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Summary of Lecture 1

Discussion of disorder in our world.
Concept of correlation 1n disordered systems.

Use of radial distribution function to characterise
the correlations 1n a disordered system.

Use of diffraction to count atoms as a function of
distance.

How to characterise structure in molecular
systems:



Summary of lecture 11

Extracting the structure factor from the diffraction
experiment.

Computer simulation as a tool to model disordered
materials

Molecular systems:
— SDF, bond angle distributions, OPCF

Use of computer simulation to go from
measurements (D(Q), g(r)) to SDF, bond angle
distribution, OPCEF, etc.

Some case studies: molten alumina, water,
amorphous phosphorus, silica, silicon...
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The liquid structure factor:
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A much more tricky question:
how do we interpret the data?

* For many years the next step was to simply
invert our scattering equation:
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This leads to many problems

Truncation errors.
Systematic errors.
Finite measuring statistics.

Some site-site terms are more strongly weighted
than others.

These all make interpretation of the data
unreliable.

Radial distribution functions (g(r)) do not yield
the Orientational Pair Correlation Function
(OPCF).



Introduce: computer simulation

Requires an atom-atom potential energy
function.

Place computer atoms in a (parallelpiped)
box at same density as experiment.

Apply periodic boundary conditions

— the box repeats itself indefinitely throughout
space.

Apply minimum image convention.



Minimum image convention
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Monte Carlo computer simulation

1.Using the specifed atom-atom potential function,
calculate energy of atomic ensemble.

2.Displace one atom or molecule by a random
amount in the interval +0.

3.Calculate change 1n energy of ensemble, AU.
4.Always accept move if AU < ()

5.If AU > 0, accept move with probability
exp[- AU/KT].

6.Go back to 2 and repeat sequence.



But there is a problem:

We don’t know the potential energy
function!



Introduce Reverse Monte Carlo,
RMC

Build a box of atoms as before. Calculate
=LD(Q)-F(Q)J*/o°

Displace one atom or molecule by a random
amount in the interval +0.

Calculate change in ¥ of ensemble, Ay>.
Always accept move if A ¥ < 0

If A ¥* > 0, accept move with probability
exp[- A x’l.

Go back to 2 and repeat sequence.



This approach has problems,
particularly with molecules.

* Molecules are usually itroduced via
unphysical coordination constraints.

* Especially with molecules the ensemble of
atoms can get “stuck™ 1.e. it does not sample
phase space correctly.

* Various reasons why this can occur.



Introduce Empirical Potential
Structure Refinement, EPSR

 Use harmonic constraints to define molecules.

» Use an existing “reference” potential for the
material in question taken from the literature (or
generate your own 1f one does not exist).

* Use the diffraction data to perturb this reference
potential, so that the simulated structure factor
looks like the measured data.



Introducing the data

factors: (Usually

Assign a “feedback’
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Refining the potential: M datasets, N partial
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What do we measure if there are molecules
present?




However, two issues need to be
addressed.:-

o Issue 1: Often not possible to measure all
partial structure factors.

o Issue 2: Even if we could, what do they
mean?



Structure refinement of liquid
water
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Water partial g(r)’s
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g(r)

Water empirical potentials
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Beyond g(r): the spatial density function




Bond angle distributions



A step further: the orientational pair
correlation function




The spatial density function of
water...



Water structure
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Beyond g(r): the spatial density function




Choose distance range (0-5.7A)
and a contour level

(% of all molecules 1n distance range)
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Water under pressure



doolr)'s for water ot 268K
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Water at 298K, Okbar




Water at 268K, 0.26kbar




Water at 268K, 2.09kbar




Water at 268K, 4.00kbar
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Bond angle distributions
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P(theta)

O-0-H angle distribution
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Probability (Theta)

O-l angle distribution
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A step further: the orientational pair
correlation function




Dipole orientations in water
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The problem of tetrahedrally
coordinated glasses and liquids

(water, a-MX,, a-Si, a-Ge)



Amorphous SiQO,
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Radial distribution functions:
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| L 1 1 o

o0
—

\O
—

4
—

N O 0 O T o O
-— v

(DN pue (1)3



Spatial density function for a-SiO,:




Spatial density function for a-SiO,:




atial density function for a-5i0,:




Compare with amorphous Si
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Amorphous SiQO,
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“First sharp diffraction peak” - FSDP
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Coordination numbers — a-Si
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Triangle or “bond angle” distributions,

a-Si.
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Triangle or “bond angle” distributions,

a-510,.
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Compare structure factors...

(renormalise Q to near-neighbour distance)
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Summary (1)

* Disorder is intrinsic to our existence, and
occurs over a very wide range of length scales.

* We quantify disorder at the atomic level via the
pair correlation function. For molecules this 1s
the orientational PCF, which contains more
information than the radial distribution
functions, g(r).

* Structure factors measured 1n diffraction
experiments derive from the site-site radial
distribution functions.



Summary (2)

« Computer simulation 1s used to generate a
model of the scattering system.

» Diffraction data are introduced either
— via y* (RMC),

or
— via an empirical potential, (EPSR).

* Simulated ensembles are used to calculate a

number of distribution functions not
accessible directly from the experiment.



Summary (3)

Tetrahedrally bonded glasses and liquids show
structural similarities.

Relevance/role of the “FSDP” 1s unclear.

We can only really study these properties by
forming structural models consistent with the data.

Thank you for your attention!
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