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Why computer modeling? 

 To replace experiments when they are impossible or 
dangerous 

 Astrophysics, nuclear accidents, earthquakes, ... 

 High temperatures and pressures 

 No stable phases (e.g. water in “no man‟s land”) 

 

 If a good model is available, they are a cheap and 
easy way of obtaining reliable data 

 Rapid development of hardware and software  

 Minimize and optimize expensive experiments 

 

 They can provide unique information 
 Behavior of particular atoms 

 Compute special correlation functions 

 Test theories (normally based on ideal models) 



THEORY EXPERIMENT 

SIMULATION 

But don‟t forget that we do not simulate the real system, 
but a model: Natoms  1023, simulation time  observation 
times in experiment,  approximate potential, etc. 

We use simulations to improve the experiments to 
perform (e.g. multiple scattering, points to measure)  
and to understand better the experimental results!  

Why computer modeling? 



Simulations and neutrons 

 Neutrons see nuclei  
 Van Hove correlation functions: S(Q, )  F(Q,t) 
 

 Much more direct link between simulations and neutron scattering that 
with other techniques (specially for classical MD) 
  

 

 

 Same (Q, ) range 
 time: fs to ns  

   (up to s in some cases;  

     < 1 ns if ab initio) 
 

 length: Å to several nm  

    (few Å with ab initio DFT) 
 

 



What kind of simulation? 

• The model and the method of solution will depend on the purpose of 
the simulation: they should be accurate and efficient. 
 

• Accurate means that the simulation will reliably predict the behavior 
of the real system. 
 

• Efficient means feasible with the available technical means. 

It will depend on the physics to 
study and the computer means 

available. 



Choose way of computing  
interatomic forces 

Hartree-Fock methods 

Semiempirical methods 

Density Functional Theory 

Tight-binding 

Empirical force fields 

Coarse graining 

Brownian Dynamics 

Langevin Dynamics 

Dissipative Particle Dynamics 

 

What kind of simulation? 

Choose way of sampling 
the phase space 

Lattice Dynamics 

Molecular Dynamics 

Thermodynamics 

Phonons 

Monte Carlo 

Thermodynamics 

Structure 



Levels of approximation 

From Kermode et al., in Multiscale Simulation Methods in Molecular Sciences, J. Grotendorst, N. Attig, 
S. Blügel, D. Marx (Eds.), NIC Series, Vol. 42, pp. 215-228 (2009). 

Compromise between computational cost, accuracy and generality 



Electronic structure 

Solve Schrödinger equation:  EĤ

Generally under Born-Oppenheimer approximation (and non relativistic) 

12 ')',( rrerrU
vext = external potential containing the 
interaction of the e  with the fixed nuclei + 
constant term from nuclear-nuclear 
interaction 

• Hartree-Fock and post Hartree-Fock methods (CI and QMC) 

• Limited to small molecules (geometries and vibrations) and crystals 
with small unit cells.  

• Semi-empirical (MINDO, AM1, …): Based on HF formalism, but with 
many approximations and some parameters from experiment. 



Electronic structure: DFT 
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• Exc[n(r)] is the exchange-correlation energy functional which is not known 
and must be approximated in a reasonable way. 

• Based on Hohenberg-Kohn and Kohn-Sham theorems.  

•The electron density determines uniquely the properties of the ground state. 

• It is possible to define an energy functional E[n(r)] and the ground state 
electron density minimizes this functional. 

• The many-body problem of finding the minimum of < |Ĥ| > for many-electron 
trial wavefunctions is reduced to the simpler one of finding the minimum of 
E[n(r)] for trial densities n(r) which depend on only 3 space variables.  



Electronic structure: DFT 

• Need to find useful, approximate functionals for Exc[n] 
 

• Common functionals: 
 

• LDA (Local Density Approximation): 

 - Uses only n(r) at a point 
 - Assumes the functional is the same as  
    in the homogeneous electron gas 
 

• GGA (Generalized Gradient Approximation) 

 - Uses n(r) and n(r)  
 - Generally more accurate,  
    corrects overbinding of LDA 
 - PBE, BLYP, AM05 
 

• Hybrid 

 - Add some fraction of HF 
 - B3LYP, PBE0 

From Perdew, J. Chem. Theory Comput. 5, 902-908 (2009). 



