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Polarized neutron beams
Each individual neutron has spin s=½ and an angular momentum of ±½ħ
Each neutron has a spin vector       and we define the polarization of a neutron beam 
as the ensemble average over all the neutron spin vectors, normalised to their modulus

+½ħ

-½ħ

“Spin-up” 

“Spin-down”

B

If we apply an external field (quantisation axis) 
then there are only two possible orientations of 
the neutrons: parallel and anti-parallel to the field. 
The polarization can then be expressed as a scalar:

where there are N+ neutrons with spin-up and N- neutrons 

with spin-down



History of Polarized Neutrons

1937	

 Theory of neutron polarization by a ferromagnet
	

 Schwinger  (Phys Rev, 51, 544)	



1938	

 Partial polarization of a neutron beam by passage through iron
	

 Frisch et al (Phys Rev 53, 719),  Powers (Phys Rev 54, 827)

1937 - 1941  Theory of magnetic neutron scattering 
	

             Halpern and Johnson (Phys Rev 51, 992; 52, 52; 55, 898)

1940	

 Magnetic moment of the neutron determined by polarization analysis
	

 Alvarez and Bloch (Phys Rev 57,111)

1932	

 Discovery of the neutron
	

 Chadwick (Proc Roy Soc A136 692)	



1951	

 Polarizing mirrors, proof of the neutron’s μ.B interaction
	

 Hughes and Burgy  (Phys Rev, 81, 498) 



History of Polarized Neutrons
1951	

Polarizing crystals (magnetite Fe3O4, Co92Fe8) 

	

 	

 Shull et al (Phys Rev 83, 333; 84, 912)

1959	

 First polarized beam measurements (of magnetic form factors of Ni 
and Fe)
	

 Nathans et al (Phys Rev Lett, 2, 254)

1963   General theory of neutron polarization analysis
      Blume (Phys Rev 130, 1670)
      Maleyev (Sov. Phys.: Solid State 4, 2533)

1969	

 First implementation of neutron polarization analysis, Oak Ridge, USA
	

 Moon, Riste and Koehler  (Phys Rev 181, 920)



History of Polarized Neutrons
1972	

 Invention of neutron spin echo (IN11, ILL) 
	

 Mezei (Z Phys Rev 255, 146)

1982	

 XYZ polarization analysis on a multidetector 
spectrometer (D7, ILL)
	

 Schärpf (AIP Conf. Proc. 89, 175)

1988	

 Development of neutron polarimetry measurements with CRYOPAD 
	

 Tasset et. al. (J. Appl. Phys. 63, 3606 )

2000	

 Routine use of 3He neutron spin-filters for polarizing 
neutrons 

1987	

 Invention of neutron resonance spin-echo (leading to 
SESANS, MIEZE, ....)
	

 Golub and Gähler (Phys. Lett. A  123, 43)



Polarized neutrons today

• Single crystal diffraction
• Diffuse scattering
• Inelastic scattering (3-axis and TOF)
• Reflectometry (on and off-specular)
• SANS - magnetic and non-magnetic
• Neutron Spin-Echo
• Neutron Resonance Spin-Echo
• SESANS
• Larmor Diffraction
• Neutron Depolarization
• Polarized Neutron Tomography
• ......



Polarized neutron beams

This description of a polarized beam is OK for experiments in which a single 
quantisation axis is defined:  Longitudinal Polarization Analysis

The technique of 3-dimensional neutron polarimetry, however is termed:
Vector (or Spherical) Polarization Analysis

€ 

P =
N+ − N−

N+ − N−

  =
N+ /N−( ) −1
N+ /N−( ) +1

  =
F −1
F +1

Where                   is called the Flipping Ratio and is a measurable quantity in a

scattering experiment

€ 

F =
N+

N−

What we often would like to do in polarized neutron experiments is 
measure the scalar polarization of the beam.  



