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A.   Coherent and Incoherent Scattering 
 

 
A1 
(1) Hydrogen. bcoh is derived by averaging the scattering length over 
the states with parallel and antiparallel neutron–nucleus spin states, 
Eq. (B2), 
 

𝑏coh = 𝑏 = 𝑤+𝑏+ +𝑤−𝑏− 
 

The weights are given by Eq. (A1): w+ = (I+1)/(2I+1) and w– 
= I/(2I+1).  Setting I = ½ we have w+ = ¾ and w– = ¼.  From Table 
A1, 
 
 𝑏!"# =

!
!
10.85 + !

!
−47.5     fm 

 
   = –3.74 fm 
 
The coherent scattering cross section is given by Eq. (A3), 
 
 𝜎!"# = 4𝜋𝑏!"#!   
             
   = 1.75 b    (1 b = 10–28 m2) 
 
The total cross section is obtained by summing the weighted values of 
the spin states of the combined nucleus-neutron system, Eq. (A4): 
 
  𝜎!"! = 4𝜋 𝑤! 𝑏! ! + 𝑤! 𝑏! !  
 
    = 81.6 b 
 
Finally, the incoherent scattering cross section is the difference 
between 𝜎!"! and 𝜎!"#, 
 
 𝜎!"# = 𝜎!"! − 𝜎!"# 
 
     = 79.9 b 
 
(1) Deuterium. For  we have from Eq. (A1), 𝑤! = 2

3 and 
𝑤! = 1

3.  From the data in Table A1, and the formulae above, 
 
   bcoh = 6.67 fm 
 
   σcoh = 5.6 b 

I =1
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   σtot = 7.6 b 
 
   σinc = 2.0 b 
A2 
In this example the incoherent scattering is mainly isotopic in origin, 
but there is a small contribution from the spin. 
The coherent scattering length is the weighted average of the 
scattering lengths of the different isotopes, Eq. (A2): 
 

𝑏coh = 𝑏 =    𝑐𝑟(𝑤𝑟+𝑏𝑟
+ +𝑤𝑟−𝑏𝑟

−)
𝑟

 

 
Using Table A1a below we have: 
 
   bcoh = 10.34 fm 
 
The coherent scattering cross section is given by Eq. (A3), 
 
    𝜎!"# = 4𝜋𝑏!"#! = 4𝜋𝑏! 
 
      = 13.43 b 
 
The total scattering cross section is given by Eq. (A4), 
 
 𝜎!"! = 4𝜋 𝑐!! 𝑤!! 𝑏!! ! + 𝑤!! 𝑏!! !  
where, 
 𝑤!! =

!!!!
!!!!!

    and    𝑤!! =
!!

!!!!!
   

 
Hence,                      σtot = 18.50 b 
 
Finally, from Eq. (A5), 𝜎!"# = 𝜎!"! − 𝜎!"#, we find that 
 
   σinc = 5.09 b 
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Table A.2a. 
       

isotope, r 
         

 
    spin Ir 𝑐! (𝑤!!𝑏!!) 

    (fm) 

 
𝑐! (𝑤!!𝑏!!) 
      (fm) 

 
𝑐! 𝑤!! 𝑏!! ! 
        (b) 

 
𝑐! 𝑤!! 𝑏!! ! 

(b) 
      
     58 0 9.835 0 1.416 

 
0 

     60 0 0.73 0 0.020 
 

0 

     61 3/2 0.031 0.052 0.132 
 

0.595 

     62 0 -0.31 0 0.027 
 

0 

     64 0 - 0.004 0 0.000 0 
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B.  Time-of-Flight Powder Diffraction 
 

 
B1. 
 
(a)  The expression  

 
 
follows from the relations 
 

 
 

 
 
Where v is the neutron velocity. 
  
From the values of h and mn on page 1 we get  

t (μsecs) = 251.9 × λ (Å) × L (m) (B1a) 
 
(b)  In Bragg scattering from lattice planes HKL of spacing dHKL the 
wavelength of the scattered radiation is given by 
 

λ = 2dHKL sinθ    (B2a) 
 
where 2θ is the scattering angle.  Putting L = 100 m into eqn. (B1a) 
and θ = 85° into eqn. (B2a) gives 
 
    t (μsecs) = 5.019 × 104 dHKL  (Å) (B3a) 
 
Perovskite has a primitive cubic lattice, so that the first three Bragg 
reflections (corresponding to the longest times-of-flight) are 100, 110  
and 111.  The d-spacing is related to the lattice constant  by 
 
 
 
Therefore; d100 = 3.84 Å, d110 = 2.72 Å and d111 = 2.22 Å.    

 

Substituting into eqn. (B3a) we find that 
       t100 = 193 ms, t110 = 137 ms and t111 = 111 ms.    

 
(c)  Combining eqns. (B3a) and (B4a) gives: 
 

t ∝ (H2 + K2 + L2)-1/2                     (B5a) 
 

a0

t =
⇣mn

h

⌘
�L

L = vt

� =
h

mnv

dHKL = a0

�
H2 + K2 + L2

��1/2 (B4a) 
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B2.   
 
(a) The Structure Factor FHKL, or the amplitude of the scattering into 
the HKL Bragg reflection by the atoms in one unit cell, is given by: 
 
 
 
Here bn is the scattering length of the nth nucleus in the cell, xn yn zn  are 
its fractional coordinates.  The sum is taken over all atoms in the unit 
cell. 
 
In the diamond structure of silicon there is a basis of two silicon atoms 
at  
 
0,0,0 and ¼,¼,¼ 
 
and this basis is distributed at each of the face-centred-cubic lattice 
points: 
 
0, 0, 0; ½, ½, 0; ½, 0, ½; 0, ½, ½  
 
There are therefore 8 atoms in the unit cell, with fractional coordinates 
  
(0, 0, 0; ½, ½, 0; ½, 0, ½; 0, ½, ½)              for n = 1 to 4 
 
and                            
 
¼,¼,¼ +  (0, 0, 0; ½, ½, 0; ½, 0, ½; 0, ½, ½)  for  n = 5 to 8 
 
Inserting these coordinates into eqn. (B6a) gives: 

 
 
 

 
 
 
This then can be written, 

  

 
 
If H, K and L are mixed odd or even numbers, then the term in the first 
{} bracket is zero.  (2 out of the 3 exponential terms is -1, the third is 
+1) 
 

F(HKL) =

X

n

bn exp [i2⇡(Hxn + Kyn + Lzn)] (B6a) 

F(HKL) = bSi

n

1 + ei⇡(H+K) + ei⇡(H+L) + ei⇡(K+L)

+ ei ⇡
2 (H+K+L) + ei ⇡

2 (3H+3K+L)

+ ei ⇡
2 (3H+K+3L) + ei ⇡

2 (H+3K+3L)
o

F(HKL) = bSi

n

1 + ei⇡(H+K) + ei⇡(H+L) + ei⇡(K+L)
o

⇥
n

1 + ei ⇡
2 (H+K+L)

o (B7a) 
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(b)  A further restriction on the indices of the Bragg reflections is 
imposed by the second bracket {} in eqn. (B7a).  If ½(H+K+L) is 
even, this bracket is equal to 2; if ½(H+K+L) is odd, the bracket is 
zero. 
 
 
(c)    
(i) The possible values of HKL for the f.c.c. lattice are shown in Table 
C.1a.  
 
Table B1a   
Sums of three squared integers/ Miller indices. 
 
    
H2+K2+L2 / HKL 

 

 
H2+K2+L2 / HKL 

 

 
H2+K2+L2 / HKL 

 

 
H2+K2+L2 / HKL  

          3* 111           12* 222         21         32* 440 
          4* 200           13         22         33 
          5           14         24* 422         34 
          6           16* 400         25         35* 531 
          8* 220           17         26         36* 600/442 
          9           18         27* 511/333         37 
        10           19* 331         29         38 
        11* 311           20* 420         30         40* 620 
 
 
(ii)  The forbidden reflections are: 200, 222, 420, 600/442 
 
(iii)  The overlapping reflection is: 511/333  
 
 
(d)  Putting L = 96.8 m into eqn. (B1a) and θ = 45.4° into eqn. (B2a) 
gives 
 

t (ms) = 34.724 dHKL (Å)  (B8a) 
 
 
 
111 is the Bragg peak with the longest flight time.  The next peak is 
220 (200 is forbidden). Thus 220 is peak no 2 in Figure B1.  Using the 
information in section (c) the remaining peaks are readily indexed (see 
Table B2a below).  
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Table B2a 
    
 

time of flight 
(ms) 

d-spacing HKL H2+K2+L2 a0 = dHKL × 𝐻! + 𝐾! + 𝐿! 

      
1            109.232 3.146 111 3 5.44903 
2              66.912 1.927 220 8 5.45038 
3              57.066 1.643 311 11 5.44921 
4              47.320 1.363 400 16 5.45200 
5              43.424 1.251 331 19 5.45298 
6              38.636 1.113 422 24 5.45256 
7              36.426 1.049 511/333 27 5.45076 
8              33.457 0.964 440 32 5.45321 
9              31.991 0.921 531 35 5.44871 
10 
 

             29.923 
            

0.862 620 40 5.45177 

 
Taking the mean of the lattice constant calculated from the peaks – 
excluding the first peak – we get for the lattice constant of Si. 
 
     a0 = 5.45106 Å 
 
The calculation from the first peak is slightly out due to a higher order term 
in the time-of-flight to d-spacing conversion.  This comes about due to the 
fact that the total flight path of the neutron is related to the wavelength.  In 
general, short wavelength neutrons will penetrate further into the sample 
than long wavelength neutrons, and so the total flight path therefore 
becomes a function of both 2θ and λ.    
 
Observed times-of-flight of reflections may be noticeably different from 
those expected from the expression C8a, especially at longer d-spacings 
(which are measured with neutrons of longer wavelength, where absorption 
is greater). Emprically, it is found that a quadratic dependence provides a 
good description of the shifts in the reflection positions. 
 