Which functional should I use? 
D. Rappoport, N. R. M. Crawford, F. Furche, and K. Burke. 

In “Computational Inorganic and Bioinorganic Chemistry”, E. I. Solomon, R. A. 
Scott, and R. B. King (eds), Wiley-Blackwell, 2009. 

Available in http ://dft.uci.edu/pubs/RCFB08.pdf. 

 
• All functionals used in practice are approximations. 

• No presently existing functional is highly accurate for all properties of 
interest. 

• Good non-empirical functionals are widely applicable, but good empirical 
functionals are often more accurate (at least for properties and systems 
they‟ve been designed for). 

 

“Clearly, there is no single answer to the title question. At any 
given time, and for any given property and system, there is at 
most a “best” answer. Experience and benchmarking are always 
needed to find that best answer.” 

Electronic structure: DFT 



• Today DFT is the reference method in materials simulation 

• Tipically handles systems containing ~100-1000 atoms, times ~100 ps. 

Electronic structure: DFT 



Electronic structure: DFT 
Problems:  

• Incomplete treatment of dispersion forces  Hybrid functionals 

• Strongly correlated systems  LDA+U, DMFT, … 

• Band gaps in semiconductors underestimated  Hybrid functionals 

• Limited system size  linear scaling DFT  



Electronic structure: Tight Binding 
•  Assumes electrons are tightly bound to the atom to which they belong and have 
limited interaction with surrounding atoms. 

• The wave function of the electron will be similar to the atomic orbital of the 
free atom. 

• Many of the matrix elements of the tight binding Hamiltonian are parameterized 
from experiment or using DFT (DFTB). 

• 3 orders of magnitude faster than DFT, but lost of accuracy and transferability. 

Koskinen, PRL (2007) 



Molecular Mechanics 
• No electrons 

• Molecules represented as „balls‟ + „springs‟ 

• Empirical potential to account for intra- and intermolecular interactions 

• ~5-6 orders of magnitude faster than DFT  ~104 atoms, ~1-10 ns 



Empirical potentials 



Limits of force fields 

• Intrinsic limitations: 
• No information about the electronic structure. 

• No chemistry  Unable to handle reactions (bond-
breaking/forming, electron excitation, charge transfer, etc.) 
 

• Limited prediction power: 
• The accuracy depends on the parameterization. 

• It can only be used for systems having the functional groups that 
were included in parameterization.  

• Limited transferability: Be careful when applying a FF under 
conditions that are very different from the conditions used in its 
parameterization, e.g. P, T.  

 

Needs experimental validation! 
 



• Analysis of energy contributions can be done at the level of 
individual interactions or classes of interactions. 

• Possible to modify the energy expression to bias the calculation.  

•Allow to handle large systems and simulate relatively long times 
(several orders of magnitude faster – and therefore cheaper – 
than quantum-based calculations): 

• Small cluster (16 processors) ~ 104 atoms @ 1 ns/day 

• BlueGene/L (131072 processors) ~ 320 billion atoms (a cubic piece of 

metal of side ~1 m) @ 10 ps/day (Kadau, Int. J. Modern Physics C 

(2006)) 

• Anton (specialized machine for MD simulations) ~ 104 atoms @ 10 

s/day (Klepeis, Curr. Opin. Str. Biol. (2009))  

• NCS (256 nodes) ~ 106 atoms (all-atom satellite tobacco mosaic virus, 

NAMD) @ 1ns/day (Freddolino, Structure (2006)) 

• Perspectives: multimillion-atom (~100 nm scale) @ 30 ns/day on a 

Cray XT5 (105 cores) (Schulz, J. Chem. Theory Comput. (2009)) 

 

And possibilities … 



Coarse Graining 
• Represent the system by a reduced number of degrees of freedom. 

• E.g. protein-lipid CG model by Shih et al. (JPCB 2006): clusters of 10 atoms  
single bead, 4 H2Os  1 „water‟ bead, ion + solvation shell  1 „ion‟ bead, etc. 

