
 
 
 
 
 
 
 
 
 
 

Univerisity of  Oxford, St. Anne’s College 
 
 
 
 
 
 

Exercise	
  Book	
  
	
  
Useful	
  Physical	
  Constants	
   	
   	
   	
   1	
  
	
  
A)	
  Coherent	
  and	
  Incoherent	
  Scattering	
   	
   2	
  
B)	
  Time-­‐of-­‐flight	
  Powder	
  Diffraction	
   	
   5	
  
C)	
  Single	
  Crystal	
  Diffraction	
   	
   	
   	
   10	
  
D)	
  Incoherent	
  Inelastic	
  Scattering	
   	
   	
   13	
  
E)	
  Coherent	
  Inelastic	
  Scattering	
   	
   	
   15	
  
F)	
  Magnetic	
  Scattering	
   	
   	
   	
   	
   21	
  
G)	
  Disordered	
  Materials	
  Scattering	
   	
   	
   23	
  
H)	
  Polarized	
  Neutrons	
   	
   	
   	
   	
   30	
  
I)	
  	
  High	
  Resolution	
  Spectroscopy	
   	
   	
   33	
  
	
  
	
  
	
  
	
  
	
  
The	
  school	
  is	
  supported	
  by:	
  

	
  

	
  
http://www.oxfordneutronschool.org	
  	
  
	
   	
  

13th	
  Oxford	
  Summer	
  School	
  on	
  
Neutron	
  Scattering	
  

	
  2013	
  

2nd	
  –	
  13th	
  September	
  	
  2013	
  



 

 1 

 
 
 
 

Values  of  Physical  Constants 
 
 

Constant Symbol SI Units “Neutron” Units 
Speed of light c 3.00 × 108  m s-1  
Electron charge e 1.60 × 10-19 C  
Boltzmann's 
constant  

 1.38 × 10-23  J K-

1 
0.086 meV K-1 

Planck's constant h 
ħ = h/2π 

6.63 × 10-34 J s 
1.06 × 10-34 J s 

4.14 × 10-12 meV s 
6.58 × 10-13 meV s 

Avogadro's 
number 

NA 6.02 × 1023  mol-

1 
 

Mass of electron me 9.11 × 10-31 kg  
Mass of proton mp 1.67 × 10-27 kg  
Bohr magneton   =  

eħ/2me 
9.274 × 10-24  J/T  

Nuclear magneton  
 

 =  
eħ/2mp 

5.051 × 10-27  J/T  

 
 
 

Properties of the neutron 
 

         mass mn      1.67 × 10-27 kg 
         charge       0 
         spin      1/2 
         magnetic moment        -1.913  

 
  

 
Relations  between  Units 

 
1 meV = 1.6 × 10-22  J  = 0.24 THz  =  8.1 cm-1  = 11.6 K 
 
 
 
 
 

kB

µ B

µN

µN
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A.   Coherent and Incoherent Scattering 
 

These exercises illustrate how to calculate coherent scattering amplitudes 
and incoherent scattering cross sections for nuclear scattering 

 
Formulae 
A neutron of spin ½ interacts with a nucleus of spin I to form two states in 
which the spins are either parallel or antiparallel.  The combined spin J of 
these states is J = I + ½ and J = I – ½, respectively.  Different scattering 
lengths (amplitudes) b+, b– are associated with these states.  The 
probabilities (statistical weights) w+, w– of the states are proportional to the 
number of spin orientations of each state.  This number is 2J + 1, so w+ 
∝ 2I + 2 and w– ∝ 2I. By constraining w+ + w– = 1, we find 
 

w+ = I+1
2I+1𝑤

+ =    𝐼+12𝐼+1       and      𝑤
− =    𝐼

2𝐼+1  (A1) 

 
Suppose that an atom has several isotopes and that the spin of the rth 
isotope is Ir. The coherent scattering length bcoh of the atom is the 
scattering length averaged over all the isotopes and spin states, i.e. 

   
𝑏coh = 𝑏=    𝑐𝑟(𝑤𝑟+𝑏𝑟

++𝑤𝑟−𝑏𝑟
−)𝑟   (A2) 

where cr is the abundance of isotope r, and  𝑤𝑟+ and   𝑤!! are given by (A1) 
with I replaced by Ir.   
 