In GSAS for example, each diffraction bank is characterised by three 
constants.  DIFC (which is the constant 251.9 × Lsinθ that we calculated 
above), DIFA – proportional to d2 and ZERO, which accounts for any 
offset in the measured timing of the data acquisition system.  Altogether 
this gives 
 
  t (μsecs) = 251.9 × DIFC dHKL (Å) + DIFA d2

HKL (Å2) + ZERO (C9a) 
 
These diffractometer constants are fixed by the instrument parameters, and 
should not be refined. 
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B3.   
 
(a) Bragg’s Law is λ = 2d sin θ  

Differentiating with d with respect to theta 

 
 
(b) since λ =h t / m L we can substitute this into Bragg’s Law to give 

 
Therefore, since d is linear in the distance L, the relative uncertainties in d 
and L will be equal.  
 
(c)  ΔL = 0.02 m, therefore: 
 i) L = 10 m for a d-spacing resolution of 2 × 10-3 

 ii) L = 40 m for a d-spacing resolution of 5 × 10-4 

 
POLARIS and HRPD roughly follow these lengths.  The actual lengths are 
longer – esp. for HRPD – due to other contributions to the d-spacing 
resolution being added in quadrature.  The most important of these is the 
time-resolution of the moderator.  
 
  

�d

�✓
=

�

2

cos ✓

sin

2 ✓

) �d

d
= cot ✓�✓

d =
ht

2mnL sin ✓
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C. Single-Crystal Diffraction 

 
C1.   
 
(i)  From the relation λ = h/(mnv) we get 
 
 λ (Å) = 3.956 / v (km s-1). 
 
Putting v = 2.20 km s-1  gives    λ = 1.8 Å. 
 
(ii)  Similarly from Ε = ½mnv2 we obtain  E = 25.3 meV. 
 
(iii)  The X-ray energy is given by: 
 
 𝐸!!!"# = ℎ𝜈 = !!

!
 

 
with ν the frequency of the X-rays and c the velocity of light. 
Putting c = 3 × 108 ms-1 gives 
 
 E = 6.9 keV 
 
(iv)  The velocity of a neutron with this energy is 
 

 𝑣 = !!
!!

!
! 

 
therefore,  v = 1150 km s-1 

 
 
We see then that thermal neutrons have both wavelengths suitable for 
studying atomic structures in the 1-100 Å range and energies suitable 
for studying coherent excitations (such as phonons or magnons) in the 
meV range.  (Fast neutrons have too short a wavelength and are too 
energetic for either purpose.)  
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C2 
 
(i).  The wavelength of the reflected beam is 
 
 λ = 2d111 sinθ  
 
where d111 = a0 / √3 .  Thus sinθ = 1.8 / 5.7 and the scattering angle is 
 
 2θ = 36.8° 
 
(ii).  The wavelength spread is derived by differentiating Bragg's with 
respect to θ 
 
 !!

!
= cot 𝜃.Δ𝜃 

Putting Δθ = 0.2° (= 0.0035 rad.) gives ,  so that  for λ = 

1.8 Å we get 
 
 Δλ  = ± 0.018 Å  
 
Note that this spread of wavelengths is much larger than the natural 
width of characteristic X-ray lines, and so Bragg peaks obtained with 
neutrons will not be as sharp as X-ray peaks. 
 
 
 

Δλ
λ

= 0.0105
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C3 
 
Figure C1a shows the reciprocal lattice in the  plane, together 
with the Ewald circles passing through the reflections (630) and (360).   
 

  
 
Figure C1a.  The Ewald circles for the (630) and (360) reflections.  A 
is the centre of the circle for (360) and B is the centre of the circle for 
(630). 
 
We can consider the crystal to be stationary and the incident beam to 
turn between the directions AO  and BO  in the Figure.  During 
this rotation the area swept out in reciprocal space is the shaded 
region.  The number of reciprocal lattice points in this region, i.e. the 
number of Bragg reflections, is approximately 13. 
  
C4 
 
Figure C2a shows the Ewald circles drawn for the two extreme 
wavelengths.  The observable reflections are those lying in the shaded 
area lying between the two circles.  For a primitive unit cell there are 
no systematically absent reflections, and so the number of possible 
reflections is about 40. 
 

a*b*

000

020

040

060

200 400 600

G360

ki

kf

A
kf

ki

B

G630

O

→ →

a* 

b* 
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Figure C2a The Ewald construction showing the reflection circles for 
the minimum wavelength (maximum radius) and the maximum 
wavelength (minimum radius).   
 
C5 
(i)  The intensity of the (00L) reflection is proportional to the square 
of the structure factor; 

 
    

 
Where the sum is over the atoms in the unit cell of the crystal.  
Therefore the structure factor for the (00L) reflection is; 
 

 
 

I(00L) is 
therefore proportional to the square of this expression. 
 
(ii) For the (005) reflection, we can substitute the scattering lengths to 
find 
 
 
and therefore 
 

000

020

040

200 400 600
a* 

 b* 

F(HKL) =

X

n

bn exp [i2⇡(Hxn + Kyn + Lzn)]

F(005) = 5.25 + 3.30� 5.81 = 2.74

I(005) / |F(005)|2 = 7.51

F(00L) = bBa exp [0] + bTi exp [i⇡L] + bO exp [0] + 2bO exp [i⇡L]

= bBa + (�1)

LbTi +

⇥
1 + 2(�1)

L
⇤
bO
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For the distorted case we have the structure factor; 
 
 
 
 
 
where δn = 0 for the Ba atoms, +δ for the Ti atoms, -δ for the O 
atoms, and L = 5.  Writing this out in full as before, we have 
 
 
Assuming small displacements, we can expand the exponential terms 
to first order, giving 
 
 
 
and therefore 
 
 
 
Since the Bragg peak intensity increases by 74% due to the distortion, 
we can write 
 
 
 
 
 
 
[remember that this is the distortion expressed as a fraction of the 
lattice constant] 
 
(iii) For the X-ray case, the structure factors are proportional to  
 
 
 
 
so now the ratio of the intensities becomes 
 
 
 
 
 
So the increase in intensity of the (005) reflection is only 1.9% 
compared to the undistorted structure.  This is due to a number of 
factors, including the greater sensitivity of neutrons to oxygen atoms, 
the negative scattering amplitude of the Ti, and the fact that the X-ray 
structure factor is dominated by the Ba atom, which does not move 
under the distortion. 

I�
(005)

I(005)
=

7.51 + 81796�2

7.51
= 1.74

) 10891�2 = 0.74
) � = 0.0083

I�
(005) / |F �

(005)|2 = (2.74 + i286�)(2.74� i286�)

= 7.51 + 81796�2

F �
(005) = 56� 22(1 + i10⇡�)� 8(1� i10⇡�)

= 26 + i440�

F(005) = 56� 22� 8 = 26

I�
(005)

I(005)
=

676 + 193600�2

676

= 1 + 286⇥ (0.0083)2

= 1.019

F �
(005) =

X

n

bn exp [i2⇡L(zn + �n)]

=

X

n

bn exp [i2⇡Lzn] exp [i2⇡L�n]

F �
(005) = bBa � bTi exp(i10⇡�)� bO exp(�i10⇡�)

F �
(005) = bBa � bTi(1 + i10⇡�)� bO(1� i10⇡�)

= 2.74 + i286�
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D.  Incoherent Inelastic Scattering 

(with a Pulsed Neutron Spectrometer) 
 

 
D1.   
 
(i) The elastic peak in Figure D3a occurs at the time of flight t ≈ 
63.7 ms. The total flight path is 36.41m +1.45m=37.86m, and so the 
neutron velocity is vn = 594.3 m/s. 
 
The energy selected by the analyser crystal is  
  
     2

nvn2
1 mEn =  = 1.843 meV 

 
(ii) Bragg’s Law is λ= 2d002sinθ. First, we need to calculate the 
wavelength of the neutrons. Using 
   

n/mhn =nvλ  
 
λn = 6.68Å, such that θ  = 85.6° 
 
(iii) The advantage of using a high take-off angle 2θ ≈ 170° is that 
the wavelength band reflected by the analyser is then relatively small 
[such that the contribution to the resolution (cot θ x	
  Δθ)	
  tends to zero]. 
 
D2.   
 
(i) Figure D2 shows the monitor spectrum after the second 
chopper. The fastest neutron enters at 52.2ms and the slowest at 
72.2ms. The distance they have to travel from the moderator is 36.41-
0.355 = 36.055 m. Thus the chopper is letting through neutrons 
travelling at speeds between 499.4 m/s and 690.7 m/s. 
 
Using nvn/mhn =λ gives an incoming wavelength band of 5.73Å and 
7.92Å. 
 
(ii) The energy of these neutrons is then: 
 

2
nvn2

1 mEn =  = 2.496 meV and 1.302 meV 
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We know that the energy selected by the analyser crystal is 1.843 
meV, so then the energy transfer possible will be: 
 
ΔEmax = Ei-Ef = 2.496 - 1.845 = 0.651 meV 
ΔEmin = Ei-Ef = 1.302 - 1.845 = - 0.543 meV 
 
(iii) Neutrons that have gained energy will arrive at the detector at a 
later time than the elastically scattered neutrons, whereas the neutrons 
that have lost energy will arrive at the detector at an earlier time. This 
might sound counterintuitive but it is because of the inverted geometry 
of the instrument.  
 
So for example, the fastest neutron of wavelength 5.73 Å and velocity 
690.7m/s will arrive at the sample at 52.71 ms.  If it is reflected by the 
analyser it means that upon interaction with the sample it has changed 
its speed to 594.3 m/s, ie. it has slowed down. Thus it will take 2.44 
ms to travel from the sample to the detector. So this neutron will reach 
the detector at t =52.71+ 2.44 = 55.15 ms (earlier than the elastically 
scattered neutrons which arrive at 63.7 ms). 
 
