

I	Isotope Dependence				
	Nickel Isotope	Scattering length <i>b (fm)</i>	Hydrogen Isotope	Scattering length b(fm)	
			1H	-3.7409(11)	
	⁵⁸ Ni	15.0(5)	2D	6.674(6)	
	⁶⁰ Ni	2.8(1)	3T	4.792(27)	
	⁶¹ Ni	7.60(6)	0	5.803	
	⁶² Ni	-8.7(2)	11	$ \begin{array}{l} \downarrow \rangle = \uparrow \uparrow \\ \downarrow \rangle = (\uparrow \downarrow + \downarrow \uparrow) / \sqrt{2} \end{array} $	
	⁶⁴ Ni	-0.38(7)	1 -1	$ \rangle = \downarrow \downarrow$	
$ 00\rangle = (\uparrow \downarrow - \downarrow \uparrow) / \sqrt{2}$ Elsotopic substitution for contrast					
Isotopic substitution to move peak positions in spectroscopy					
-					
Sept SI13					

Summary

- Can take advantage of (*i.e.* control) the refractive index (polarised neutrons, deuteration, isotopic substitution)
- Can extract magnetic structures
- Realistic sample environments
 Time resolution
- Sub nm resolution for structural systems
- Lengthscales (out of plane) monolayer to ~100nm

OSNS Sept 2013

References

- i
- Polarized Neutrons, W.G. Williams, Oxford (1988) Theory of Magnetic neutron and photon scattering, E. Balcar & S.W. Lovesey, Oxford (1988) Introduction to Thermal Neutron Scattering, G.L. Squires, Cambridge (1978)
- (1978) Elements of Modern X-Ray Physics, Als-Nielsen and McMorrow, Wiley & Sons (2001) Magnetism: from fundamentals to nanoscale dynamics, Stohr and Siegmann, Spinger (2006) www.il.eu www.isis.stfc.ac.uk www.estf.eu
- •
- www.esrf.euwww.diamond.ac.uk

OSNS Sept 2013