We define the single-atom coherent scattering cross section by 
 

𝜎!"# = 4𝜋𝑏!"#! = 4𝜋𝑏!    (A3) 
The single-atom total scattering cross section is obtained by averaging the 
separate cross sections for each of the individual isotopes r in both possible 
spin states: 
 

𝜎!"! = 4𝜋 𝑐!
!

𝑤!! 𝑏!! ! + 𝑤!! 𝑏!! !  

                = 4𝜋𝑏!      (A4) 
Finally, the single-atom incoherent scattering cross section is the 
difference between the total and coherent cross sections: 
 

𝜎!"# = 𝜎!"! − 𝜎!"# 

                = 4𝜋 𝑏! − 𝑏!    (A5) 
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Exercises 

 
A1 Table A.1 gives the nuclear spin I of the two most abundant isotopes 
of hydrogen, 1H (protium) and 2H (deuterium), together with the measured 
scattering lengths of the (neutron + nucleus) systems with combined spins  
I + ½ and I – ½.  Calculate 𝜎!"# and 𝜎!"# for 1H and 2H. 
 
Table A.1. 

 
 
 

   spin  I       𝑏! 
     (fm) 

    𝑏! 
   (fm) 

 
1H (protium)   

 

 
       ½ 

    
    10.82 
      

 
    –47.4 
 

2H (deuterium)         1       9.53        0.98 

   1 fm = 10–15 m 

 
You should find that 𝜎!"# for 1H and 2H are quite different. This means that 
the scattering from certain parts of a hydrogen-containing sample can be 
enhanced through selective replacement of the hydrogen atoms by 
deuterium, a process known as isotopic labelling.  
You should also find that 𝜎!!" for 1H is much larger than that of 2H, so that 
𝜎!"# for natural hydrogen is close to that of 1H (natural hydrogen is 99.99% 
1H). Hence, neutron scatterers often try to minimise the amount of 
hydrogen-containing materials (like glue) in the neutron beam during their 
experiments. If hydrogen is present in the sample itself, then the 
background can be considerably reduced if the sample is prepared with 
deuterium instead of hydrogen. 

 
A2 Table A.2 gives the experimental values of the scattering lengths and 
the abundance of the individual isotopes of nickel: 58Ni, 60Ni, 61Ni, 62Ni and 
64Ni. With the exception of 61Ni, the isotopes have zero spin and so b+ is the 
same as b–. Calculate the values of 𝜎!"# and 𝜎!"# for a natural nickel sample 
containing all five isotopes.   
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Table B.2. 
 
Abundances, nuclear spins and scattering lengths of the isotopes of nickel 
 
   
Isotope, r 

 
abundance  
cr 

   
spin Ir 

    𝑏!!  
  (fm) 

     𝑏!! 
   (fm) 

     
     58    68.3% 

 
   0  14.4  14.4 

     60    26.1% 
 

   0    2.8    2.8 

     61      1.1% 
 

3/2    4.6  12.6 

     62      3.6% 
 

   0  –8.7  –8.7 

     64      0.9% 
 

   0  –0.4  –0.4 
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B.   Time-of-Flight Powder Diffraction 

 
B1. 
 

(a) In a time-of-flight powder diffraction experiment the incident 
beam is pulsed, and with each pulse a polychromatic burst of neutrons 
strikes the sample.  The different wavelengths, λ, in a pulse are separated 
by measuring their time-of-flight (t.o.f.), t, from source to detector.  Using 
the table of physical constants at the back, show that the relation between 
wavelength and t.o.f. is given by 

 
 t (μsecs) = 252.8 × λ (Å) × L (m) 
 

where L is the total flight path between the source and detector. 
 
 

(b) A powder diffractometer, with total flight path L = 100 m and 
scattering angle 2θ = 170°, was used to obtain the powder diffraction 
pattern of perovskite, CaTiO3.  Calculate the values of t for the three Bragg 
reflections with the longest times of flight.  (CaTiO3 crystallises in a 
primitive cubic lattice with a unit cell of edge a0 = 3.84 Å.) 
 
 
 (c)  For a sample with a cubic unit cell, show that the time-of-flight t 
of each Bragg peak in the t.o.f. powder diffraction pattern is related to its 
indices H, K, L by: 
 

t ∝ (H2 + K2 + L2)-1/2      (B1) 
 
B2. 
 