In a direct geometry instrument the opposite happens, neutrons that 
have gained energy will arrive at the detector earlier than the 
elastically scattered neutrons, and neutrons that have lost energy will 
arrive later.  
 
So the inelastic peaks in Figure D3b are at t = 60.95 ms for the 
energy loss and at 66.89 ms for the energy gain. 
 
(iv) The neutron that has gained energy must have arrived at the 
sample at 66.89 – 2.44 = 64.45 ms, with a velocity of v = 36.41 
m/64.45 ms = 564.93 m/s, i.e an energy of E = 1.666 meV.  
 
The neutron that has lost energy must have arrived at the sample at 
60.95 – 2.44 = 58.51 ms, with a velocity of v = 36.41 m/64.45 ms = 
622.29 m/s, i.e an energy of E = 2.021 meV.  
 
So the energy transfer is +/- 0.178 meV. 
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Figure D1a.  IRIS spectrum of an ionic liquid at 4K (same as Figure 
D3) 
 
(v) The intensity is influenced by the Bose factor n(E) which gives the 
number of phonons which exist at a given energy E and temperature 
T: 

n(E) =
1

exp E
kBT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −1

 

      . 
For neutron-energy loss the intensity is proportional to [1 + n(E)], 
whereas for neutron-energy gain it is proportional to n(E). At low 
temperatures n(E) tends to zero and only scattering with neutron 
energy loss ('down scattering') is possible. There is always a greater 
possibility, at any temperature, that neutrons will be scattered with 
energy loss. 
 
In this case the Bose-factor n(E) = 1.45 (assuming the sample is at 4 
K) resulting in a ratio of peak intensities of 0.6 (energy gain peak / 
energy loss peak) 
 
 
 
 

Neutron 
Energy Loss 

Neutron 
Energy Gain 



 17 

D3 
 
(i) The first chopper is used to select the wavelength band and the 
second to remove frame overlap. 
 
(ii) To look at larger energy transfers we would have to open up our 
incoming wavelength band. There are several ways we could do this: 
a. Run the choppers at a slower speed (multiple of 50Hz) to open 
up the window. For example we could use 25Hz, but we would have 
to count twice as long. 
 
b. Run the choppers at the same speed but phase them to let the 
higher energy neutrons in and use the PG004 (higher energy 
reflection) reflection from the analyser crystals. When you use higher 
energy neutrons you need to consider two extra things – a worsening 
of the resolution and possibly a change in incident neutron flux. On 
IRIS the resolution changes from 17.5ueV to 54.5ueV going from 002 
to 004, and the loss in flux is around 20%.  
 
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
 
 
 
 
Figure D2a.  Incident monitor spectrum from the ISIS TS1 hydrogen 
moderator showing the distribution of neutrons for IRIS (and OSIRIS) 
as a function of incoming wavelength. 
 
 
Case (a) 
Running a symmetric window at 25Hz gives an opening of 40ms and 
we know that the centre is at 63.7ms which is for the elastically 
scattered neutrons at 6.66 Å. Thus we want the detector window to be 
43.7ms to 83.7.  

3.33Å 6.66Å 
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         Min Elastic Max 
Tof (ms) at detector 37.86m       43.7  63.7  83.7 
Wavelength (Å)       4.57  6.66  8.74 
Energy (meV)      3.92  1.84  1.07 
ΔE (meV)       2.08    -0.77 
The choppers would then need to be set at opening and closing times 
of: 
           Min  Max 
Tof (ms) at first chopper at 6.3m        7272  13928 
Tof (ms) at second chopper at 10m     11542  22108 
 
Case (b) 
Choppers should be run at 50Hz and the time window at the detector 
is still 20ms but we need to open the choppers at different times to let 
different energy neutrons through. We had calculated before that the 
004 reflection is for 3.33 Å neutrons that would be scattered 
elastically and arrive at the detector at 31.87ms. So, following a 
similar procedure: 
 
         Min Elastic Max 
Tof (ms) at detector 37.86m       22.0  31.87  42.0 
Wavelength (Å)       2.30  3.33  4.39 
Energy (meV)      15.48 7.38  4.25 
ΔE (meV)       8.1              -3.13 
 
The choppers would then need to be set at opening and closing times 
of: 
 
           Min  Max 
Tof (ms) at first chopper at 6.3m        3663  6992 
Tof (ms) at second chopper at 10m     5814  11099 
 
(iii) One could choose a different analyser crystal that could reflect 
at difference d-spacings. In fact on the empty side of the instrument 
we have a Mica crystal bank that allows us to look at the 002, 004 and 
006 reflections: which are at 0.207meV, 0.826meV and 1.86meV. But 
here you have to consider the change in the resolution and also the 
intensity (incident flux due to change in wavelength PLUS reflectivity 
of the crystals). 
 

Energy ΔE (meV)  E Res(ueV)  Intensity 
Mi002 0.207  +/-0.022        1.2  0.04 
Mi004 0.826  +/- 0.2           4.5  0.15 
Mi006 1.86  +/- 0.5  11  0.40 
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E.  Coherent Inelastic Scattering 
(with a Three-Axis Spectrometer) 

 
E1.   
 
The allowed points have HKL indices, which are all odd or all even. 
See Figure E1a. 
 
E2.   
 
The relation between neutron energy E and neutron wave number k is 
 
    E (meV) = 2.072 [k (Å-1)]2 
 
Putting Ei

min = 3 meV and Ei
max = 14 meV gives 

 
    ki

min = 1.2 Å-1 and ki
min = 2.6 Å-1   

 
Since k = 2π / λ, ki

min corresponds to the maximum wavelength  
λi

max= 5.2 Å, and ki
max to the minimum wavelength λi

max= 2.4 Å 
 
 
E3 
 
(i) We have Q220 = 2π / d220 = √8(2π / a0) so that  Q220 = 3.20 Å. 
 
Figure F1a shows the vectors ki, kf and Q for the 220 reflection. 
 
(ii) Setting ki = kf in the scattering triangle equation;  

Q2 = ki
2 + kf

2 -2kikf cosφ 
we get 
    φ = 2 sin-1 (Q/2ki) 
 
and so   φ = 76 ° 
 
(iii) In the case of elastic scattering the scattering angle φ is twice the 
Bragg angle θB 
 
E4. 
 
See  Figure  E1a. 
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Figure E1a.  Reciprocal lattice construction for 220 Bragg scattering 
and for inelastic scattering by the transverse acoustic [00L] phonon. 
 
E5. 
 
The vector Q2 2 0.4 (Figure F1a) has a magnitude of 
 

Q2 2 0.4 = (2π / a0) × √(4 + 4 + 0.16) = 3.228 Å-1 

 
We have Ei

max = 14 meV and ΔE = 3 meV.  Hence for neutron energy 
loss Ef = 11 meV and for neutron energy gain Ef = 17 meV. Using eqn. 
(E4) we get: 
 kf = 2.304 Å-1 for energy loss and kf = 2.864 Å-1 for energy gain.  
From eqn. (E2) we then have: 
 φ = 82.1° (energy loss) and φ = 72.2° (energy gain).  
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E6. 
 
The resolution is best for small , i.e. for energy loss.  In Figure E1a 
the vectors ki and kf are drawn for this configuration. 
 
E7. 
 
(i) At 300K: n(E) = 8.1 for energy gain and  n(E) + 1 = 9.1 for energy 
loss. 
 
At  0K: n(E)=0 for energy gain and  n(E) + 1 = 1 for energy loss. 
 
(ii)  Thus it doesn't make much difference at 300K whether one works 
in energy gain or in energy loss, but at low temperatures one must 
work in energy loss. 
 
 
E8. 
 
No. Not with this value of the incident wavelength.   
We have  

Q440 = 2Q220 = 6.46 Å-1 

 

ki + kf = 4.904 Å-1 in energy loss, and ki + kf = 5.464 Å-1 in energy 
gain.  Hence ki + kf < Q and it is impossible to close the scattering 
triangle (Figure E2) in either case.   
 
E9. 
 
Since potassium is cubic, the dispersion relationship shown in Fig. F9 for q || to 
(001) also apples to q || to (100).  The LA mode (longitudinal acoustic) will have 
a higher frequency for a given q than the TA (transverse acoustic) mode (due to 
Hooke’s Law – transverse modes cause less longitudinal displacement than 
longitudinal modes). 
 
Q = [2.5 0 0] is equivalent to Q = [0 0 0.5].  Therefore, reading from the plot 
gives the phonon energy for the LA [0.5 0 0] as ~ 1.8 THz, and for the TA [0.5 0 
0] as ~ 1.6 THz. 
 
The final energy is fixed at Ef = 3.5 THz, so for neutron energy loss 
   Ei = 3.5 + 1.8 = 5.3 THz = 22.1 meV (LA) 
   Ei = 3.5 + 1.6 = 5.1 THz = 21.2 meV (TA) 
 

k f
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F.  High resolution spectroscopy 
(TOF, backscattering and Spin-Echo) 

 

F1. 
(i) E = ½*m*v2   and v = L/t 
 E = ½*m*(L/t)2 
 
 Differentiating… ΔE = ½*m*L2*(-2)*t-3*Δt 
 Dividing ….  ΔE/E = [½*m*L2*(-2)*t-3*Δt]/[ ½*m* L2*t-2] 
    ΔE/E = 2Δ t/t 
(ii) First we need to calculate the energy of the 6.27 Å neutron.  
    

E (meV) = 81.81/λ2 (Å) = 2.08 meV 
 Thus   ΔE/E = 1/2080 = 4.805 x 10-4 
 and   Δ t/t = ½*ΔE/E = 2.403 x 10-4 
 
(ii) The contribution to the resolution in the case of the moderator pulse 
uncertainty is then: 
 
 Δt/t = Δtmod/t = 120us/t 
 
Remembering that the velocity of a 6.68 Å was 594.3m/s and the distance 
to the sample was 36.41m, so that the time of arrival at the sample is t = 
36.41/594.3 = 61265µs. Then, 
 
 Δt/t = Δtmod/t = 120us/61265us = 1.96 x 10-3 
 ΔE/E = 2 Δt/t = 3.92 x 10-3 
 ΔE = 3.92 x 10-3 x 1.843 meV = 7.2 µeV 
 
In its present state, IRIS could never reach a resolution of 1 µeV 
because the primary contribution is already 7µeV. 
 
