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A well known example of 
disorder…



  

                                                                                                                                                        

(Courtesy of http://www.amasci.com/amateur/traffic/traffic1.html)



  



  

How to avoid traffic congestion...
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Disorder affects us in many 
different ways…

• Avalanches
• Sand, shingle and earth piles
• Congestion in shopping centres, etc.
• Football crowds
• Blood clots
• …
• Gases, liquids and glasses

http://www.traffic.uni-duisburg.de/
http://www.traffic.uni-duisburg.de/


  

What is common to all these 
examples?



  

Answer…

• No two objects can occupy the same space.
• Nonetheless, (usually) there is overall 

attraction between objects, some force 
which brings them closer together

• Only relative positions are correlated.
• No overall arrangement, therefore resort to 

correlation functions to describe 
arrangement.



  

In reality not quite so simple…

• Three- and many- body forces may be 
important.



  

What are the fundamental 
requirements for disordered 

correlation to occur?

• Some attractive forces…
• Some repulsive forces…
• High packing fractions.
• Random positions.



  

Disordered materials can be classified as:
 “Atom jams with marked positional 

correlations.”

In a gas the atoms are free to move (almost) 
anywhere.

In a glass the atoms are highly jammed and 
are unable to diffuse.

In a liquid the atoms and molecules are 
jammed but can still diffuse - “slowly”. 



  

A “typical” liquid, water…



  

The water molecule
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This results in a material which 
looks like this:-



  

and this:-



  

An interesting fact about 
water:

• It takes about 41.5 kJ per mole (i.e. 18 gm) to 
bind a water molecule in the liquid.

• This means for every second that it rains, 41.5 
kJ of heat energy is released for every 18gm of 
water deposited on the ground.

• A heavy rain shower producing 2.5mm of rain 
over 1km2 releases 5.764×1012 J (=1 cycle of 
ISIS!).



  

So how do you characterise structure in 
a disordered system?

By counting.

This gives the “radial distribution function ”, g(r):



  



  

2.5 - 3.5 Å: 12 atoms



  

3.5 - 4.5 Å: 8 atoms



  

4.5-5.5Å: ~20 atoms



  

Average over 
every site in 
the liquid ~ 
1023 sites...



  

What is this radial distribution 
function, g(r), telling us?

• It tells us about the nearest-neighbour 
numbers and distances;

• It tells us about the hardness of the atomic 
core repulsion;

• It tells us about the attractiveness each atom 
has for its neighbours;

• In other words it tells us about the local 
potential energy environment of an atom in 
the material.



  

There is a complication 
however…

• Typical interatomic potentials are not 
oscillatory – they have a repulsive core and 
are attractive beyond the core – van der 
Waals forces.
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Corresponding g(r):

• At zero density, formally exact result:

g r =exp [−U r 
kT ]
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• So why does g(r) oscillate?
• Many body effects…



  



  



  

Effect of many body correlations

Many body 
correlations give rise 
to the oscillations...

BUT we can’t 
estimate them 
without the aid of 
computer simulation



  

Now consider a 2-component 
system:



  



  

1.6 - 2.3 Å: 5 atoms



  

2.3 - 3.0 Å: 1 atom



  

3.0 - 3.7 Å: 3 atoms



  

Partial g(r)’s for Al2O3



  

For “N” components there are 
N(N+1)/2 site-site radial 

distribution functions.

How do we measure these?



  

You can’t measure g(r)

Instead you have to use a diffractometer to do the 
atom counting.

This produces a structure factor, D(Q).
(Actually a differential scattering cross section)

Very different from the crystalline lattice structure 
factor as it has only a few peaks!