A Uniaxial PA experiment

analyserpolarizer

flipper 1

flipper 2

detector
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•First attempted by Moon, Riste and Koehler (Oak Ridge 1969)
Phys Rev. 181 (1969) 920
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A Uniaxial PA experiment

analyserpolarizer

flipper 1
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detector
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“Non-spin-flip”
}

“Spin-flip”
•First attempted by Moon, Riste and Koehler (Oak Ridge 1969)

Phys Rev. 181 (1969) 920



Polarizers
Stern-Gerlach experiment (1922)

3He spin-filter

Cu2MnAl (Heusler) crystal grown at ILL 

Supermirror systems
(eg Co/Ti, Fe/Si etc) 

d1}  
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λ 2
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λ 4
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Flippers
Drabkin flipper: useful for white beams of limited size

Bout

PoutPin

Bin

Dabbs Foil: “current sheet”

Mezei Flipper: “current sheet”

AFP Flipper: “adiabatic fast passage”



Uniaxial Polarization Analysis



Neutron polarization and 
scattering

We start with the (elastic - |ki| = |kf|) scattering cross-section

Where the spin-state of the neutron S is either spin-up or spin down

  

€ 

dσ
dΩ

=
mn

2π2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ʹ′ k ʹ′ S V kS 2
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↑ =
1
0
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

€ 

↓ =
0
1
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

For nuclear scattering (no spin) V is the Fermi pseudopotential, and the matrix element is

where we have used the fact that the spin states are orthogonal and normalised

€ 

ʹ′ S b S = b ʹ′ S S =

b 
↑ → ↑

↓ → ↓

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

0 
↑ → ↓
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⎩ 

⎪ 
⎪ 

Non-spin-flip

Spin-flip
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↑↓ = ↓↑ = 0,  ↑↑ = ↓↓ =1



Neutron polarization and 
magnetic scattering

(see e.g. Squires)

V is the magnetic scattering potential given by

where ζ = x, y, z.  Here M⊥(Q) represents the component of the Fourier transform of the 
magnetisation of the sample, which is perpendicular to the scattering vector Q - i.e. the 
neutron sensitive part.  σζ are the Pauli spin matrices
€ 

Vm (Q) = −
γ nr0
2µB

σ ⋅M⊥ (Q) = −
γ nr0
2µB

σζ ⋅ M⊥ζ (Q)
ζ

∑
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σx =
0 1
1 0
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,  σy =

0 − i
i 0
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,  σ z =

1 0
0 −1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Substitution of these into the magnetic potential gives us the matrix elements
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ʹ′ S Vm (Q) S = −
γ nr0
2µB

M⊥z (Q)
−M⊥z (Q)

M⊥x (Q) − iM⊥y (Q)
M⊥x (Q) + iM⊥y (Q)
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⎪ 

⎩ 
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Non-spin-flip
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Magnetic scattering rule

The non-spin-flip scattering is sensitive 
only to those components of the 

magnetisation parallel to the neutron spin

The spin-flip scattering is sensitive only to 
those components of the magnetisation 

perpendicular to the neutron spin

NB  This is one of those points that you should take away with you.  It is 
the basis of all magnetic polarization analysis techniques



Neutron polarization and 
nuclear scattering

   In general a bound state is formed between the nucleus and the neutron during scattering 
with either spins antiparallel (spin-singlet) or spins parallel (spin-triplet).  The scattering 
lengths for these situations are different and are termed b- and b+. 

(see e.g. Squires, p173)

The scattering length operator is

€ 

ˆ b = A + Bσ ⋅ I

€ 

A =
(I +1)b+ + Ib−

2I +1
,  B =

b+ − b−
2I +1

The calculation of the matrix elements now proceeds analogously to the case of 
magnetic scattering

€ 

ʹ′ S ˆ b S =

A + BIz
A − BIz
B(Ix − iIy )
B(Ix + iIy )

 
↑ → ↑

↓ → ↓

⎫ 
⎬ 
⎭ 

 
↑ → ↓

↓ → ↑

⎫ 
⎬ 
⎭ 

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

Non-spin-flip

Spin-flip

Since the nuclear spins are (normally) random
Therefore with the coherent scattering amplitude proportional to   , we can write