Ways to improve the resolution is include: 
 
(a) Make the length of the instrument much longer  

 
For ΔE/E = 1/1843 = 5.426 x 10-4 = 2 x 120 us/t  
Thus t = 442,315 us, and so L ≈  263 m!! 
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(b) Reduce the moderator pulse width by adding a so-called pulse 
shaping chopper. If we stick to the IRIS length of 36.41m, we would 
need a pulse width of: 

   
For ΔE/E = 1/1843 = 5.426 x 10-4 = 2 x Δtmod/61265 µs 
Thus Δ tmod = 16.6 µs  

 
(iv) First calculate the velocity of a 6.27Å neutron. We know that the 

energy is 2.08 meV, thus: 
 
E = 2.08 x 1.6 x 10-22 (J/meV)= ½*1.675 x 10-27*v2 
and so v = 630.4m/s 
 
The arrival time is then t = 100/630.4 = 0.159 s 
So, for ΔE/E = 4.805 x 10-4, Δt/t = 2.4 x 10-4, Δ t = 38.2 µs  
 

(v)  We need to calculate the flight path difference which will be:  
 

      (lα-l)* N 

where N is the number of reflections  along 
the flight path. 
 

First find an expression for (lα-l). Look at the right angled triangle 
formed.  
 

  cos α = l/lα,  (lα-l) = (l/cos α)-l = l*[(1/cos α)-1] 
  Thus ΔL =  (lα-l)* N = N*l*[(1/cos α)-1] 
  Thus ΔL/L = N*l*[(1/cos α)-1]/N*l = [(1/cos α)-1] 
  Since L = v*t, ΔL/L = Δt/t at constant velocity. 
  In our case, α = 0.1°*2*6.27 = 1.254° 
  So ΔL/L = 2.396 x 10-4 = Δt/t and thus ΔL = 2.4cm.  
 
(vi) To keep the 1ueV resolution we can allow a time uncertainty of ΔtCH2 

= 38.2us for a 6.27Å neutron just like we calculated in part (iv) 
because CH2 is positioned at L = 100m.      
Mechanically, the chopper opening time is defined as ΔtCH2 = 
(β/360)/f, where β is the chopper window angular opening and 
(β/360) is called the duty cycle which equals the fraction of neutrons 
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transmitted by the chopper. A typical value of the duty cycle is 0.01. 
Calculate the chopper frequency needed to achieve the chopper 
opening time calculated before. 
 
f = (β/360)/ ΔtCH2 = 0.01/38.2 x 10-6 = 261.8 s-1  
f ≈  262 Hz = 15720rpm 
(1Hz = 60 rpm)  

 
F2. 
(vii) Starting from the relationship between energy and wavelength: 
 
      E = 81.81/λ2 
 Differentiating gives …  ΔE = -2*81.81∗Δλ/λ3 

 Dividing gives …   ΔE/E = 2 Δλ /λ   
  
(viii) Starting from Bragg’s Law: 
 
 Bragg’s Law says that  λ = 2d sin θ 

Differentiating gives  Δλ = 2 Δd sin θ + 2d cos θ.Δθ 
Dividing gives  Δλ /λ  = Δd/d + cot θ .Δθ  

  
The idea is to minimise the contributions to the energy resolution so 
at the backscattering condition of θ=90, the cot θ.Δθ term 
disappears. 
 
(a)        ΔE/E = 2 Δλ/λ = 2 (Δd/d + Δθ2/8) 

  For Si(111):  ΔE/E = 2 Δλ/λ = 2 (1.86 x 10-5) = 3.72 x 10-5 
  For PG(002): ΔE/E = 2 Δλ/λ = 2 (2 x 10-3) = 4 x 10-3 

 
(b)  

  
 
 
 
γ = tan-1 (2/164) = 0.7° = 0.7 x π/180 = 0.0122 rad 
Δλ/λ ~ (0.01222)2/8 = 1.86 x 10-5 
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F3. 
(ix) tNSE = ħγBL/(mnvn

3)  
     tNSE = (1.06 × 10-34 *1.832 x108 * 0.25)/1.675 x 10-27*(630.4)3 
    tNSE = 11.6 ns   
 
(x) ENSE = h/ tNSE = 4.136/11.6 = 0.36 ueV 
 
(xi) Lower flux at longer wavelengths and the Q-range will change since 

Q=4πsinθ/λ.
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G.  Small Angle Scattering 
 
 
 

G1. 
(a) RG = −3  ×𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 
 
Therefore, if the gradient given in Figure G2 is taken: 
 
RG = −3  ×−172.62 
 

RG = 22.75 Å 
 
b) To check for concentration based inter-particle effects and aggregation.  
 
 
G2. 
a)  
 
(i) Formula for monomers is C13H14O4   

so MW = 13×12.011+ 14×1.008+4×15.999 = 234.25  g mol-1   

∑

∑

=

⋅
=

i
i

i
i

A

bN

b
MW
NNb ρ

 

 (NA mol-1× 1.27 g cm-3 /234.25g mol-1) × b(13C + 14H+4O)  
= (6.022×1023 mol-1×1.27 gcm-3/234.25 g mol-1)×(13×6.65+14×(-
3.742)+4×5.803)×10-13 cm 
=3.265×1021 × 5.727×10-12 cm 
=1.87×1010 cm-2                       

 
 
 
(ii) In D2O because the difference between the SLD of H2O and the 
polymer is much smaller than the difference between the SLD of D2O and 
the polymer. ALSO H has a high incoherent cross-section so results in a 
large amount of incoherent scattering from the H in the solvent, increasing 
the background in that system. Ideally use as little H as possible in SANS 
samples. 
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b) Formula for deuterated tetradecane: C14D30   
so MW = 14×12.011+ 30×3.008 =  228.39  g mol-1  

∑

∑

=

⋅
=

i
i

i
i

A

bN

b
MW
NNb ρ

 

 (NA mol-1× 0.765 g cm-3 /228.39g mol-1) × b(14C + 30D)  
= (6.022×1023 mol-1×0.765 gcm-3/228.39 g mol-1) 
×(14×6.65+30×6.674)×10-13 cm 
 

=5.92×1010 cm-2    
 
c)  (i) the polymer rim around the phospholipids 
 

(ii) core sld = 0.78x 6.34 ×1010 cm-2+ 0.22x( -0.562 ×1010 cm-2) =  
4.87×1010 cm-2   
 
this is lower than calculated for tetradecane above. Thus there must 
be hydrogenous material in the core, which is probably the styrene 
groups from the polymer belt. 

 
d)   
(i) The Guinier region for very large spheres would be outside the Q-range 
of SANS, so we would see slope of -2 on log I vs log Q graph, changing to 
-4 at very high Q due to smooth surface structure, limiting Porod scattering. 
Fringes would appear in the data due to the thickness of the lamellae 
(membrane). See figure G2a below. 

 
Figure G2a Guinier plot (log(I) vs. log(Q)) of large spheres in solution 
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(ii) stacked discs would give scattering due to the distance between the 
discs which would cause peaks similar to those from a lamellar phase. The 
scattering would be anisotropic in the horizontal direction due to the 
vertical alignment of the stacked discs (see figure 3). 

                     
Figure J3a SANS pattern expected from oriented stacked nanodiscs 

 
(iii) We would need to use multiple contrasts to obtain detailed structural 
information, so we should suggest doing experiments with deuterated 
polymer, lipid, protein & solvent to obtain as many different scattering 
patterns as possible. See Figure J4a below 
 

 
Figure J4a Illustration of contrast matching in the protein / nanodisc 
system 
 
Once a suitable contrast has been chosen, in which the contribution to the 
SANS of the nanodisc has been removed by contrast matching the disc to 
the solvent, the analysis of the scattering from the protein can be examined. 
If a crystal structure for the protein has been deposited in the protein 
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databank the scattering from the high resolution structure can be modelled 
and compared to the experimental data using packages such as Cryson and 
Crysol in the ATSAS package.  
A popular approach to analysing the shape of proteins from SANS/SAXS is 
dummy atom modelling by simulated annealing, which allows for the low 
resolution structure of the particulate from the scattering data. In this 
approach, heuristic monte carlo like algorithms are employed to perform a 
“trial and error” modelling using beads within a user defined volume. In 
this approach an automated shape search within a volume which encloses 
the protein maximum dimensions is performed. The space is filled with 
densely packed spheres  which can either belong to the protein or the 
solution. Starting with a random distribution of solution and protein 
“beads” within the search volume the model is randomly modified to find a 
shape which fits the experimental data.  As proteins often have complex 
shapes which cannot be defined by simple shape models such as spheres, 
ellipsoids etc this method is popular with the biological small angle 
scattering community and is performed using software such as Dammin, 
Gasbor and MONSA (for multi-contrast data sets). 
 
 
e)  slope = 

12

2
tR− ,   

so here the slope, -121 Å2 = 
12

2
tR− , so Rt = 38.1Å,  

Assumption is that the particle is in a dilute solution (no inter-
particle interactions) 
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H. Reflectometry 
 

Hl. 
 
 
a)  Given  𝑆𝐿𝐷 = 𝑁𝑏 =   𝑁 𝑏!!   (Need to watch your units!!!!) 
 
Where N= number density of atoms in atoms per Å3, b= scattering length in 
units of fm (x10-15 m) and :  
 

∑∑ =
⋅

=
i

i
i

i
W

A bNb
M
NNb ρ

 

 
Note:  1 x10-24 cm3 in 1 Å3, 1 fm is 1 x 10-5 Å  
 
• Convert units first, as this is much easier if everything is 
consistently in grams, Å and moles. 
 
