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 Neutrons and atomistic simulations – why ? 

 Potential Energy – how to calculate it 

 Potential Energy Surface (PES) – how to 
explore it 

 Single point energy (SPE) calculations 

 Geometry optimisation (GO) 

 Lattice dynamics (LD) 

 Molecular dynamics (MD) 



 Short range interaction with nuclei  no 
atomic form factor, quantified by scattering 
length b 

 Neutron energy (E): 1 – 1000 meV 

 Neutron wavelength (): 0.5 – 25 Å (E81/ 2) 

 Neutron magnetic moment probes magnetic 
structure and excitations of unpaired electrons 
in matter 



 Elastic scattering: ki=kf, (k=2p/λ), Ei=Ef 

 Quasielastic scattering : ki ≈ kf, Ei ≈ Ef 

 Inelastic scattering : ki<>kf, Ei<>Ef 
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r(t): atom trajectories  from Molecular Dynamics 



d

wj and ej from Lattice Dynamics 



• Probe nuclear (not electron) positions 

• In Q and w (or t) space 

• Time (<1ms) and length (<100nm) scales 

• Measure ‘directly’ structure, diffusion and 

excitations 

• No selection rules (cf. IR/Raman) 

• Neutron magnetic moment probes magnetic order 

and excitations 



• Can simulate nuclei and electrons or just nuclei 

• In real space (r, t): FT → (Q, w) 

• Time (<1ms) and length (<100nm) scales match 

NS experiments 

• Calculate structure, diffusion and excitations 

• Electronic calculations probe magnetic order and 

excitations 





Ab initio;  

<10 atoms 

DFT;  

<103 atoms 

Force fields;  

< 106 atoms 

Mesoscale; 

 >106 atoms 

precision 

cpu time, #atoms 

(#parameters/approx.) 

Nobel prizes for DFT (1998) and classical MD (2013) 



 Density Functional Theory (Hohenberg, Kohn, Sham) 

 Eks[r(x)] = T[r(x)] + Ees[r(x)] + Eext[r(x)] + Exc[r(x)] 

 where r(x) =( *) is position-dependent, electron 

density ( linear scaling) 

 r(x) constructed from localised orbitals (H-atom or 
Gaussian) or plane waves for periodic systems  

 But Exc unknown - LDA, GGA functionals 

 Corrections for long-range dispersive (VDW) interactions 

 Scaling: N (linear)  N2 - N3 

 

 Practical limits:  

 ~500 atoms for one calculation, 200-300 atoms if many 
calculations have to be performed 

 Timescale: ~50 ps from ~20 000 simulation steps 

 



Practical limits: 

< 106 atoms 

depending on 

number of 

simulations  

(composition, P, 

T, ...) 

Timescale: 100 

ns on 105 atoms + - 

E= 

Ks(l-l0) + 

Kb( -0) +  

Kt(w -w0) + 

(cross terms +) 

a/r12-b/r6 + 

qiqj/Dr (+ 

hydrogen bonds etc) 







 Energy calculations and mapping 
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Li 
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Spin density of LiFePO4 in the a-c 
plane 





 Stable & metastable structures – finding 
them 

E 

X 

+ 
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 Energy  minimum 

 Forces  0 (±d) 

 Determines crystal structure if starting model 
is ‘good’ 

 May need to explore PES more 
thoroughly/widely using eg. MD or Monte 
Carlo methods to find global minimum 

 Removes ‘close contacts’ before a MD 
simulation 



Ideal structure; 

lattice parameters and Bi, Nb 
positions from X-ray 
diffraction,  

oxygen positions to be 
obtained from neutron 
diffraction 

Initial structure has 
undistorted oxygen lattice 

Primitive cell contains 174 
atoms (~2500Å3), 25 
inequivalent O atoms 

But … 

Rietveld refinement does not work starting 
From ideal structure 



VASP-optimised structure gives better starting  
structure for refinement Only 3 cycles of Rietveld refinement are required! 