€ 

b 

€ 

Ix = Iy = Iz = 0

€ 

b = A i.e. the coherent scattering is entirely non-spin-flip 



~M?( ~Q) = Q̂⇥
⇣

~M( ~Q)⇥ Q̂
⌘

= ~M( ~Q)�
⇣

~M( ~Q) · Q̂
⌘

Q̂

Moon-Riste-Koehler Equations

If the polarization is parallel to the scattering vector, then the 
magnetisation in the direction of the polarization will not be 
observed since the magnetic interaction vector is zero.  i.e. all 
magnetic scattering will be spin-flip

Bringing all this together, we get 

Moon, Riste and Koehler  (Phys Rev 181 (1969) 920)

Remember that:

€ 

↑ → ↑ = b − γ nr0
2µB

M⊥z + BIz

↓ → ↓ = b + γ nr0
2µB

M⊥z − BIz

↑ → ↓ = −
γ nr0
2µB

M⊥x − iM⊥y( ) + B Ix − iIy( )

↓ → ↑ = −
γ nr0
2µB

M⊥x + iM⊥y( ) + B Ix + iIy( )



Spin-incoherent scattering

Isotope incoherent scattering spin incoherent scattering

The other transitions are dealt with in a similar way

Now, let’s take another look at the nuclear incoherent scattering.  We know that this 
is given by 

€ 

b2 − b ( )
2

Applying this to the                  transition, and neglecting magnetic scattering, we get 

€ 

↑ → ↑

€ 

b2 = b + BIz( )
2

    = b ( )
2

+ B2Iz
2 + 2 b BIz

Now, for a randomly oriented distribution of nuclei of spin I, we have

since the distribution is isotropic

€ 

I = I(I +1) = Ix
2 + Iy

2 + Iz
2

   ⇒ Ix
2 = Iy

2 = Iz
2 =

1
3
I(I +1)

Therefore we can write

€ 

b2 − b ( )
2

= b ( )
2
− b ( )

2
+
1
3

B2I(I +1)



Moon-Riste-Koehler II
Finally, we get 

The details of the magnetic scattering will in general depend on the 
direction of the neutron polarization with respect to the scattering vector, 
and also on the nature of the orientation of the magnetic moments

where

€ 

↑ → ↑ = b − γ nr0
2µB

M⊥z + bII +
1
3

bSI

↓ → ↓ = b + γ nr0
2µB

M⊥z + bII +
1
3

bSI

↑ → ↓ = −
γ nr0
2µB

M⊥x − iM⊥y( ) +
2
3

bSI

↓ → ↑ = −
γ nr0
2µB

M⊥x + iM⊥y( ) +
2
3

bSI

€ 

bII = b ( )
2
− b ( )

2

bSI = B2I(I +1)



Scientific Examples



~M?( ~Q) = ~M( ~Q)�
⇣

~M( ~Q) · Q̂
⌘

Q̂ = ~M( ~Q)

Polarized magnetic diffraction
For a ferromagnetic sample aligned in a field perpendicular to the scattering vector we have

and M⊥ has no component in the xy-plane, so that the spin-flip scattering is zero.
This implies that we don’t need to analyse the neutron spin, it will always end up
in the same direction it started in.  Therefore

for neutrons polarized antiparallel to the field

for neutrons polarized parallel to the field

where
€ 

dσ dΩ = FN (Q) − FM (Q)[ ]2

€ 

dσ dΩ = FN (Q) + FM (Q)[ ]2

€ 

FN (Q) = bi exp(iQ ⋅ ri)
i
∑

FM (Q) = γ nr0 gJi Ji f i(Q)exp(iQ ⋅ ri)
i
∑

Notice that to simulate an unpolarized measurement, we simply average the two polarized cross 
sections