  Density of SiO2 is 2533 kgm-3 = 2.533 x 10-24 gÅ-3 

  b (Si)= 4.1491 fm  = 4.1491x10-5 Å 
  b(O)= 5.803 fm = 5.803x10-5 Å 
  Molar mass Si= 28.0855 g mol-1 

  Molar mass O= 15.999 g mol-1 

 
• Then Calculate 𝑏!!  
 
b(SiO2) = b(Si) + 2*b(O) = 4.1491 + 2*5.803 = 15.7551 x 10-5 Å  
 
• Then calculate the molecular weight of SiO2 
 
               Mw(SiO2) = 28.0855+2*(15.999) = 60.0835 g mol-1 
 

• Calculate the Number density 
W

A

M
N

N
ρ⋅

=  

    NSiO2= 6.022 x1023 x 2.533 x10-24 / 60.0835 = 0.02539 atoms Å-3 

 
• Calculate 𝑁 𝑏!!  
 
               SLD = 0.02539 x 15.7551 x 10-5 = 4.00 x 10-6 Å-2 
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b)  Repeat solution for a) 
 
• Convert units first, as this is much easier if everything is 
consistently in grams, Å and moles. 
 
  Density of Ni is 8908 kgm-3 = 8.908 x 10-24 kgÅ-3 

  b (Si)= 10.3 fm  = 10.3 x10-5 Å 
  Molar mass Ni= 58.6934 g mol-1 

 

• Calculate the Number density 
W

A

M
N

N
ρ⋅

=  

NNi= 6.022 x1023 x 8.908 x10-24 / 58.6934 = 0.0914 atoms Å-3 

 
• Calculate 𝑁 𝑏!!  

 
     SLD = 0.091397 x 10.3 x 10-5 = 9.414 x 10-6 Å-2 
 
c)  Magnetic Scattering Length Density (SLDm) is given by: 
 

𝑆𝐿𝐷! = 𝑁!𝒑𝒊

!

!

= 𝐶 𝑁!𝜇!

!

!

= 𝐶!𝒎 =   −
m!

2πℏ!
µμ! 𝑴!

!

!

 

 
I. Where for magnetic moment per formula units, µ, expressed in units 

of Bohr Magnetons µB, then C = 2.645 x 10-5 ÅµB
-1   

II. Or if the Volume magnetisation density, m, is known in units of 
Tesla, then         C` = 2.911 x 10-5/4π Å-2T-1  

III. Or if m is in units of emu/cm3 then  C` = 2.853 x 109 Å-2 cm3 /emu 
 
Ni = number density of magnetic atoms in units of atoms Å-3 
pi = Magnetic scattering length  in units of fm 
µn = magnetic moment of the neutron  
Mi = Magnetisation (emu) 
 
   
• SLDm = ± CN µi  = ± 2.645 x 10-5 x 0.091397 x 1.8 = ± 4.351 x 
10-6 Å-2 
 
 
 
 
 
 
 



 32 

d) 
 
• SLDNi± =  SLDNi(structure) + SLD Ni(Magnetic) 
 
 SLDNi+ = (9.4139 + 4.3514) x 10-6 Å-2 = 13.765 x 10-6 Å-2   
 SLDNi- = (9.4139 – 4.3514) x 10-6 Å-2 = 5.063 x 10-6 Å-2   
 
 
H2. 
 a) Because it makes the simulation angle and wavelength dependent and 
therefore comparable to other neutron reflectivity data from other neutron 
sources. 
 
b) Construct the basic scattering diagram: 
 
 
 
 
 
 
 
 
 
 
Figure H1a, basic scattering diagram 
 
• For elastic scattering then    𝑘! = 𝑘! = !!

!
  (A) 

• From QM momentum transfer is expressed as 𝑄 = 𝑘! −   𝑘! 
• Take the vertical components, defined in scattering as z direction 
 

𝑄! = 𝑘! sin 𝜃 −   −𝑘! sin 𝜃 
𝑄! = 𝑘! sin 𝜃 + 𝑘! sin 𝜃 

• Recalling A then this can be rewritten as: 
 

𝑄! =
4𝜋
𝜆
sin 𝜃 

 
 
 
 
 
 
 
 

2θ 

θ 
θ 

Q 

k
i
 

-­‐k
f
 

k
f
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H3 
 
   a) Start with the Snells law : 
 

𝒏 =
𝑛!
𝑛!
=
cos 𝜃!
cos 𝜃!

 

 

 
 

   Figure H2a, Snell’s law of reflection 
 
 

• At total reflection θi = θC and θt = 0 therefore cos θt = cos 0 =1.0 
• Therefore: 
•  
n = !!

!!
= cos 𝜃!             (A) 

 
Recall basic trig identity:    sin! 𝜃 + cos! 𝜃 = 1 
Then taking the square of (A) allows the following via the trig identity: 
 

𝒏 = cos 𝜃! 
𝒏! = cos! 𝜃! (Then by the trig identity) 
𝒏! = 1 −   sin! 𝜃! (Rearrange to get) 

sin! 𝜃! = 1 −   𝒏! 
sin 𝜃! = 1 −   𝑛!          (D) 
 
Recall 𝑄! =

!!
!
sin 𝜃       𝑔𝑖𝑣𝑖𝑛𝑔      𝑄! =

!!
!
sin 𝜃!       (E) 

 
Then substitute (*) into (D) to get: 
 

sin 𝜃! = 1 −   1 +   
𝜆!𝑁𝑏
𝜋
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sin 𝜃! =   
𝜆!𝑁𝑏
𝜋

 

Then substitute in (E) to get: 

𝑄!𝜆
4𝜋

=   
𝜆!𝑁𝑏
𝜋

 

Rearrange to get 
 

𝑄! =   16𝜋𝑁𝑏 
 

b) Ni/air interface so can use calculated values for Ni+/- from question 1 
Q!   (Ni!)   =   16𝜋  𝑥  (𝟏𝟑.𝟕𝟔𝟓  𝐱  𝟏𝟎!𝟔) = 0.0263 Å-1 
Q!   (Ni!)   =   16𝜋  𝑥  (𝟓.𝟎𝟔𝟑  𝐱  𝟏𝟎!𝟔) = 0.0160 Å-1 

 
c) The difference in Q between the two critical edge positions is a direct 
measure of the total magnetic moment in the thin film. The taking this 
difference subtracts the structural parts hence all that is left is the magnetic 
component. 
 

H4a 
Bi and Si have very similar contrasts so look very similar in reflectivity. If 
the Bi or Si have even slightly rough surfaces or interfaces then it will not be 
distinguishable from each other and the reference layer will look like the Si 
substrate and not appear to be there. The figure shows the perfectly flat case 
for 200A of Bi on a perfectly flat Si substrate. 

 
H3a, Bi layer on Si 
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H5a 
 
a) the thickness of the Kessig fringes can be related back to Braggs law via 
the small angle approximation: 
 

𝑛𝜆 = 2𝑑 sin 𝜃 
 

𝑑 =
𝜆
2Δ𝜃

 
 

Which by substituting the relation for: 
 

𝑄! =
4𝜋
𝜆
sin 𝜃 

  
This becomes: 

 

𝑑 =
2𝜋
Δ𝑄

 

 
Δ𝑄1 = !!

!.!!"#$
= 𝟏𝟎𝟎𝟓.𝟑  Å 

 
Δ𝑄2 = !!

!.!!"#$
= 𝟓𝟖𝟗.𝟓  Å 

 
Δ𝑄3 = !!

!.!!"#$
= 𝟕𝟔𝟕.𝟐  Å 

 
Δ𝑄4 = !!

!.!!"#$
= 𝟕𝟕𝟏.𝟗  Å 

 
b) Because we have neglected the n component in Braggs Law. 
 
c) You should work inside of the Born approximation and take the difference 
of two fringes as far from the critical edge as you can. Hence the best 
estimate is the last one 772 Å. 
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I: Polarized Neutrons 
 
 
I1. a) Flipping ratio: F = N+ / N-  = 51402 / 1903 = 27 +/- 0.6 
 

{error bar  => dF = 0.63} 

 
Therefore, the polarization is:   P = F – 1 / F + 1 = 0.929 +/- 0.002 
 
{error bar  => dF = 0.002 } 

 
b) Systematic errors in this measurement will largely arise from 
background contributions from the instrumental environment.  In order to 
measure a reliable flipping ratio, the N+ and N- counts must be measured 
with and without the sample in the beam.  The flipping ratio is then given 
by 
 

 

 
Other sources of systematic error will be different values of the polarizing 
power of the polarizer and analyser, in addition to the finite flipping 
efficiency of the flipper. 
  
 
 
I2. a)   The adiabacity parameter is given by  

The Larmor frequency, , where the gyromagnetic ratio, γ, is given 
by the ratio of the neutron magnetic moment to its angular momentum (= 
½ℏ).  Therefore: ωL = 2μBB / ℏ = 1.83 × 108 B rad s-1 with B given in T. 
In this example, B = 3 mT and is constant in magnitude, therefore  
    ωL = 5.49 ×  105 rad s-1 
 
The rotation frequency of the guide field in the neutron rest frame is 

𝜔! =   
𝑑𝜃
𝑑𝑥

×𝑣 =
𝜋
2
0.1

×𝑣 = 15.71𝑣 
 
  
 
Expressing v in terms of λ:  

€ 
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 with v in ms-1 and λ in Å. 

 
Therefore: 
      ωB = 3.11 ×  104 rad s-1 

 
The adiabacity parameter is therefore:  E = 17.7 and the field/flipper design 
should successfully propagate the neutron polarization and flip the spins 
without significant depolarization. 
 
b) The design could be improved by either increasing the guide fields (and 
the current in the Dabbs foil) or by lengthening the distance over which the 
field rotates by 90°. 
 
 
I3. a) The expression for the differential cross-section of a polarized 
neutron beam of polarization (P) from a ferromagnetic crystal magnetised 
along the direction (η) reflecting from the HKL Bragg plane, is of the form 
   !"