• Gain (several orders of magnitude) by reducing N and possibility to use larger 
t. 

• Needs parameterization. 



Langevin and Brownian Dynamics, DPD, … 

• Remove „unimportant‟ degrees of freedom, whose influence is 
replaced by a frictional force and a noise  Langevin dynamics: 
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• If systematic force does not change much on the time scale of the 
VACF, the average acceleration becomes small and can be neglected 
Brownian dynamics: 

j

ijiji RtvxF


)()(0

• If all d.o.f. are eliminated and we work only with space- and time-
dependent densities mesoscopic dynamics. 

• Continuum fluid dynamics  Navier-Stokes 

• Dissipative Particle Dynamics  Solve Navier-Stokes equations using 
an ensemble of special particles. 

• Possible to study systems on the m range during hundreds of s. 



A. Warshel & M. Levitt. J. Mol. Biol. 103: 227-249 (1976) 

QM/MM hybrid methods 

QM subsystem embedded in MM system 



Hierarchical multiscale modelling 

From Lyuvartsev et al., J. Comput. Theor. Nanosci. 6, 1-9 (2009) 



Generate a dynamical trajectory by integrating Newton‟s equations of 
motion, with suitable initial and boundary conditions. We need a good 
way to determine the forces acting on each atom and a accurate 
numerical method to integrate the equations. 

Molecular Dynamics 



• Equations of motion in cartesian coordinates: 

F: evaluate ½N(N 1) pairs 

• Important features of an integrator: 
 minimal need to compute forces (a very expensive calculation) 

 good stability for large time steps 

 good accuracy  

 conserves energy and momentum 

 time-reversible 

 symplectic: conserves volume in phase space 
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Integrating the equation of motion 
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Discretize in time (n steps), with time step t: 

Simplest solution is to use a Taylor expansion: 
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But it does not work too well  Unstable and inaccurate! 

Integrating the equation of motion 
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Error is O( t4) and it does not use the velocities.  
They can be derived as: 
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Integrating the equation of motion: Verlet algorithm 



• Choosing the time step: 
 too small: inefficient phase space sampling 
 too large: numerical instabilities  integrator divergence  MD crash 
 

• Hints: 
 t should not be larger than the meantime between collisions 
 flexible molecules and rigid bonds, 2fs 
 flexible molecules and bonds, 1fs 
 total energy should be conserved  < E2>1/2/E < 10-4 

 

Integrating the equation of motion 

27 



Periodic Boundary Conditions 

• Enables bulk properties to be computed using a limited number of atoms 
 

• Remove surface effects ~ N-1/3 (49% for 1000 atoms) 
 
• When an atom leaves the simulation cell,  it is replaced by another  
with the same velocity, entering from the opposite cell face (number of  
atoms in the cell is conserved)  
 



• Most time-consuming part of the simulation: 
 bonded interactions  O(N) 
 non-bonded interactions  O(N2)  time-consuming 
 

• Dealing with non-bonded interactions: 
 not feasible to include interactions with all images 
 
 minimum image convention: 

- an atom just sees the closest image of every other atom in the system, 
 

 use a non-bonded cutoff: 
- truncate the potential 
- consider interactions only inside a sphere of radius rcut  
- discontinuity in force and energy calculation (truncated) 
 

 

Non-bonded interactions 



• Very long range interactions 
 far beyond primary cell 

 
• 1/r does not die off as quickly as  
volume grows 
 
 
 
 

• Finite only because + and – contributions  
cancel 
 

• Methods: 
 

 treat surroundings as dielectric continuum 
 

 full lattice sum  Ewald sum 
 

Electrostatic interactions 
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Thermodynamic ensembles 

• The integration of the equations of motion keeps constant N, V, and E 
 microcanonical ensemble. 

• But integration errors, force fluctuations and inconsistencies in the 
forces (e.g. generated by the cutoff) may cause slow drifts in the total 
energy. 

• E=const, but not K and U, so systems not in equilibrium will go to 
equilibrium while the temperature changes. 