NB we have neglected incoherent scattering here

€ 

dσ
dΩ

=
1
2

FN (Q) − FM (Q)( )2
+ FN (Q) + FM (Q)( )2[ ]

      = FN
2(Q) + FM

2 (Q)



After all the reflections have been measured, FM(Q) can 
be deduced (assuming careful measurements of FN(Q) 
have been taken - at low fields/high temps).  Then FM(Q) 
can be inverse Fourier transformed to get the real-space 
magnetisation density

Ni

Polarized magnetic diffraction

So, for example, in the case of Ni we measure a flipping 
ratio of 1.7 at the (111) reflection and  1.1 at the (400) 
reflection 

Using a spin flipper to access these two polarized cross sections we can determine the “flipping 
ratio”, R, of a particular Bragg reflection: 

€ 

R =
dσ dΩ( )⇓
dσ dΩ( )⇑

=
FN (Q) + FM (Q)[ ]2

FN (Q) − FM (Q)[ ]2
=
1+ γ
1− γ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

€ 

γ =
FM (Q)
FN (Q)

with



D3, ILL

Hot neutron 2-axis 
diffractometer at the ILL

Crystal mounted on low-
temperature goniometer to 
access reflections out of 
the equatorial plane

Other PND instruments at LLB, Oak Ridge, SINQ,
FRM-II...



magnetic moment density!

UPtAl!
P. Javorsky et al., Phys. Rev. B 67 (2003) 224429!

Crystal structure

crystal structure!
Derived from Bragg peak positions/intensities

Magnetisation density

Derived from inverse Fourier 
transform of Fm(Q)

Form factor measurements
P Javorsky, et. al., Phys. Rev. B 67 224429 (2003)



Spin density measurements

4

FIG. 4: (Color online) a). Comparison of the form factors
calculated with the experimental atomic positions (zAs =
0.3612) and theoretical energy optimized one (zAs = 0.3499).
The arrow points to scattering vectors that provide evidence
for fairly strong anisotropy in the form factor. b). Experimen-
tal form factors for SrFe2As2 and BCC Fe, and the calculated
form factors with the experimental As position.

form factors are quite similar, with di�erences showing up

at larger and more di⇤cult to measure scattering vectors.
The similarity with bcc Fe is particularly evident in the
total 3d charge density within the mu⇤n-tin sphere. This
is 5.95 electrons for the experimental atomic positions in
SrFe2As2, 6.02 electrons for the corresponding calculated
energy optimized As position and 5.83 electrons for bcc
Fe calculated with the same mu⇤n-tin radius.

We have determined the magnetic form factor of Fe
in SrFe2As2 by neutron di�raction experiments and de-
duced the Fe magnetic moment as 1.04(1)µB. We also
calculated the magnetic form factor by first principles
electronic structure methods using both the experimen-
tal and optimized As positions. While the magnitude
of the calculated magnetic moments strongly depends on
the As position, the normalized magnetic form factors
were remarkably similar with each other and also agreed
well with the normalized magnetic form factors from the
experiment. The largest di�erence between the two the-
oretical calculations was the noticeable increase in the
spin anisotropy for the optimized As position. The ex-
periments were limited by spectrometer geometry and
did not measure far enough in reciprocal space to access
these contributions.

Research supported by the U.S. Department of Energy,
O⇤ce of Basic Energy Sciences, Division of Materials Sci-
ences and Engineering under Contract No. DE-AC02-
07CH11358.
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P =
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1� (P̂ · Q̂)2
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P0 = �Q̂ · (P · Q̂)

Polarization analysis - paramagnets
It can be shown (see Squires p 179) that in the case of a fully disordered paramagnet 
these expressions reduce to
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Therefore, the scalar polarization becomes is given by

This is easily simplified to give the Halpern-Johnson Equation

first derived in 1939, and valid for all paramagnetic and disordered magnets

where we have replaced the z-direction with the general direction ζ = x, y, or z



Halpern-Johnson Equation

We can immediately see that setting the polarization direction along the 
scattering vector has the desired effect of rendering all the magnetic 
scattering in the spin-flip cross-section.