!!
= 𝐹!! + 𝐹!! + 2𝐹!𝐹! P∙𝛈  

 
If we consider an initially unpolarized beam as a superposition of equal 
populations of “spin-up” and “spin-down” neutrons, then the number of 
neutrons scattered in each spin-state will be proportional to the two cross 
sections. 

𝑛! ∝
𝑑𝜎
𝑑Ω 𝐏∥𝛈

= (𝐹! + 𝐹!)! 

𝑛! ∝
𝑑𝜎
𝑑Ω 𝐏∦𝛈

= (𝐹! − 𝐹!)! 

 
Therefore, the  polarization  is:   
 

  𝑃 = !!!!!
!!!!!

= (!!!!!)!!(!!!!!)!

(!!!!!)!!(!!!!!)!
= !!!!!

!!
!!!!

!  

 
Note that the sign of the polarization depends on the signs of the unsquared 
magnetic and nuclear structure factors.  In the case of Heusler alloy, these 
signs are opposite, and the polarization is oriented opposite to the 
magnetisation (i.e. spin-down) 
 
 
b) Making the substitution, x = FN/FM, we have 

€ 

E =
h2

2mnλ
2 =

mnv
2

2
⇒ v =

h
mnλ

=
3956
λ
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     𝑃 = !!
!!!!

 
Differentiating with respect to x 

     !"
!"
= !!!!!

!!!! ! 
The maximum polarization is therefore found for x = ±1.  i.e. When the 
nuclear and magnetic structure factors are equal. 
 
I4. The first rule of thumb in magnetic polarized neutron scattering is 
that spin-flipped neutrons will only be produced by components of the 
sample magnetisation perpendicular to the neutron polarization direction.  
[This is an extremely useful rule to bear in mind during all polarized 
neutron experiments.]  Therefore, if we are scattering neutrons from a fully 
magnetised scatterer (i.e. a ferromagnet for example) – magnetised in the 
direction of the neutron polarization (which is an experiment necessity), 
then there will be no perpendicular components of the magnetisation, and 
therefore no spin-flip scattering.  We can therefore dispense with the 
analysers, since the scattered beam remains fully polarized 
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J. Spin-Echo Small-Angle Neutron Scattering 
 

J1 
 

1. ϕ =
γnmλdB
h

= 3323 radian, corresponding to 528 rotations   

[1.832e8*1.67e-27*2e-10*0.18*0.2/6.63e-34].  
This indicates that the uniformity of the line integrals should be at least an 
order of magnitude better than 1/528 to maintain the polarisation. 
 
2. The length of the path through the foil with a thickness t will be

0sin( )
tl
ϑ

= . The precession in the foil will thus be 
0sin( )

n sm tB
h
γ λ

ϕ
ϑ

=  should be π, 

from which follows 0sin( ) 3.3 m
n s

ht
m B

ϕ ϑ
µ

γ λ
= =   

[3.14*6.63e-34*sin(3.14*5.5/180)/1.832e8/1.67e-27/2e-10/1.].  
This is indeed the thickness of the foils we use in Delft. 
 

 
3. The precession due to a height difference with the optical axis of δy 
can be calculated from the geometry to be 02 cot( )nm B y

h
γ λ δ ϑ

ϕ = , in which 

the factor of 2 is due to the precession before and after the π-flip. From this 
follows that sensitivity to an extra precession of ϕ = 2π/10, gives a height 
sensitivity of 

0

1.64 m
2 cot( )n

hy
m B
ϕ

δ µ
γ λ ϑ

= =   

[(2*3.14/10)*6.63e-34*tan(pi*5.5/180)/2/1.832e8/1.67e-27/2e-10/0.2].  
This is orders of magnitude smaller than one would achieve by using slits. 
 
4. For a perfectly horizontal beam the precession in the two magnetic 
foil flippers will spin-echo. An angle δθ with the optical axis over the 
length L between them will give rise to a height difference of y Lδ δϑ= . 
Using the results of the previous calculation we get directly a sensitivity 
over an angle of 

0

1.26 rad
2 cot( )n

h
m BL

ϕ
δϑ µ

γ λ ϑ
= =  

[(2*3.14/10)*6.63e-34*tan(pi*5.5/180)/2/1.832e8/1.67e-27/2e-10/0.2/1.3]. 
This is impossible with conventional SANS. 
 
5. For a straight non-scattered beam the precession in the two arms with 
reversed fields will spin-echo. We can now insert the wave vector 

2 /Q πθ λ= , in the precession calculation 
2

0 02 cot( ) cot( )n nm BL m BL Q
h h

γ λ ϑ ϑ γ λ ϑ
ϕ

π
= = . From the definition Qϕ δ= follows 
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directly: cotnm LB
h

γ λ θ
δ

π
=

2
0  [M.Th. Rekveldt et al. Neutron Spin Echo, 

Lecture Notes in Physics 601 87-99 (2003)] 
 
J2 
1.  

 
From the graph we see directly that the polarisation levels of at a spin-echo 
length of δ = 4 µm, which corresponds to the maximum size present in the 
structure which is thus the diameter of 2R, from which follows that 
R = 2 µm. The polarisation reaches a value of 0.5, from which we can 
calculate the scattering power ln(0.5) 0.7tΣ = − = . From the equation for the 
scattering power we derive that the volume fraction (for small values) has 
the value 2 2 3

2

0.06
( )

t

t R
φ

λ ρ
Σ

= =
Δ

 [0.7/(2.1e-10)^2/0.005/(1.3e14)^2/1.5/2e-6], 

which indeed is small. [C. Rehm et al. J. of Appl. Cryst. 64 354-364 
(2013)] 
 
2.  

 
The peak at the spin-echo length of 12 µm corresponds to the period of the 
grating. The first peak levels of at 4 µm corresponding to the trench width. 
This gives a volume fraction of 4 /12 0.33φ = = . The ξ is equal to the 
thickness of the sample t, which is the depth of the trenches. Just as in the 
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previous exercise the polarisation levels of at a value of 0.5. From the 

equation of the scattering power we calculate 
2 2 40 m
( ) (1 )

tt µ
λ ρ φ φ

Σ
= =

Δ −
  

[sqrt(0.7/(2.1e-10)^2/(2.07e14)^2/0.33/0.67)],  
which is indeed the depth. [M. Trinker et al. Nuclear Instruments and 
Methods in Physics Research A 579 1081–1089 (2007)] 
 
3.  

 
A) has the shape of the correlation function of a single sphere with 
diameter of 300 nm.  No features are observed at higher spin-echo length, 
thus it corresponds to a low volume fraction: 0.055 volume fraction with a 
thickness of 10 mm. 
B) shows one neighbour peak at a value just above the determined 
diameter, so it should correspond to a liquid phase.  It is thus: 0.23 volume 
fraction with a thickness of 2 mm. 
C) displays several neighbour peaks. It looks like a solid crystal, thus it has 
to be: 0.56 volume fraction in a cell with a thickness of 1 mm. 
[T.Krouglov et al. J. Appl. Cryst. 36, 1417-1423 (2003)] 
 
4.  

 
Charged latex particles will repel each other, giving rise to a crystalline 
structure with many neighbour peaks as one observes for the yellow 
symbols. Adding salt will screen the Coulomb interaction as one sees for 
the brown symbols. The interaction potential can be fully determined from 
the measurements [K. van Gruijthuijsen et al., EPL 106 28002 (2014)]. 
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K.  Magnetic Elastic Scattering 

K1.  
In order to answer this question, we use the convolution theorem which 
states that the Fourier transform of the convolution of two functions, is 
equal to the product of their Fourier transforms. 
 
  f(x) = g(x) ⊗ h(x) ⟺ F(q) = G(q) × H(q) 
 
The equation for a Gaussian is: 

 

 
 

The Fourier transform of this Gaussian is: 
 

 
 

The integral on the right is anti-symmetric around x = 0, and hence drops 
out.  The integral on the left is not easy to solve, but is given in some more 
extensive tables of integrals (see e.g. Abramowitz and Stegun (1972), 
p. 302, equation 7.4.6).  This gives,  
 

 
 
Therefore the Fourier transform of a Gaussian is also a Gaussian with a 
width, which is the reciprocal of the original width.   So the product of two 
Gaussians in reciprocal space, of reciprocal widths σ1 and σ2 is 
 

 
 

By inspection, the inverse Fourier transform of F(q) can now be written 
down, giving 

 
Therefore the convolution of two Gaussians is a Gaussian function, where 
the widths of each are added in quadrature.  
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K2.1  
 
The moments point along c and each atom is antiferromagnetically coupled 
to its nearest neighbour, i.e. the magnetic unit cell is twice as large along a, 
b, and c: 

 
K2.2  
The nuclear unit cell is primitive, thus Bragg peaks will appear at all the 
points in h, k and l. 
 
K2.3   
The magnetic unit cell is twice as large as the nuclear in a, b and c, hence 
the magnetic reciprocal lattice is half the size of the nuclear reciprocal 
lattice. 

 
 
Nuclear indices written in black, magnetic in red. 
K2.4  

a
b

c

[010]

[110]

1 2–1–2

1

2 Nuclear lattice point

Magnetic lattice point

–1

–2

1

2

3

4

2 3 4

1

–1–2–3–4

–1

–2

–3

–4



 44 

The magnetic structure factor is given by the Fourier transform of the 
moment orientations and positions, i.e.  

€ 

Fmag
hkl = µ j

j=1

N

∑ exp 2πi hx j + ky j + lz j( )( )  

 
where N is the number of moments in the unit cell.  There are 8: 
 
Atom (x,y,z) Moment amplitude 
1 (0, 0, 0) +1 
2 (0.5, 0.5, 0) +1 
3 (0.5, 0, 0.5) +1 
4 (0, 0.5, 0.5) +1 
5 (0.5, 0, 0) -1 
6 (0, 0.5, 0) -1 
7 (0, 0, 0.5) -1 
8 (0.5, 0.5, 0.5) -1 
Note that (x,y,z) are defined with respect to the magnetic unit cell, and the 
amplitude is given in units of µ. 
 

