Application of neutron diffraction to planetary ices & hydrates

Dominic Fortes

Department of Earth Sciences, University College London

Oxford Summer School on Neutron Scattering, September 11th 2013

Lecture Outline

- Introduction icy bodies of the outer Solar System
 What problems do we need to solve, and how can neutrons help us?
- 2. Materials and methods
- 3. Some case studies
 - a) High-pressure behaviour of ammonia dihydrate
 - b) High-pressure behaviour of meridianiite (MgSO₄·11H₂O)
 - c) PVT equation of state of ice VI

d) Understanding the thermal expansion of mirabilite (Na₂SO₄·10H₂O)

A few icy satellites and planetary bodies

Many icy worlds have been active in the past and some are active even today: Saturn's tiny moon Enceladus erupts ice and water vapour into space at 100s of m/s.

Subsurface oceans are known to exist inside most of the large icy satellites, **Europa**, **Ganymede**, **Callisto** and **Titan**

Modelling structure and thermal evolution

Huaux, A. (1951): Sur un modele de satellite en glace. *Bulletin de l'Académie Royale des Sciences de Belgique* **37**, 534-539.

phase behaviour

Some applications of neutron diffraction

elastic properties

astrobiology

rheology

Candidate materials

Primitive volatiles NH_3 , CH_4 , CO, CO_2 , N_2 Chondritic salts and acids $MgSO_4$, Na_2SO_4 , $(NH_4)_2SO_4$, H_2SO_4 Hydrothermal organics CH_3OH , $(CH_2O)_n$

Fortes & Choukroun (2010) Space Science Reviews 185,

Low temperature studies are made using an aluminium slab can with vanadium windows.

Sample mass ~ 6 grams (a bucket-load by X-ray standards)

Contours of viscosity (log₁₀ poise) for ammonia-water mixtures

Crystallisation of ammonia dihydrate from glass

~150 bar; temperature cycled from 173 – 179 K

1.00 0.90 0.80 0.70 Relative height of 112 peak 0.60 0.50 0.40 0.30 0.20 0.10 0.00 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 0 5 10 15 20 d-spacing (angstrom) Time (hours)

Time dependence of {112} peak height

Crystallisation of ADH as a function of time, fitted with Avrami equation

 $X = 1 - \exp(-kt^n)$

Fortes et al., (2009) J. Appl. Cryst. 42, 846-866.

The gas cell design makes a liquid loading unavoidable due to embrittlement of the Bridgman seal at low-T AI and TiZr gas cell sample volume ~ 1.5 cm³

Higher-P sample environment

Paris-Edinburgh large-volume press (0 – 10 GPa)

Sample mass ~ 100 mg For cold loading of solids, need to keep ~ 100 kg of metal cold.

PARIS-EDINBURGH HYDRAULIC PRESS

preech

anvil set[,]

h

illars

Paris-Edinburgh cell anvil Tungsten-carbide, coated with cadmium

Thermocouple taped to anvil

Encapsulated TiZr gasket, filled with silica wool, containing a ball of Pb foil

Case study 1:

Growth of a phase mixture at high pressure

Isothermal compression through a phase transition

Phase transition in ammonia dihydrate upon compression from 0.1 – 525 MPa cubic phase I of ADH phase II of ADH **ADH II** (monoclinic) P = 546 MPa, T = 173 K $V = 307.20 \text{ Å}^3 (Z = 4)$ a = 7.7686(11) Å b = 6.6947(11) Å M(11) = 97.1c = 6.0380(8) Å F(11) = 97.2 (0.0039, 29) $\beta = 101.967(14)^{\circ}$

Systematic absences indicate space-groups, Pn, P2/n, or P2₁/n

Isobaric warming through a phase transition

Partial melting under high pressure

Powder indexing and solution of AMH II structure

(a)

(b)

ice II (simulated)

AMH II (orthorhombic) a = 18.8119(33) Åb = 6.9400(10) Åc = 6.8374(8) Å P = 550 MPa, T = 190 K $V = 892.66 \text{ Å}^3 (Z = 16)$ M(12) = 51.5F(12) = 65.7 (0.0041, 44)

Structure subsequently solved in spacegroup Pbca. Consists of a pentagonally tessellated net similar to that found in tetragonal argon clathrate.

Case study 2:

The high-pressure behaviour of meridianiite

The exsolution of ice indicates a change in hydration state No obvious match to epsomite at high-pressure *Suggests that the new phase has a hydration state between 7 and 11*

Gromnitskaya et al. (2013) Phys. Chem. Min. 40, 271-285

High resolution X-ray powder data from a laboratory diffractometer essential for indexing unknown phases

One solution to this problem is to seek structural analogues with different compositions, which might form novel hydrates under conditions where we can acquire highresolution data.

Occurrence of known MgX⁶⁺O₄·*n*H₂O crystals

<i>n</i> =	4	5	6	7	8	9	10	11
SO ₄	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark
SeO ₄	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		$\checkmark\checkmark$
TeO ₄				work in	progres	s		
CrO ₄		\checkmark		\checkmark		\checkmark		\checkmark
MoO ₄		\checkmark		\checkmark	\checkmark			
WO ₄		\checkmark		\checkmark	only ar	morphou	us solide	s so far

 $MgSeO_4 \cdot 9H_2O$ is particularly interesting because this phase seems to be stable in aqueous solution, although it is not isostructural with any of the other 9-hydrates identified so far.

Case study 3:

P-V-T equation of state of ice VI

P-T distribution of measurements on ice-VI

Measurements made en-route to ice-VI

Pressure-Volume-Temperature (PVT) surface for ice-VI

Volume of fusion, ΔV_m calculated from the new equation of state

Enthalpy of fusion, ΔH_m calculated from the new equation of state

Case study 4:

Understanding the thermal expansion of mirabilite from single-crystal data

The mirabilite structure contains two symmetry independent rings of orientationally disordered water molecules. At room T, the hydrogen atom sites in the rings are apparently half-occupied.

VESTA is a useful tool for visualising scattering density maps

Results

Twenty degrees below room T, we find that the hydrogen atoms sites in the square rings are completely disordered (50 % occupancy) in both ordinary and heavy mirabilite

Note that deuterons produce positive peaks in the F_{obs} maps whereas protons (with a negative scattering length) produce holes, or negative peaks.

Variation in site occupancies as a function of temperature from SXD data

Thanks to all the colleagues who have made this work possible, including

Ian Wood, Matt Tucker, Bill Marshall, Kevin Knight, and the many ISIS Technical & Support staff.

Thanks also to the STFC ISIS Neutron Source for the beamtime required to carry out these measurements.

Thankyou!

(2)