Neutron reflectivity in biology and medicine

Jayne Lawrence

Why neutron reflectivity studies?

build up a *detailed* picture of the structure of a surface in the z direction

Data typically analysed using the 'optical maxtrix' method Frequently between 3-7 *different 'contrasts'* measured

What does neutron reflectivity data look like?

What does neutron reflectivity data look like?

Various deuterated forms of a novel nonionic lipid on null water or air contrast matched water (amcw)

Monolayer studies typically performed at RAL on SURF (and CRISP)

SURF beam line at the Rutherford Appleton Laboratories, Didcot, UK

Monolayer studies

•relatively easy to prepare

composition of monolayer
well-defined

 hold monolayer at varying lateral pressure

 lipid monolayers are often a good mimic of membrane

•number of advantages over bilayers deposited on a solid support

Langmuir trough – known amount of lipid spread over a known area

Monolayers as models for bilayers

neutron reflectivity

lipid/surfactant monolayer	surface pressure (mN m ⁻¹)	surfacta distributi width $\sigma_A(\text{\AA})$	nt ion	
2C ₁₈ E ₁₂ ^a 2C ₁₈ E ₁₂ :CHOL	→ 34 40 25 → 34	24.0 ± 0 27.0 ± 0 25.9 ± 0 31.3 ± 0	.3 .2 .3 2	
2C ₁₈ E ₁₂ :DSPC:CHOL –	$\rightarrow 34^{40}$	32.9 ± 0 31.5 ± 0	.3	Lateral pressure in membrane ~ 30-35 mN/m
vesicle		layer <i>L</i> (Å)		Bilayer thickness ~ x2 monolayer
2C ₁₈ E ₁₂ 2C ₁₈ E ₁₂ :CHOL (1:1) 2C ₁₈ E ₁₂ :DSPC:CHOL (1:1:2)	$51 \pm 0.3 \\ 68 \pm 0.3 \\ 60 \pm 0.4$		tnicκness Holds if curvature of bilayer is low

Monolayers of DSPC

Isotope effect for DSPC (C₁₈ phospholipid)

Isotope effect for DPPC (C₁₆ phospholipid)

Little effect on lipid (or surfactant) phase behaviour noticed using:

D₂O instead of H₂O

d-head group instead of h-head group

d-hydrophobe instead of hhydrophobe unless near a phase transition!

Monolayer studies as a mimic of biological membranes

Cytochrome c – cationic protein involved in cell death

Lipid anchorage model of interaction of cytchrome

effect of head group and hydrophobic chain saturation

Monolayer studies to develop non-toxic gene delivery vehicles

Hypothesis

That it is possible to make a zwitterionic phospholipid act as a 'cationic' lipid and complex DNA by the addition of a divalent cation such as Ca²⁺⁺?

-20

0

20

60

40

Distance (Å)

80

100

chains and when present DNA

increasing surface pressure (π) - 10, 20, 30 and 40mN/m

 d_{70} -DSPC/D₂O + 20mM Ca⁺⁺ with (-) and without (--) DNA

here 'seeing' mainly DSPC head group, and when present, DNA

increasing surface pressure (π) - 10, 20, 30 and 40mN/m

 d_{83} -DSPC/acmw + 20mM Ca⁺⁺ with (—) and without (—) DNA

here 'seeing' mainly whole DSPC molecule and, when present, DNA

X-ray reflectivity

Performed on TROIKA-II beam line at the ESRF, Grenoble, France

X-ray reflectivity

DSPC/H₂O + 20mM Ca⁺⁺ with (--) and without (--) DNA

here 'seeing' Ca⁺⁺ and, when present, DNA

All studies at the solid-liquid interface performed at RAL and ILL

SURF beam line at the Rutherford Appleton Laboratories, Didcot, UK

D17 at the Institute Laue Langevin, Grenoble, France

Preparation of supported lipid bilayers using a combination of Langmuir Blodgett & Shaeffer techniques

lipid monolayer

Blodgett deposition

silicon block

phospholipid monolayer spread on surface of trough

Shaeffer deposition

Preparation of supported lipid bilayers using a combination of Langmuir Blodgett & Shaeffer techniques

Binding of cytochrome c to bilayers

information obtained about overall thickness of bilayer, chain and head group, hydration of head group and % coverage of the silicon block by the bilayer **DOPC/POPS** heads

> DOPC heads Solvent Silicon

DOPC/POPS Chain region

Silicon oxide

whether and where cytochrome c bound depended upon preparation method of silicon block and both anionic and neutral lipid

Ozone prepared block bound cytochrome c but a block prepared by RCA1 did not

Unsaturated zwitterionic lipid increased cytochrome c binding to anionic lipid compared to partially saturated lipid

Nature of anionic lipid less important

Characterisation of artificial biomembranes before & after addition of cationic vesicles

The lipid dimyristylphosphatidylcholine (DMPC) *used to give a fluid bilayer*

Outer layer doped with 10 mol% negatively charged dipalmitoylphosphatidylserine (DPPS) to mimic the biological membrane