Now we suppose that we have a multi-detector in the x-y plane.  In 
this case the unit scattering vector is

y

x

z

Q

α

where α is the angle between 
Q and an arbitrary x-axis
- the “Schärpf angle”
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cosα
sinα
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⎠ 

⎟ 
⎟ ⎟ 

P0 = �Q̂ · (P · Q̂)
where P` is the scattered polarization direction and P is the incident 
polarization direction



The Schärpf Equations
Substituting this unit scattering vector into the Halpern-Johnson Equation, and directing P in 
three orthogonal directions, x, y and z,  leads to six cross sections (3 non-spin flip and 3 spin-
flip) 

Including the nuclear coherent, isotope incoherent and spin-incoherent terms we have

 Schärpf and Capellmann Phys Stat Sol A135 (1993) 359

x-direction
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D7, ILL

Other wide angle polarized instruments at FRM-II (DNS)
NIST (Macs) - others coming soon

Cold neutrons (to avoid too 
much Bragg scattering)

Can be used as a diffuse 
scattering diffractometer
or a cold time-of-flight 
spectrometer

JRS, J. Appl. Cryst 42 (2009) 69



Supermirrors
Supermirror “bender” analyser array on D7, ILL.  There is over 250 m2 of 
supermirror in the full analyser array.  (c.f. doubles tennis court is 260 m2)

D7, ILL

JRS, J. Appl. Cryst 42 (2009) 69
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d⌦
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d⌦*
� d�

d⌦+
= 4FN (Q)FM (Q))

Polarized magnetic diffraction
- powders

A difference map between parallel and antiparallel
cross-sections leaves the nuclear-magnetic 
interference term

In the case of ferrimagnets, where some Bragg 
reflections are due to entirely one sublattice, this 
can lead to positive and negative peaks in the 
difference pattern.

Chang, et. al., J Geophysical Res. 114 B07101 (2009)

Fe3S4 - Greigite
(NB can’t warm above Tc)



incident neutron polarization, the SF and NSF
cross sections yield information on Syy(Q) and
Szz(Q), respectively. We used a single crystal of
Ho2Ti2O7 to map diffuse scattering in the h, h, l
plane. Previous unpolarized experiments (20, 22)
have measured the sum of the SF and NSF
scattering, but in this orientation only the SF
scattering would be expected to contain pinch
points (26).

Our results (Fig. 2A) show that at temperature
(T) = 1.7 K there are pinch points in the SF cross
section at the Brillouin zone centres (0, 0, 2),
(1, 1, 1), and (2, 2, 2) (Fig. 2A) but not in the
NSF channel (Fig. 2B). The total scattering (SF +
NSF) reveals the pinch points only very weakly
(Fig. 2C) because the NSF component dominates
near the zone center. This is explicitly illustrated
with cuts across the zone center showing that the
strong peak at the pinch point in the SF channel is
only weakly visible in the total (Fig. 3B). The
total scattering (Figs. 2C and 3B) can be com-
pared with the previous observations and calcu-
lations (20, 22), in which no pinch points were
detected. The use of polarized neutrons extracts
the pinch-point scattering from the total scattering,
and the previous difficulty in resolving the pinch
point is clearly explained.

The projective equivalence of the dipolar and
near-neighbor spin ice models (10) suggests that
above a temperature scale set by the r−5 cor-
rections, the scattering from Ho2Ti2O7 should

become equivalent to that of the near-neighbor
model. T = 1.7 K should be sufficient to test
this prediction because it is close to the temper-
ature of the peak in the electronic heat capacity
that arises from the spin ice correlations [1.9 K
(20)]. In our simulations of the near-neighbor
spin ice model (Fig. 2, D to F), the experimen-
tal SF scattering (Fig. 2A) appears to be very
well described by the near-neighbor model,
whereas the NSF scattering is not reproduced by
the theory. However, we have discovered that
S(Q)experiment/S(Q)theory is approximately the same
function f (Q) for both channels. Thus, because
the theoretical NSF scattering function is approx-
imately constant, we find f ðQÞ ≈ SðQÞexperiment

NSF .
This function may be described as reaching a
maximum at the zone boundary and a finite
minimum in the zone center. Using the above
estimate of f (Q), the comparison of the quan-
tity SðQÞexperiment

SF =f ðQÞ with SðQÞtheorySF is con-
siderably more successful. Differences are less
than 5% throughout most of the scattering
map (26).