Silicon crystallises in the face-centred-cubic (fcc) structure of 
diamond with the lattice points at: 

 
0, 0, 0; ½, ½, 0; ½, 0, ½; 0, ½, ½  

 
In this structure there is a primitive basis of two identical atoms at 0,0,0 
and ¼,¼,¼ which is associated with each lattice point of the unit cell. 
 

(a) Show that the Millar indices H, K, L of the Bragg reflections for 
the fcc lattice are all odd or all even. 
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(b) Show that reflections with an odd value of (H + K + L)/2 such as 
(222) and (442), are forbidden in this structure. 

 
(c) From eqn. (B1) the Bragg reflections in the powder diffraction 

pattern are separated according to their values of (H2 + K2 + L2).   In table 
B.1 all the possible values of (H2 + K2 + L2) are listed in the order of 
decreasing time-of-flight in the range;  

 
    3 ≤ (H2 + K2 + L2) ≤ 40 
  
(This is the range covered in Figure B1) 

 
 

Table B1.   
 
Sums of three squared integers. 
 
    
  H2+K2+L2 

 

 
  H2+K2+L2 

 

 
  H2+K2+L2 

 

 
  H2+K2+L2 

 
          3*           12*           21           32* 
          4*           13           22           33 
          5           14           24*           34 
          6           16*           25           35* 
          8*           17           26           36* 
          9           18           27*           37 
        10           19*           29           38 
        11*           20*           30           40* 

 
 

The values of (H2+K2+L2) in which the integers are all odd or all even are 
marked with asterisks.  

 
(i)   What are the indices H, K, L, corresponding to these asterisks? 
 
(ii)  Which of the fcc reflections are forbidden? 
 
(iii) Which of the allowed fcc reflections overlap with one another? 

 
 
(d) Figure B1 shows the diffraction pattern of powdered silicon, 

taken with the time-of-flight diffractometer HRPD at the ISIS pulsed 
neutron source.  The scattering angle was 2θ = 90.8° and the path length L 
= 96.8 m.  
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Figure B1.  Time-of-flight diffraction pattern of powdered silicon.  The 
observed spectrum has been normalised to a vanadium spectrum: 
vanadium is an incoherent scatterer whose spectrum gives the wavelength 
dependence of the incident neutron flux.   
 
The values of t for the 10 numbered Bragg peaks in Figure B1 were 
measured (to a precision of better than 1 part in 105) giving the results in 
Table B2.  

 
Index all these peaks and determine the linear size a0 of the unit cell of 
silicon. 
 
The position of the first peak appears to be shifted to lower time-of-flight 
than expected.  Any ideas why? 

1 

2 

3 

4 
5 

6 

7 
8 

9 10 
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Table B2 
    
  peak number 
 

  
time of flight (ms) 

  
           1            109.232 
           2              66.912 
           3              57.066 
           4              47.320 
           5              43.424 
           6              38.636 
           7              36.426 
           8              33.457 
           9              31.991 
         10 
 

             29.923 
            

 
B3. 
 
In a t.o.f. neutron powder diffractometer, a sharp pulse of neutrons with a 
range of wavelengths is fired at the sample. The diffracted signal is 
measured at a fixed scattering angles 2θ, and the diffraction patterns comes 
about from measurements of the time taken for the neutrons in a single 
pulse to travel the distance L from the source to the detector. Using the  
de Broglie relationship together with the Bragg’s Law, show that the time t 
taken by the neutrons to travel the distance L is related to the d-spacing of a 
given Bragg reflection by   

          (B2) 
where m is the mass of the neutron. 
 
For an uncertainty of Δθ in the scattering angle (caused by beam 
divergence, or finite sample/detector width), error analysis gives the 
corresponding uncertainty in the d-spacing: 

           (B3) 
Show by differentiation of Bragg’s law that for a given uncertainty Δθ this 
leads to a maximum resolution in the d-spacing of 

          (B4) 
 

 

θsin2ml
htd =

θ
θ
Δ

∂
∂

=Δ
dd

θθΔ=
Δ cot
d
d

2mL 
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In order to maximize the resolution of a t.o.f. powder diffractometer, the 
scattering angle 2θ is chosen to be as close to 180° as possible 
(backscattering detector banks). In this case a significant source of 
uncertainty is in the distance travelled by the neutron beam. Show that the 
uncertainty in the flight path L of ΔL leads to a resolution limit of 

           (B5) 
 
If the only uncertainty in the value of L comes from the depth of a neutron 
moderator, 2 cm thick, calculate the flight paths necessary to achieve; 
 (a) a moderate resolution of Δd/d = 10-3  
 (b) a high resolution Δd/d = 2 × 10-4 
 
Comment on your answers, and check out the real situation at the ISIS 
spallation neutron source by looking at the instruments POLARIS and 
HRPD from http://www.isis.rl.ac.uk. 
  

l
l

d
d Δ
=

Δ L 
L 
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C. Single-Crystal Diffraction 
 

 
C1. 