  

ISIS SANDALS 
(liquids 

diffractometer)

Incident 
neutron beam

Sample position



  

ILL – D4C



  

Diffraction from disordered materials
 - a simple experiment in principle:

2θλ

Sample

Detector

Incident 
radiation

Scattered 
radiation

Q=
4 sin

λ



  

X-ray diffractometer



  

... gives some data:

X-ray

Neutron



  

Now... NIMROD



  

Wide length-scale data from NIMROD



  

Differential scattering cross section

• The differential scattering cross section is 
related to:-

• For neutrons the self term is subject to 
inelasticity corrections.

• For X-rays the self term is subject to Compton 
scattering corrections.

d 
d QE ,= F s QE ,F d QE 



  

Properties of the neutron differential cross 
section – effect of inelastic scattering

• According to van Hove (1954) the dynamic 
structure factor, S(Q,ε), splits into two terms:
– The self term, Ss(Q,ε), corresponds to atoms 

correlating with themselves.

– The distinct term, Sd(Q,ε), corresponds to atoms 
correlating with other atoms.

• The total scattering cross section is related to:-

d 2 σ
d dε

~
k f

k i
{ 〈b2 〉S s Q , ε 〈b〉2 S d Q , ε  }



  

Sum rules: the “static” structure 
factor

• For distinct scattering :-

– “Instantaneous structure” averaged over positions

• This must be carefully distinguished from the 
elastic structure factor from Bragg scattering

– “Time averaged structure”

∫Q Sd (Q , ϵ ) d ϵ=S (Q ,Δ t=0)−1=
4 πρ

Q
∫r (g (r ,Δ t=0 )−1)sin Qr d r

S d (Q ,ϵ=0 )≡∫ S d (Q ,Δ t )d Δ t



  



  



  



  



  



  



  



  



  



  



  

Time averaged structure



  

Sum rules: the “static” structure 
factor

• For self scattering:-

∫Q
S s Q , ε  dε =1



  

Effect of energy transfer

• Kinematics of neutron scattering:-

• In a diffraction experiment the neutron 
detector integrates S(Q,ε) at constant θ, 
NOT constant Q.

Q2
=k i

2
k f

2
−2k i k f cos θ

ε=
ℏ

2

2m  k i
2
−k f

2 



  

Fixed incident energy plot
Ei = 1eV

Fixed incident energy plot
 Ei = 1eV

Increasing 2θ



  

Effect of energy transfer

• For distinct scattering (Placzek, 1952):-

• For self scattering:-

• Mp ≈  Mn means significant energy loss on 
scattering by protons.

∫Q
 Ss Q , d =

ℏ2Q 2

2M

∫Q
 Sd Q , d =0



  

Fixed incident energy plot
Ei = 1eV

Fixed incident energy plot
 Ei = 1eV

Recoil energy

Increasing 2θ



  

Reactor data



  

Time of Flight diffraction

• Energy dispersive.
• Detector at fixed scattering angle.
• Detector still integrates at constant angle, 

but each time of flight channel corresponds 
to a range of incident energies:

1R 
k e

=
1
k i


R
k f

, k e=
Qe

2sin



  

Constant time-of-flight plots:
2θ = 30º



  

Pulsed Source Data



  

Our raw diffraction data need to be 
corrected:

• Normalise to incident beam monitor readings.
• Correct for background.
• Put on absolute scale by comparison with 

vanadium scattering
• Correct for multiple scattering
• Correct for attenuation and container scattering
• Produce differential scattering cross-section per 

atom or molecule of sample.
• Remove the single atom scattering.
• Merge detectors into a single pattern.



  

Fd Q=∑ , ≥ 2−   c


c

b


b
 { 4 ∫ r 2 2 g  r −1 

sin Qr
Qr

dr }

The structure factor:

The partial structure 
factors, H Q 

The site-site radial 
distribution 
functions, gα β  r 

The atom scattering 
factor or “form factor”

Atomic fraction of
component “”



  

A much more tricky question:
how do we interpret the data?