Bilayers exposed to 0.1mg/ml of DDAB vesicles for 6 hours

layer description	thickness (Å)	roughness (Å)	$\rho (\times 10^{-6} \text{ \AA}^{-2}) 9:1$ d-DMPC:p-DPPS bilayer	$\rho~(\times 10^{-6}~{\rm \AA}^{-2})$ 9:1 $d\text{-}{\rm DMPC}:p\text{-}{\rm DPPS}$ bilayer after 6 h exposure to DDAB vesicles
SiO ₂ solvent headgroup hydrocarbon headgroup	13 ± 2 3 ± 1 8 ± 1 27 ± 2 8 ± 1	2 ± 1 2 ± 1 3 ± 1 3 ± 1 3 ± 1 3 ± 1	3.4 ± 0.2 6.4 ± 0.2 5.7 ± 0.2 6.7 ± 0.2 5.7 ± 0.2 5.7 ± 0.2	3.4 ± 0.2 6.4 ± 0.2 6.1 ± 0.2 6.7 ± 0.2 6.1 ± 0.2

Bilayers exposed to 0.1mg/ml of DDAB vesicles for 15 days

layer description	thickness (Å)	$\stackrel{\rho}{(\times 10^{-6}{\rm \AA}^{-2})}$	roughness (Å)	% solvent
SiO_2	13 ± 2	3.4 ± 0.2	2 ± 1	$0 \\ 49 \pm 5$
DDAB	37 ± 3	0.8 ± 0.2	2 ± 1	

Callow et al Langmuir 21 (2005) 7912

Interaction of cationic vesicles with artificial biomembranes

Change in neutron reflectivity curves for a 9:1 *d*-DMPC: *p*-DPPS bilayer in the presence of 0.1 mg/mL 1:1 DDAB:Chol vesicles (suspended in D_2O) over time

Interaction of vesicles very slow – over days rather than hours

Callow et al Langmuir 21 (2005) 7912

Interaction of gene delivery vectors with artificial biomembranes

Interaction of gene delivery vehicle/lipoplex with artificial biomembrane occurs by lipid exchange

Regardless of vesicle composition the rate of lipid exchange is faster in the presence of DNA

Callow et al Langmuir (2009) 25, 4181

Improved artificial membranes?

Substrate surface has prepared using ozone method has a negative charge

Nature of substrate influences how the cytochrome and vesicles/gene vectors interact with the artificial biomembrane – particularly if surface coverage is low

Need for better membrane models?

Would a supported (or double) floating bilayer be better?

double 'floating' bilayer

Fragneto et al Europhys Lett 53 (2001) 100

Supported Floating Bilayers (FSB)

- The FSB is associated with the substrate
- Cushioned from the substrates constraining effects by a hydration layer 20 – 30 Å thick
- The separation from the substrate is the result of the balance between the electrostatic and Van der Waals interactions that hold the bilayer in place, and the repulsive, entropic 'Helfrich' force which prevents the membrane adhering directly to the support.
- The balance of forces mimics those present in multilammellar vesicles (MLVs)

Development of FSB

A cell membrane comprises of lots of different lipids generally in their 'fluid' liquid crystalline phase

DMPC, a fluid phase lipid at 25 & 37°C, while a good model of the cell membrane, is not a good lipid for production of double bilayers

It is relatively easy to prepare double bilayers from DPPC or DSPC which are both the their gel phase at 25 & 37°C

d₆₂-DPPC FSB

Reflectivity (a) and scattering length density (b) profiles of DDPC double bilayers in H_2O at 25°C and 37°C (dashed), at 45°C (dot dashed) and in D_2O at 37°C (solid)

Talbot et al Langmuir (2009) 25 4168

*d*₆₂-DPPC FSB – after incubation with DDAB-Chol lipoplexes

Neutron reflectivity profiles & fits (a) and SLD (b) from d_{62} -DPPC double bilayer at 25°C after exposure to DDAB-Chol lipoplexes in D2O (up triangles), CMSiO2 (down triangles), CMSi (squares) and H2O (circles)

Destruction of upper bilayer, followed by lipid exchange in lower bilayer

Talbot et al Langmuir (2009) 25 4168

Reflectivity data from 3 solvent contrasts

A lower vesicle concentration of 0.01mg/ml was used

Same effect occurred as was seen with DPPC after addition of lipoplex to DSPC FSB

Talbot et al Langmuir (2009) 25 4168

Improved artificial membranes?

the outer bilayer of systems (a) and (c) rapidly altered in the presence of gene delivery vehicles

surprisingly double bilayer (b) was unchanged over the 24 hour period of the experiment (result recently confirmed using DPPC double bilayers)

New, improved floating bilayer

Phospholipid

- ---- Acryl SAM
 - Covalent linkage

Advantages

Reproducible

SAM stable for long periods

Can prepare using lipids with low phase transitions

Allow the study of the transport of molecules across a bilayer

Preparation of self-assembled monolayer

A. V. Hughes et al. Langmuir (2008) 24 1989-1999

Preparation of supported floating bilayer

A. V. Hughes et al. Langmuir (2008) 24 1989-1999

Interaction of DNA with DPPC bilayers in the presence of Ca⁺⁺

250

hDPPC Bilayer Alone

50

0.5

hDPPC Bilayer with dDNA and Ca Solution

100

150

Thickness (Å)

200

DNA coverage 33% on both inner and outer bilayer

Cartoon of floating bilayer in the absence & presence of DNA & Ca⁺⁺

Use of polarised neutrons

A.P. Le Brun et al Eur. Biophys. J. (2008) 37, 639

Phospholipid bilayers containing intergral membrane proteins

see whole membrane (if h-lipid used)

O.Byron (unpublished)

Phospholipid bilayers containing intergral membrane proteins 43% D₂0

see only the lipid

O.Byron (unpublished)

Phospholipid bilayers containing intergral membrane proteins

13% D₂0

see only the proteins

O.Byron (unpublished)