Small amplitude vibrations  

E 

X 



 Small amplitude dynamics (vibrations) about 
minima of the potential energy surface 

 Hessian is matrix of inter-atomic force constants 
(FC) 

 Dynamical matrix introduces atomic masses (m) 
and wavevector (Q) – it is a generalisation of 
solving the equations of motion for a monatomic 
chain 

 DMij(Q) = FCij.exp[iQ(ri-rj)]/√(mimj) 

 Eigenvalues and eigenvectors of DM give Q-
dependent vibration frequencies (squared) and 
displacement vectors 





 Strong Ga 
displace-
ment 

 But Kagome 
triangles 
rock and 
drive 
relaxation 

 Contrast 
with G point 
modes 



 Kinetic energy to explore all (thermally 
accessible) degrees of freedom 

kT 

X 



 Exploring small and large amplitude motions 
in the PES 

 Simple equations intelligently implemented 

 F  a=F/m  r’=r+v.dt & v’=v+a.dt  

 Initial velocities from requested temperature 

 Smv2/2=3kT/2 

 Total time = n.dt 

 Potential & kinetic energy will exchange 
resulting in a new temperature 

 Thermostat: NVE  NVT 

 Barostat:     NVT  NPT 



Temperature 



 Time-averaged structure – S(Q,w=0), S(Q)=I(Q,t=0) 

 Vibrational density-of-states – FT of the velocity auto-
correlation function 

 I(Q,t) & S(Q, w): coherent and incoherent 

 Intensity-weighted dispersion relations from supercell 
simulations – excitations must be commensurate with 
simulation box 

 Diffusion constants 

 Disorder: dynamic or static? 

 Normal modes from principle component analysis 

 … 





LD – DFT, ~100 atoms, 

harmonic approx. 
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c) 

c = 14.458 Å 

b = 12.342 Å 



MD – FF, 106 atoms, 

anharmonic and T effects 
LD – DFT, ~100 atoms, 

harmonic approx. 
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 Monte Carlo methods 
may be better for 
exploring the PES 

 Random displacement 

 ACCEPT if DE <= 0 

 P=exp(-DE/kT) if DE > 
0, then ACCEPT if P > 
random no. 

 

E 

X 







 DFT is much more accurate (unless FF is 
determined from DFT specifically for a 
composition/T/P/etc) and transferable than 
FF methods 

 DFT  determines electronic & spin structure 

 DFT  allows  bond breaking/formation – 
chemical reactions 

 DFT is 106 (103 in space & 103 in time) times 
‘slower’ than FF methods 



 Both DFT and FF can be used – the choice 
depends on the size of the system and what 
is of interest 

 SPE: Mapping 

 GO: Find minima – (meta-) stable structures 

 LD: Lattice dynamics (vibrations) – harmonic 
approximation (minimise + mapping) 

 MD: Molecular dynamics – anharmonic 
contributions and temperature 

 



 Ground state structures including magnetic 

 Time averaged, liquid-like structures – S(Q) 

 Relaxation processes via QENS – S(Q,w) or 
I(Q,t) 

 Quantum excitations from PES & solving 
Schroedinger’s equation 

 Vibrational density of states 

 Dispersion relations (LD) and phonon lifetimes 
(MD) 



 More accurate electronic methods for 
magnetic systems 

 Approximate electronic methods to bridge 
the gap in time and length scales between 
DFT and FF methods 

 Coarse grain (mesoscale) methods to explore 
comformation space of large (polymer, 
membrane, protein,…) systems 

 Refining potentials against experimental data 



PES near Grenoble  



Further reading… 

Presentations from MDANSE schools at ILL in 2012 & 2014 

http://www.ill.eu/en/html/instruments-support/computing-for-science/modelling/mdanse-2012/ 

http://www.ill.eu/en/html/instruments-support/computing-for-science/modelling/mdanse-2014/ 

 

Proceedings of SFN French Neutron School 2010 on simulations: 

http://www.neutron-
sciences.org/index.php?option=com_toc&url=/articles/sfn/abs/2011/01/contents/contents.html 