• For many years the next step was to simply 
invert our scattering equation:

d r  =
1

22 ρ
∫
0

∞

Q2 D Q 
sin Qr

Qr
dQ

= ∑
,α β≥α

2−δ α β  cα cβ bα bβ  gα β  r −1 



  

This leads to many problems

• Truncation errors.
• Systematic errors.
• Finite measuring statistics.
• Some site-site terms are more strongly weighted 

than others.
• These all make interpretation of the data 

unreliable.
• Radial distribution functions (g(r)) do not yield 

the Orientational Pair Correlation Function 
(OPCF).



  

Introduce: computer simulation

• Requires an atom-atom potential energy 
function.

• Place computer atoms in a (parallelpiped) 
box at same density as experiment.

• Apply periodic boundary conditions
– the box repeats itself indefinitely throughout 

space.

• Apply minimum image convention.



  

Minimum image convention

D

Count atoms out 
to D/2



  

Monte Carlo computer simulation

1.Using the specifed atom-atom potential function, 
calculate energy of atomic ensemble.
2.Displace one atom or molecule by a random 
amount in the interval ±.
3.Calculate change in energy of ensemble, ΔU.
4.Always accept move if ΔU < 0
5.If ΔU > 0, accept move with probability
exp[- ΔU/kT].
6.Go back to 2 and repeat sequence.



  

But there is a problem:

We don’t know the potential energy 
function!



  

Introduce Reverse Monte Carlo, 
RMC

1. Build a box of atoms as before. Calculate 
χ2=[D(Q)-F(Q)]2/2

2. Displace one atom or molecule by a random 
amount in the interval ±.

3. Calculate change in χ2 of ensemble, Δχ2.
4. Always accept move if Δ χ2 < 0
5. If Δ χ2 > 0, accept move with probability

exp[- Δ χ2].
6. Go back to 2 and repeat sequence.



  

Introduce Empirical Potential 
Structure Refinement, EPSR

• Use harmonic constraints to define molecules.
• Use an existing “reference” potential for the 

material in question taken from the literature (or 
generate your own if one does not exist).

• Use the diffraction data to perturb this reference 
potential, so that the simulated structure factor 
looks like the measured data.



  

• M measured datasets, N partial structure 
factors:    (Usually M  <  N )

• Assign a “feedback” factor f for the data:

• and (1 – f ) for the simulation:

• Form inversion of 

Introducing the data

F Q = ∑
,α β≥α

2−δ α β  c α c β bα bβ Hα β Q 

wij
' =fwij , 1≤i≤M

wij
' = 1− f  δ i−M  ,j , M<i≤M+N

wij
' , 1≤i≤M+N, 1≤ j≤N



  

F i =1,M+N  Q =[
fw11 fw12   fw1N

fw 21 fw22   fw2N

  

  

fw M1 fw M2 fw MN

1− f  0 . 0 0 . 0   0 . 0
0 .0 1− f  0 . 0   

0 .0 0 . 0 1− f  

   





   

  1− f  0 .0 0 . 0
   0 . 0 1− f  0 . 0

0 .0    0 . 0 0 .0 1− f 

] × [
S1

S2





S N

]

Refining the potential:  M datasets, N partial 
structure factors

ΔU j r =Fourier Transform of { ∑i=1, M

w ' ij
−1 Di Q −F i Q  }, j=1, N
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Summary of Lecture I

• Widespread occurrence of disordered systems 
(macroscopic as well as microscopic).

• Concept of correlation in disordered systems.
• Use radial distribution function (PDF) to 

characterise the correlations in a disordered 
system.

• Use diffraction to count atoms as a function of 
distance.

• Given some diffraction data, what is the atomic 
arrangement?
– Introduce computer simulation.



  

Summary of lecture II

• Computer simulation as a tool to model disordered 
materials

• Molecular systems
• Use of computer simulation to go from 

measurements (D(Q), g(r)) to SDF, bond angle 
distribution, OPCF, etc.

• Some case studies: molten alumina, water, 
amorphous phosphorus, silica, silicon...
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