•We may prefer to work at constant T or P or both to compare to 
experiment. 

 

But we can modify the Lagrangian or couple the system to a 
heat or pressure bath: 

• Several thermostats allow to do NVT simulations: velocity scaling, 
Berendsen, Andersen, Nosé-Hoover. But not all of them sample strictly 
the correct thermodynamic ensemble. 

• There are also different barostats to do NPT simulations. 



Protocol 



 To check: 
 
 energy conservation 
 
 no drift in temperature 
 
 equilibration: 

- exchange between K and U 
- K, U,  converge 
- loss of long-range order for liquids 
- RMSD plateau for macromolecules 
 

 production long enough for: 
- an efficient sampling 
- applying ergodic principle 
 
 

Protocol 



• Ensemble = collection of large number of replicas: 

 each replica has the same macroscopic parameters (e.g. NVT) 

 differ microscopically  fluctuation 

  A  = average over all replicas  ensemble average 

• Molecular dynamics: 

 each time step generates a new configuration of a single replica 

  A  = average over all configurations  time average 

 Ergodic principle  ensemble average = time average 
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• Internal energy: 

 

• Temperature:  

 

• Pressure: 

 

• Heat capacity: 

 

• Useful to monitor the molecular dynamics and/or detect 
unconsistencies 

Extracting the results: Thermodynamics properties 
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The main output of our simulation software will be a trajectory of 
our system: The positions (and velocities) of all the atoms as a 
function of simulation time. They can be used then to compute any 
property that can be expressed as a function of ri(t) or vi(t).  

Running and average values for T, P, and the different contributions 
to the total energy are also given by most programs. 



Extracting the results: Structure 

g(r)=n(r)/

The radial distribution function (RDF) is a pair correlation function that 
describes how, on average, the atoms in a system are radially packed 
around each other.  



Extracting the results: Self-diffusion 

We can use Einstein expression,  r2  = 6 D t + C , to determine the  

diffusion rate from the slope of the mean square displacement.  

m.s.d. u2(t)  = (1/Nm) j [rj(t0+t)  rj(t0) ]
2  

 

Note:  
    

• Average over different time origins   
errors increase with t. 
 



Extracting the results: Self-correlation functions 

C(t) = (1/MNm) j i Ai(tj+t) • Ai(tj)  

If Ai = vi   Velocity Autocorrelation Function (VACF) 
 

Can be used to calculate D: 
           D = Cv(t)dt / 3  

FT 

Density of States 

G( =0)  D 

G( )d  = kBT/M  



Van Hove correlation function:   
 

G(r,t) = (1/Nm)  ij [r + ri(0)  rj(t)]  = Gs(r,t) + Gd(r,t)  

Gs(r,0) = (r) 
 

Gs(r,t )  1/V Gd(r,0) = g(r) 
 

Gd(r,t )   

FT in space of G(r,t) gives the intermediate scattering function, F(k,t), 
and its FT in space and time the dynamic structure factor, S(k, ), 
which can be measured with scattering techniques (in particular, 
neutron scattering).  

Extracting the results: Van Hove correlation functions 



SOME EXAMPLES 



Finding the right structure of Kevlar fibers 

Northolt (Pn) 
Northolt- 

translated (Pn) Liu (Pa) 

The (bio-) polymer; poly(p-phenylene terepthalamide) 
Which is the correct structure? 



First validate the method on the monomer; benzanilide 

DFT simulations: 

• Optimise crystal structure. 

• Calculate force constants in supercell. 

• Construct and diagonalise dynamical matrix for any k-vector 
in the Brillouin zone. 

• Every k-vector has an associated set of eigenvalues and 
eigenvectors, i.e. mode assignments. 