Substitute these values in to the equation, which becomes: 

 

 
This equals zero for all h,k,l except when they are all odd!   
 
The Bragg peak map therefore looks like: 

 
 

This comes about because the magnetic unit cell has a higher symmetry 
than the nuclear unit cell.  It is, in fact, face-centred cubic with 4 moments 
in its basis.  
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Fmag
hkl = µ

1+ exp πi h + k( )( )+ exp πi h + l( )( )+ exp πi k + l( )( )
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The structure factor for all the visible lattice points is 8µ, however the 
intensities of the Bragg peaks will not be all the same (despite them all 
having the same structure factor).  The direction of Q with respect to the 
moment direction becomes important.  Neutrons only ever see the 
perpendicular component of the sublattice magnetization to Q, thus the 
intensity of the Bragg peaks will be multiplied by sin2φ, where φ is the 
angle between Q and [001].   
Furthermore, the intensity will be modulated by the magnetic form factor.  
This will cause the intensity to decrease with increasing Q. 
 
K2.5  
The spin waves will be visible in both directions.  However, the spin waves 
in the classical picture take the form of fluctuations that are perpendicular 
to the mean moment direction.  Hence, if the moments are oriented along c, 
the spin waves will take the form of fluctuations in the (a, b) plane.  
Measurements along the [001] axis will therefore see the full contribution 
from the spin waves as this direction is normal to the (a, b) plane, as Q is 
always perpendicular to the moment contributions.  Measurements along 
the [110] axis will only have half this intensity as components of the spin 
waves along [110] will not give any neutron scattering. 
 
K2.6  
If the sample has many domains, there will be no distinction between 
moments lying along a, b, or c.  Therefore the sin2φ term will need to be 
averaged over all possible orientations, i.e. the magnetic (511) and (333) 
peaks (which have the same Q) will have the same intensity. 
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L. Chemical Applications 

 
L1. 
(A and B) 

HINT #1: calculate the volume of one water molecule (approx. 
29.9 Å3=29.9x10-30m3)? (what is the mass of one mole of water? 
(18g/mol) What is the volume of one mole of water (18cm3)? 
What is the relative volume of one molecule of H2O and one of 
D2O? (electrons determine the molecular ‘size’ not the nucleus so 
they should be approximately equal). 
HINT #2: what is the scattering length of one molecule of (a) 
H2O  
{(-3.74*2)+5.803 }*x10-15m = -1.677 x10-15m 
and (b) D2O? 
{(+6.671*2)+5.803 }*x10-15m = +19.145 x10-15m 
 
Hence find the scattering length densities of H2O and D2O (-0.56 
and 6.4 x10-6Å-2) 
 

Isotope Scattering length 
density / (Å-2) 

Refractive index 
calc 

Refractive Index 

H H2O = -0.56x10-6 1+2.8874x1
0-7 

1.000000289 

D D2O = +6.40x10-6 1-3.289x10-6 0.99999670 
O    
Si 2.07x10-6A-2 1- 1.067x10-6 0.999998933 

 
(C) 
Critical angle is given by: 

!!
!!
= !"#!!

!"#!!
  Where 𝜃! and 𝜃!are the grazing angles of reflection, or        

 !!
!!
= cos 𝜃!: D2O/si =0.99999670(D2O)/0.999998933 (Si)= 0.99999776 

= cos𝜃!  
è 𝜃!= 0.00211 radians 
è= 0.121° 
 

𝑄 =
4𝑃𝑖 sin 𝜃!

𝜆
= 4 ∗ 𝑝𝑖 ∗

sin 0.121 ∗ ( 𝜋180)
1.8

= 0.01466  𝐴!!. 
 
(D) 
If critical edge is at 0.1 degrees (0.00174 rad): then SLD of the water 
phase is: 
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nwater / 0.999998933 (Si)= cos𝜃!= cos (0.1) = 0.999998486 
Refractive index of water is: 0.999997419 è SLD = +5.0e-6 Å-2. 
 

Pure H2O is: -0.56 × 10-6 Å-2 
Pure D2O is: +6.4 × 10-6 Å-2 
Difference: = 6.96 × 10-6 Å-2 
SLD D2O – SLD from data is: 1.4è 20% H2O therefore 80% D2O 
Hence water is 20% H2O and 80% D2O. 
(Check: SLD: -0.11+5.1 = 5.0x10-6 Å-2. è nwater = 0.999997419. As 
required.) 
 

L2 
 

(a) Incoherent neutron scattering (ONLY) sees the protonated species 
(octane in this case). As we add more decane we can’t see its 
scattering but we can see the amount of octane on the surface fall as 
the decane pushes it off. 

(b)  

Xbulk = 1.0;  Xsurface = 1.0 
Xbulk = 0.909; Xsurface = 0.6 (get a ruler??) 
Xbulk = 0.715; Xsurface = 0.10  
 
Graph: 

 
Figure L1a 
Conclusion: the decane is strongly preferentially adsorbed. It has a 
much higher surface concentration than the bulk (at any concentration). 
 

*PkA surface charge.. how much adsorbs at different pH. 
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 M. Biological Applications 
 

M1 
A, this question simply involves summing the scattering lengths for the 
particular molecule using the values given on tables 1 and 2 and then 
dividing them by the molecular areas given: 
Sum b tails = (26×6.646 × 10-5 Å) + (54×-3.71 × 10-5 Å) = -28.54 × 10-5 Å 
ρtails = -28.54 × 10-5 Å/771 Å3 = -0.037 × 10-5 Å-2 or -0.37 × 10-6 Å-2 
Sum b headgroup = (10 × 6.646 × 10-5 Å) + (18 × -3.71 × 10-5 Å) + 9.36 × 
10-5 Å + (8 + 5.8 × 10-5 Å) + 5.13 × 10-5 Å = 60.21 × 10-5 Å 
ρheadgroup = 60.21 × 10-5 Å / 304 Å3 = 0.198 × 10-5 Å-2 or 1.98 × 10-6 Å-2 

These values can then be used to determine lipid coverage in question 2.  
 
M2 
A, There is a significant difference in ρ between the lipid headgroup (1.98 
× 10-6 Å-2) and H2O (-0.56 × 10-6 Å-2), but no real difference between the 
tails (-0.37 × 10-6 Å-2) and H2O. Both bilayer components have contrast in 
the D2O (6.35 × 10-6 Å-2) solution but the tails have the most significant 
difference. Therefore the answer is: 
Tails in D2O and headgroups in H2O. However students should be 
commended for noting that in D2O both headgroups and tails have contrast 
with the solution.  
B, from the lectures students should be familiar with the SLD profile of a 
bilayer across the solid/liquid interface. The layers relate to the interfacial 
components are follows: 
Layer 1 : Silicon oxide 
Layer 2, Inner bilayer headgroups 
Layer 3, bilayer tails 
Layer 4, outer bilayer headgroups 
 
C, from M2.A, it should be determined that the D2O contrast was 
especially sensitive to the lipid tails due to a large difference in ρ between 
the tails and the solution in this contrast. From M2.B, layer 3 in the 4 layer 
model should have been identified as the lipid tails (with a fitted ρ in the 
D2O contrast of 0.17 × 10-6 Å-2) 
The values required to determine the volume fraction (φ) of the lipid at the 
solid liquid interface are therefore: 
ρfitted = 0.17 × 10-6 Å-2 

ρtails = -0.37 × 10-6 Å-2 

ρD2O = 6.35 × 10-6 Å-2 

To determine φtails you can use: 

𝜑!"!"# =   
(𝜌!!! −   𝜌!"##$%)
(𝜌!!! −   𝜌!"#$%)

 

Resulting in: 
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𝜑!"#$% =   
(6.35 −   0.17)
(6.35 −   −0.37)

 

Which gives φtails = 0.92, a 92% coverage of the interface with the lipid 
bilayer.  
 
M3 
A, 7.45 × 10-6 Å-2, the calculation used was the same as in 1, A. 
B, as the only difference between the SLD of the tail layers in D2O and 
H2O is due to the presence of the water you can determine the water 
content by: 
 

𝜑!"#$%   =   
(𝜌!"##$%,!!! −   𝜌!"##$%,!!!)

(𝜌!!! −   𝜌!!!)
 

This gives the following answer for the inner leaflet:  
𝜑!"#$%  !""#$  !"#$%   =   

(!.!"  !  !.!")
(!.!"!  !!.!")

 = 0.05 
And the following answer for the outer leaflet: 
𝜑!"#$%  !"#$%  !"#$%   =   

(!.!"  !  !.!")
(!.!"!  !!.!")

 = 0.05 
Both leaflets contain 5% hydration and therefore a bilayer coverage of 95% 
(φlipid = 0.95) is found. 
C, this equation can be done a number of ways but essentially it comprises 
comparing the fitted ρ value from either the H2O or D2O contrast to the 
known ρ’s of the deuterated and hydrogenated lipid. The way I did it 
involved calculating the φDPPC and as the φwater is known the φLPS is simply 1- 
(φDPPC + φwater): 
𝜑!""#

= 𝜑!"#"$×(
(((𝜌!"##$% − 𝜌!!!𝜑!!! /𝜑!"#"$) −   𝜌!!!"#"$  !"#$%)

𝜌!!!"#"$  !"#!"   − 𝜌!!!"#"$  !"#$%
                                     

This gives the following answer for the inner leaflet:  

𝜑!""# = 0.95  ×(
(((6.06   − 6.35  ×0.05 /0.95) −   −0.37)

7.45 − −0.37
  )                   

= 0.78                                       
As φDPPC = 0.78 and φwater = 0.05, φLPS = 0.17 (by 1- (φDPPC + φwater) for the 
inner leaflet. 
For the outer leaflet:  

𝜑!""# = 0.95  ×(
(((0.95   − 6.35  ×0.05 )/0.95) −   −0.37)

7.45 − −0.37
)                     

= 0.13                                       
As φDPPC = 0.13 and φwater = 0.05, φLPS = 0.82 (by 1- (φDPPC + φwater) for the 
outer leaflet. 
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N.  Disordered Materials Diffraction 
 
 

N1.1 a) and c) 

 
 
N1.1 b) 
ε represents the depth of the potential. It controls how tightly adjacent 
atoms are bound. σ represents the radius at which the hard core repulsive 
region goes to zero. It represents roughly the distance of closest approach 
of two atoms. 
 