Cuts through the pinch point at (0, 0, 2)
at 1.7 K (Fig. 3, A and B) show that it has the
form of a low sharp saddle in the intensity. In
order to better resolve the line shape of the pinch
point, we performed an analogous polarized
neutron experiment on a higher-resolution spec-
trometer. To compare with theory, we used an
approximation to an analytic expression (13, 27).

In the vicinity of the (0, 0, 2) pinch point, this
becomes

Syyðqh, qk,qlÞº
q2l−2 þ x−2ice

q2l−2 þ q2h þ q2k þ x−2ice
ð1Þ

Here, xice is a correlation length for the ice rules
that removes the singularity at the pinch point
(27). The high-resolution data of Fig. 3C can be
described by this form, with a correlation length
xice ≈ 182 T 65 Å, representing a correlation vol-
ume of about 14,000 spin tetrahedra. The corre-
lation length has a temperature variation that is
consistent with an essential singularity ~exp(B/T),
with B = 1.7 T 0.1 K (Fig. 4C).

The scattering in the NSF channel is con-
centrated around Brillouin zone boundaries, as

Fig. 2. Diffuse scattering maps from spin ice, Ho2Ti2O7. Experiment [(A) to (C)] versus theory [(D) to
(F)]. (A) Experimental SF scattering at T = 1.7 K with pinch points at (0, 0, 2), (1, 1, 1), (2, 2, 2), and so
on. (B) The NSF scattering. (C) The sum, as would be observed in an unpolarized experiment (20, 22).
(D) The SF scattering obtained from Monte Carlo simulations of the near-neighbor model, scaled to
match the experimental data. (E) The calculated NSF scattering. (F) The total scattering of the near-
neighbor spin ice model.
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Fig. 3. Line shape of the pinch point. (A) Radial
scan on D7 through the pinch point at (0, 0, 2)
[s′ is the neutron scattering cross section; see (26)
for its precise definition]. (B) The corresponding
transverse scan. The lines are Lorentzian fits. (C)
Higher-resolution data, in which the line is a
resolution-corrected fit to the pinch point form Eq.
1 (the resolution width of the spectrometer is indi-
cated as the central Gaussian). (D) SF scattering at
increasing temperatures (the lines are Lorentzians
on a background proportional to the Ho3+ form
factor).
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Diffuse scattering examples

Ho2Ti2O7

T. Fennell, et al. Science 326, 415 (2009)

“monopoles” in H

Spin-Ice
Frustrated ferromagnetic 
system with strong CF 
anisotropy



Polymer diffraction

Complete separation of SI 
scattering

Internal normalisation (inc. D-W 
factor)

Careful analysis of multiple 
scattering

Close comparison with MD 
simulations

Polyisoprene: (CH2CH = C(CH3)CH2)n

Alvarez, et. al.PI-h8

PI-d5

PI-d3

PI-d8

Q (Å-1)

Alvarez, et.al., Macromolecules 36 (2003) 238



Inelastic magnetic scattering

Rule, et. al., Phys. Rev. B 76 212405 (2007)

Pyrochlore - Tb2Sn2O7



Science with Polarized Neutrons

Magnetic slow-relaxation in 
“spin-ice”

Ehlers et al, J Phys: Condens Matter 18, R231 (2006)

S(
Q

,t
)/

S(
Q

,0
)

Glass transition in 
polymer-glass, 
polybutadiene

A. Arbe et al Phys. Rev. E 54, 3853 (1996) 
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