Finding the right structure of Kevlar fibers 



Finding the right structure of Kevlar fibers 



Liu Pa 

Neutron fibre 
diffraction Pb 

D
A

T
A

 

Northolt/Tadokoro 
Pn or P21/n  

Finding the right structure of Kevlar fibers 



Ion conduction dynamics in Sr2Fe2O5 Brownmillerite 

• Promising material for solid-state ion conducting applications 

• Competitive oxide ion mobility at high T 

• QENS data in a single crystal collected for two orientations 

• QENS broadening at 750 C  HWHM ~ 0.16 meV, no marked Q dependence 



Ion conduction dynamics in Sr2Fe2O5 Brownmillerite 

• AIMD simulations (VASP with GGA-PBE functional) 

• 4 Icmm unit cells 

• Longest simulation 150 ps @ 600 C, time-step 2 fs 

• Consistency between simulation and experiment. 

• Largest motion in b direction, but at 875 C becomes isotropic. 

• Local brownmillerite-type vacancy order preserved beyond reported phase 
transition. 

•Challenge: Longer simulations needed and enlarge simulation box. 

 



How does the microscopic structure and dynamics change with 
varying alkyl chain length? 

EmimBr or C2mimBr 

BmimBr or C4mimBr 
 

HmimBr or 
C6mimBr 
 

Complex dynamics in room temperature ionic liquids 



F(Q,t)  DW x T(Q,t)  R(Q,t)  L(Q,t) 

S(Q, )  exp( Q2u2)[T(Q, )  R(Q, )  L(Q, )] 

T(Q, )  L ( T (Q) DQ2) 

R(Q, )  A0
R + (1-A0

R) L ( R) 

L(Q, )  A0
L + (1-A0

L) L ( L) 

S(Q, )  A0
RA0

L L ( T) +  

               (1 A0
R) A0

LL ( T + R) +  

               A0
R (1 A0

L) L ( T + L) +  

               (1 A0
R) (1 A0

L) L ( T + R + L)  

If R  0 (MD, NMR Imanari 2010) then: 

 S(Q, )  A0
L L ( T) + (1 A0

L) L ( T + L)  

QENS analysis 
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353 2.7 ± 0.2 3.9 ± 0.6 

373 3.4 ± 0.5 2.6 ± 0.4 

392 5.1 ± 0.7 3.2 ± 0.2 

412 6.6 ± 0.9 2.5 ± 0.2 

D follows Arrhenius law:    
D = D0 exp( Ea / RT)  with  

 

D0 = (1.7±0.8).10 7m2 s-1  

Ea = 19 ± 2 kJ mol-1 

 

Reasonable agreement with 
NMR (Every, PCCP 2004), 
although D values 3-4 times 
larger. 

Data fitted with two lorentzians: 1 translational-like + 1 local-like 

QENS: C2mimBr dynamics 
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Motion of the ethyl chain from MD 
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QENS analysis using MD input 

Aoun et al. , J. Phys. Chem. Letters  1, 2503 (2010) 



Self-diffusion coefficients 

NMR data: Every et al., Phys. Chem. Chem. Phys. 6, 1758 (2004) 



0.7 ions  

1 ions 

MD: Scaled vs full charges 



Quasielastic widths: Simulation vs Expt. 

Liquid 360K 

Liquid 360K 

Crystal 300K 

Simulation: D (from width of 
narrow line) = 4.9 x 10 10 m2/s 
vs 3.2 x 10 10 m2/s obtained 
directly from m.s.d.! 



EISF: Simulation vs experiment 

Qualitative or even semiquantitative agreement between 
experimental (fitted S(Q, )) and simulated (fitted 
F(Q,t) with equivalent model) widths and EISF’s. 

Liquid 360K 

Crystal 300K 



Global rotation F(Q,t)  EISF by groups 

When looking to individual groups, reasonable agreement 
with model of diffusion on the surface of a sphere. 



Simulated spectra: EISF for chain motions 

Possible to fit to model of rotation in a circle. But meaningful?  



Local motions: Spatial distribution (crystal) 

C6 & C7 
Methyl 

CH2 in ethyl chain CH3 in ethyl chain 



Dynamic transition in proteins 

Doster et al, Nature (1989) 

Ribonuclease A 

Rasmussen et al, Nature (1992). 

Dynamic transition in <u2> correlates with 
the onset of enzymatic activity! 

