diffractometer: 
– measure ki or kf of the beam

• time-of-flight
• Bragg diffraction

– assume ki = kf
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Powder diffractometers

Polycrystal

θλ sin2d=
d

Q π2
=

• Measure crystal structure using Bragg’s law
– Rietveld refinement

• Large single crystals are rarely available
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To improve the resolution:
• increase the length: long guide
• move to a sharper moderator
• reduce the beam divergence



WISH @ ISIS TS2

Time-of-flight (TOF) Method



Copper 200Graphite 002

d-spacing
Germanium 333 1.089 Å
Copper 200 1.807 Å
Silicon 111 3.135 Å
Graphite 002 3.355 Å

Crystal Monochromators



Pulsed source time structures (λ=5Å)
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Pulsed source time structures (λ=5Å)
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D1B @ ILL

Constant-Wavelength Diffraction

Rietveld refinement

2θDebye-Scherrer cone



The Diffractometer Family

• Powder diffraction
– chemical crystallography
– disordered materials
– engineering: strain scanning

• Single-crystal diffraction
– magnetic ordering
– diffuse scattering
– large unit cells – protein crystallography

• Small Angle Neutron Scattering (SANS)
– soft matter – macromolecules in solution
– nanomaterials

• Reflectometry
– surfaces and interfaces
– both planar and in-plane structures
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Sample environment

• neutron penetration: good
• sample volume: bad
• range as varied as the science 

– magnetic fields
– low temperatures
– high temperatures
– pressure cells (TiZr)
– sample changers
– stress rigs
– in-situ chemistry
– flow cells
– Langmuir troughs
– …
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ILL adsorption trough

ISIS Cryomagnets

SNS pressure cell

ILL 15mK dilution cryostat



Neutron Spectroscopy

• Excitations: vibrations and other motions
– lattice vibrations
– magnetic excitations
– quasi-elastic scattering: diffusion & relaxation
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Neutron Spectroscopy

• Excitations: vibrations and other motions
– lattice vibrations
– magnetic excitations
– quasi-elastic scattering: diffusion & relaxation

• Ideal spectrometer: 
– measure ki of each incident neutron
– measure kf of the same neutrons

49
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Neutron Spectroscopy

• Excitations: vibrations and other motions
– lattice vibrations
– magnetic excitations
– quasi-elastic scattering: diffusion & relaxation

• Real spectrometer: 
– measure ki and kf of the beam

• time-of-flight
• Bragg diffraction
• Larmor precession

– Fix ki and scan through kf – “direct geometry”
– Fix kf and scan through ki – “indirect geometry”
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distance

time

chopper

detector

sample

0

Direct geometry: 
fix ki by chopper phasing
scan through kf by time-of-flight

Chopper Spectrometers



Disk choppersFermi choppers

f < 300 Hz

Δt > 10μs

f < 600 Hz

Δt > 1μs

Neutron Choppers



• General-Purpose Spectrometers
– Incident energy ranges from 1meV to 1eV

• Huge position-sensitive detector arrays
– Single-crystal samples

Chopper Spectrometers



3He gas tubes
n + 3He 3H + 1H + 0.764 MeV
>1mm resolution
High efficiency
Low gamma-sensitivity
3He supply problem

Scintillators
n + 6Li 4He + 3H + 4.79 MeV
<1mm resolution
Medium efficiency
Some gamma-sensitivity
Magnetic-field sensitivity

Detectors



10B detectors
n + 10B 7Li + 4He + 0.48 MeV
massive development programme
none yet in operation
many different types

Detectors

inclined blades

perpendicular blades
boron layer thickness limited to ~ 1 μm

=> ~ 5% efficiency



Direct-Geometry Kinematics
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Direct-Geometry Kinematics
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Direct-Geometry Kinematics
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Direct-Geometry Kinematics
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Indirect geometry: 
fix kf – usually by analyser crystals
scan through ki by time-of-flight

analyser

Alternative to Direct Geometry



Indirect-Geometry Kinematics
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Vibrational Spectroscopy
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TOSCA@ISIS

Density-of-states measurements
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Use single crystals in as close to backscattering as 
possible to define kf. 
Scan through ki with as good energy resolution. 

High Resolution 1: Backscattering



Backscattering

BASIS@SNS Si111 3μeV

OSIRIS@ISIS PG002 25μeV



ϕ

θ

B0 B1

L0 L1

Pz

π-flipper

High energy resolution < 1 μeV

Larmor precessions encode energy transfer

High Resolution 2: Neutron Spin Echo



• Single-crystal excitations
• Very flexible
• Measures a single point 

in      -E space at a time
• Scans: 

– Constant       : Scan E at 
constant ki or kf

– Constant E: Scan      in 
any direction

Q


Q


Q


Triple-Axis Spectrometers



Collimation

• TAS E and Q resolution adjusted by collimation

Soller collimator



Collimation

• TAS E and Q resolution adjusted by collimation
• SANS resolution also adjusted by collimation
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Soller collimator

Pin-holes separated by distance

> 0.1°5 cm 5 cm< 30 m



TAS with multiplexing

Top view

sample

31 channels
75º angular range

kf = 3 Å-1 kf = 1.5 Å-1

Side view

IN20 flat-cone multi-analyser



Neutron Imaging

70
neutron x-ray



Summary

• Neutron instrument concepts
– time-of-flight
– Bragg’s law

• Neutron Instrumentation
– guides
– monochromators
– shielding
– detectors
– choppers
– sample environment
– collimation

• Neutron diffractometers
– powder diffraction

• Neutron spectrometers
– direct and indirect geometry time-of-flight
– backscattering
– triple-axis
– spin-echo

• Imaging
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Thank you!

725th June 2015
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