N1.2 a) 
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N1.2b)  
At low r, U(r) becomes very large, while g(r) goes to zero. At high r, U(r) 
goes to zero, while g(r) goes to unity. In between the two functions are in 
rough antiphase. 
 
N1.2c) If ε were increased by a factor of 2, the height of the peak in g(r) at 
~ 3.8Å would grow from ~1.27 to ~1.54. If σ were increased by 20%, the 
main peak would move out by 20%, but would remain the same height. 
 
N1.3a)  
In the gas form g(r) decays monotonically to unity at large r. As the density 
increases the height of the main peak increases and it becomes sharper as a 
series of decaying oscillations occur towards larger r. All the peaks move to 
smaller r with increasing density. 
 
Based on a change of density of 0.02 to 0.035, one might expect the 
separation of peaks to change by the cube root of the ratio of densities, 
namely  
 

 
 
In fact the first peak moves from 3.18Å to 3.06Å, a fractional change of 
only 0.96, while the second peak moves from 6.39Å to 5.91Å, a fractional 
change of 0.92. In other words the peaks in g(r) do NOT represent the 
mean separation of the atoms. This can be quite confusing! 
 
N1.3b)  
Fundamentally as the material becomes more dense the direct interactions 
between atoms 1 and 2 become increasingly affected by the presence of 
3rd, 4th , etc. atoms which increasingly surround them, and which 
increasingly confine them in space. Within the pairwise additive 
approximation assumed here all the atoms interact via known pairwise 
forces, but the result is many body correlations which are difficult to 
predict accurately. A raft of theoretical methods to do this approximately 
exist, but few if any of them work for the kind of interatomic forces that are 
found in real materials. Hence in practice one has little option but to use 
computer simulation to determine the effect of many-body correlations in 
real materials. This problem affects crystals as much as it affects liquids, 
but in a crystal one has a repeat lattice (which is itself a consequence of 
many body correlations) which we can determine from the position and 
height of the Bragg peaks. In any case the primary goal of interest in 
crystallography is the single particle correlation function (the lattice), 
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not the higher order correlations. The single particle correlation function 
for a liquid is uniform and contains no information. For a glass it is not 
uniform, but contains no repeat distances. 
 
N1.4a)  
For density 0.02 the first minimum occurs at 4.95Å, giving a coordination 
number of ~10 atoms. For density 0.035, the first minimum is at 4.47 Å 
with a coordination number of 12.5. Clearly these numbers do not scale 
with density change: coordination number varies less rapidly than the 
density. 
 
N1.4b) 
 If instead we had used the same radius, 4.47 Å, then the coordination 
number at density 0.02 is 7.23, a ratio of 0.58 compared to density 0.035, 
which is quite close to the ratio of densities, 0.57. This illustrates again that 
peaks and dips in g(r) do not correlate directly with the density, although 
they are obviously related to it. 
 
N1.5a)  
The primary effect of changing the density on the structure factor is to 
increase the amplitude of the oscillations. There is some movement of the 
peaks as well, but fundamentally as the density increases they become 
sharper, and the oscillations extend to large Q.  
 
N1.5b)  
For density 0.02, the first peak in g(r) is at 3.18Å and the first peak in S(Q) 
is at 2.2Å-1. For density 0.035, the first peak in g(r) is at 3.06Å and the 
first peak in S(Q) is at 2.35Å-1, i.e. as the peaks in g(r) move in, those in 
S(Q) move out, although the movement of the first peak in S(Q) is more 
related to the movement of the 2nd and subsequent peaks in g(r) than it is 
to the first peak in 
g(r). 
 
N1.5c)  
It depends how we did it. If we increased σ at constant density, then the 
peaks would move out, but also become markedly sharper as the packing 
fraction of the liquid increased. If the density was reduced to compensate 
for the increase (atoms occupying more space) then the peaks in S(Q) 
would move in, but without increased amplitude. 
 
N1.5d)  
Since the structure factor only exists if the density is finite, a zero density 
will produce zero structure factor. 
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N2.1a)  
Atomic fractions are cZn = 1/3 = 0.333, cCl = 2/3 =0.667 
 
N2.1b) 

 
 
N2.1c)  
In essence the idea is that we measure F(Q) for three samples, namely one 
with only 35Cl isotope present, another with only 37Cl isotope present, and a 
third with a mixture of x parts 35Cl and (1-x) parts of 37Cl. For this third 
sample the chlorine scattering length is  
 

 
 
which means the weighting coefficient of the HClCl partial structure factor 
for this sample is not a linear combination of the same coefficient for the 
other two samples. This means the determinant of coefficients in the above 
formula for the three samples is finite and the matrix of coefficients can be 
inverted. Hence the three measurements can be used to extract the three 
partial structure factors, at least in principle. 
 
A basic assumption of the isotope substitution method is that the partial 
structure factors do not change appreciably with isotopic composition of 
the sample. This is an accurate assumption in most cases, but is less 
accurate when hydrogen is replaced with deuterium, particularly at low 
temperatures and with larger molecules, because in these cases quantum 
effects due to the different masses can impact on both the structure and the 
phase diagram of the material in question. 
 
N2.1d)  
Remarkably few in practice. There have been attempts to perform 
isomorphic substitution with X-rays, but these method tends to be shrouded 
in uncertainties from knowing whether one atom can substitute for another 
without . Then there has been the combination of neutrons, X-rays and 
electrons, but each technique requires quite different sample containment, 
making comparisons of the three results dubious. A more promising 
approach is the use of anomalous dispersion of Xrays, whereby you vary 
the scattering length of one component near an absorption edge. This 
method is quite promising, but requires highly stable precision equipment 
to be performed satisfactorily, and to date has only be tried on a handful of 
materials. It suffers also from poor counting statistics because of the high 
degree of monochromatisation needed for the incident beam of X-rays. 
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Recently we have been exploring the use EXAFS to refine liquid and glass 
structures, and this approach looks very promising indeed. 
 
N2.2a) 
This is a very common problem in neutron scattering using isotopes: one or 
more of the components makes only a small contribution to the scattering 
pattern. In this case it is the ZnZn structure factor. Below is shown the 
inversion of the weights matrix:- 
 
Table N2a:  Inversion of the matrix coefficients of Table N1 

 
 
You will notice that to extract the ZnZn partial structure factor we need to 
multiply the data by large numbers and then add and subtract them, making 
us rely heavily on the absolute accuracy of the diffraction data if we are to 
avoid amplifying systematic data errors in the final structure factor. 
Obtaining absolute scattering cross sections with accuracies better than 1% 
is a tall order with any technique, including neutrons, and is rarely 
achieved. 
 
N2.2b) 
Particular difficulties are:- 
 
a) The data are only available over a finite Q range; 
 
b) The data are multiplied by Q in the integrand of (1.5) making the effect 
of statistical uncertainty at high Q a particular difficulty. 
 
c) No matter how careful they are measured and corrected, diffraction data 
always have systematic errors, which can seriously perturb the Fourier  
transform, particularly at low r.  
 
Fourier transform of data with potential significant systematic error is 
risky: the systematic error can have the effect of introducing marked 
backgrounds in real space that can make the peaks larger or smaller than 
they should be. As a consequence coordination numbers can be faulty when 
extracted by this method. 
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N2.2c)  
Fourier transforms of raw data should be avoided whenever possible. 
Instead the data should be compared with a structural model of the data, 
and then, assuming the model is satisfactory, use the model to generate the 
real space distributions, as well as address other questions about the 
structure of the material. Computer simulation is a convenient method to 
produce such a structural model of the measured scattering cross sections. 
This model will also help to identify what might be wrong (if there is 
anything) with the data, and avoid some of the problems introduced by 
systematic effects. Some authorities are reluctant to use computer 
simulation to achieve this, since it too can introduce systematic bias in the 
interpretation of the data, and so instead invoke a series of consistency 
checks on the data. These are used to identify and correct particular 
problems with the data, but this can be a very time consuming process 
which can take months to resolve. The net effect is the same however: in 
computer simulation one is already applying a series of physical 
consistency checks on the data, with the advantage that you have at the end 
a physical model of the scattering system which is consistent with your 
scattering data. With the other methods, you have corrected data, but you 
still have the problem of trying to understand what they mean. 
 
N2.3a) 
Figure G2.2 shows the running coordination number of this g(r). From this 
graph we can read that at the first minimum, 3.4Å, the running coordiation 
number is ~4.3 Cl about Zn. Since there are half the number Zn atoms 
compared to Cl, the coordination number of Zn about Cl will be 2.2. 
 
N2.3b)  
The first ZnCl peak is at 2.31Å, while the first ClCl distance is at 3.69Å. 
Using the cosine rule, I estimate the Cl-Zn-Cl angle to be 106º, which is 
close to the tetrahedral angle of 109.47º. This together with the 
coordination number of ~4 is a strong hint of likely tetrahedral local 
coordination in this liquid. 
 
Taking this argument a bit further, one notices that the first ZnZn peak is at 
3.93Å, while the second is at 6.81Å, giving a Zn-Zn-Zn angle of 120º, 
suggesting also that at least the Zn packing is not simple, and probably 
maps into the roughly tetrahedral packing of the Cl around Zn, with 
significant edge-sharing of the tetrahedra. 
 
N2.3c)  
Looking at the curves one is struck by the way the ZnCl oscillations are 
almost exactly out of phase with the ZnZn and ClCl oscillations. This 
behaviour strongly indicative of charge ordering, although it is not entirely 
clear that Zn and Cl are fully ionic in this system. 