Myoglobin 

From elastic neutron scattering experiments: 



Water must be present 
for the dynamic 
transition to occur 
 
Glycerol retards the 
onset of anharmonicity 
 

<u2> and proteins: Lysozyme in Glycerol 
 

Tsai et al., Biophys. J. (2000) 



<u2> and proteins: Several transitions 
 

Roh et al., Biophys. J. (2006) 
Lysozime: 

1. Standard dynamical transition at TD~200-230 K. 

2. Low-T onset of anharmonicity at T~100 K even 
for dry protein and related to the onset of 
methyl group rotation. 



Experiment: estimate mean-squared displacement from 
elastic intensity via Debye-Waller factor: I(0) = exp(–Q2<u2>) 

Simulation: calculate resolution-broadened 
S(Q,E) as FT of I(Q,t)R(t), where R(t) is the 
FT of the instrument resolution function 

Calculation of <u2> 



Methyl group dynamics and anharmonicity 

Roh et al., Biophys. J. (2006) 
Krishnan et al., J. Phys. Chem. B (2008) 

Crystalline myoglobin Lysozime 



Protein-solvent coupling 

Tournier et al., Biophys. J. (2003) 

Low T solvent cages protein 
dynamics. 

Dynamical transition more 
pronounced in outer parts of the 
protein. 

Dual heatbath  MD of 1 myglobin + 492 H2O 



Motion decomposition in protein dynamics 

Two randomly oriented lysozime molecules hydrated to h=0.3 

1)/exp(),(),( kTQSQ 

 Relaxation time independent of Q in the range 0.4 to 1.6 Å 1  
Motion confined within a radius of ~3.5 Å. 

Hong et al., PRL (2011) 



Motion decomposition in protein dynamics 

Coordinates of H atoms during 10 ns trajectory: 

Hong et al., PRL (2011) 

 Two types of atoms: 

    I  Diffusing inside a single localized region (cluster) 

   II  Diffusing in clusters and occasionally jumping between them   

                                                    + 

                       Methyl group rotations (3-fold rotations) 



Motion decomposition in protein dynamics 

Localized diffusion (type I) and broad cluster-size distribution. 

 Methyl group rotation with   22 ps. 

Average relation time for jumps ~ ns. 

Hong et al., PRL (2011) 

Model-free interpretation of the spectra in terms of a simple 
decomposition of H fluctuations in  a globular protein. 

MSD of  a type I atom 



Multiscale structure in lignin 
SANS: Structure on length scale ~10-1000 Å 

 MD: 25 lignin polymers (13 kDa) forming an aggregate of size ~84 Å 
(~400000 atoms  106 processor hours ~ 100 years in single proc)  

SANS  
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A(r) = solvent accesible surface area (SASA) 

Rg ~ 42 Å 

Surface morphology invariant over length scales ~1-1000 Å 

Petridis et al., Phys. Rev. E (2011) 



Petridis et al., Phys. Rev. E (2011) 

Multiscale structure in lignin 

Used simulated small aggregates to construct larger ones: 

100 Å 100 Å 

Size distribution of 
surface pores  Many 
pores can bind to 
celulolytic enzymes 
(with radius of catalytic 
domains ~20 Å)  

Lignin aggregates are hydrophobic, 
but they are significantly 
penetrated by water.  

4 shells can be distinguished at 
different distances from the CM 
of the aggregate. 



• Simulations are a very effective tool to obtain a better 
understanding of complex systems. 

• They allow to investigate features and properties that 
are not easily accessible experimentally. 

• Today simulations are easily accessible to 
experimentalists. Good programs and resources are 
freely available and are relatively simple to use. 

Summary 



Software and references 

Codes: 

•DFT : VASP, CASTEP, Siesta, Abinit, CPMD, Materials Studio... 

•FF-MD : NAMD, DL_POLY, Gromacs, LAMMPS, Tinker, Gulp, Materials 
Studio ... 

 
Books:  
 
•Allen & Tildesley: “Computer simulation of liquids”,  
   Oxford University Press (1987)  
 

• Frenkel & Smit: “Understanding Molecular Simulation”,  
  Academic Press (1996) 
 

• Richard M. Martin: “Electronic Structure”,   
  Cambridge University Press (2004) 
 

 