2.20 km/sec is conventionally taken as a standard velocity for 
thermal neutrons.  (For example, absorption cross sections are tabulated for 
this value of the velocity.)   

 
(i) Using the de Broglie relation show that the wavelength of 

neutrons with this standard velocity is approximately 1.8 Å.   
 
(ii) What is the kinetic energy of these neutrons?  (See values of 

physical constants, p1) 
 
(iii) What is the energy of an X-ray photon of wavelength λ = 1.8 Å? 
 
(iv) Calculate the velocity of a neutron having the same energy as 

this X-ray photon. 
 

 
 
C2. 

A beam of “white” neutrons emerges from a collimator with a 
divergence of ±0.2°. It is then Bragg reflected by the (111) planes of a 
monochromator consisting of a single-crystal of lead. 

 
 (i) Calculate the angle between the direct beam and the [111] axis of 

the crystal to produce a beam of wavelength λ =1.8 Å. (Unit cell edge a0 of 
cubic lead is 4.94 Å) 

 
(ii) What is the spread in wavelengths of the reflected beam?    
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Questions C3 and C4 are concerned with the treatment of Bragg 
scattering in reciprocal space.  C3 refers to the scattering of neutrons of a 
fixed-wavelength, and C4 to the scattering of pulsed neutrons covering a 
wide band of wavelengths. 

 
C3. 

 
A single crystal has an orthorhombic unit cell with dimensions  

a = 6 Å, b = 8 Å and c = 10 Å.   Plot the reciprocal lattice in the a*-b* 
plane adopting a scale of 1 Å-1 = 20 mm. 

 
A horizontal beam of neutrons of wavelength λ = 1.8 Å strikes the 

crystal.  The crystal is rotated about its vertical c axis between the settings 
for the (630) and (360) Bragg reflections.   Draw the Ewald circles for 
these two reflections.  How many (HK0) reflections will give rise to Bragg 
scattering while the crystal is rotated between (630) and (360)?   

 
 

C4. 
A pulse of neutrons with a wavelength range from 1.8 Å to 5.0 Å 

undergoes Bragg scattering from this crystal.  The neutron beam is parallel 
to the a axis of the crystal and strikes the crystal at right angles to the c 
axis.  Using the Ewald construction find the maximum number of Bragg 
reflections which could be observed simultaneously in the horizontal 
scattering plane. 

 
C5. 

 
 

Figure C1 
High-temperature cubic phase of BaTiO3 
 
Ba2+ 0, 0, 0 
Ti4+ ½, ½, ½ 
O2- ½, ½, 0; ½, 0, ½;  0, ½, ½ 
 
 

(i) The diagram shows the high-temperature cubic unit cell of BaTiO3 
alongside a list of the fractional coordinates of the ions in the unit cell. 
Show that the intensity I(00L) of the neutron beam diffracted from the (00L) 
planes of cubic BaTiO3 is proportional to 
 

[bBa + (-1)L bTi + (1 + 2(-1)L )bO]2, 
 
where bBa, bTi and bO are the coherent scattering lengths of the nuclei.  
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(ii)  On cooling through the ferroelectric transition temperature Tc = 130 C 
the structure of BaTiO3 undergoes a displacive transition in which the Ti4+ 
and O2- ions move in opposite directions relative to the Ba2+ ions. As a first 
approximation the fractional coordinates of the ions in the distorted phase 
are 
 Ba2+ 0, 0, 0 
 Ti4+ ½, ½, ½+δ 
 O2- ½, ½, -δ; ½, 0, ½-δ; 0, ½, ½-δ, 
where δ « 1. 
 

The intensity of the (005) neutron diffraction peak from a single 
crystal of BaTiO3 is found to increase by 74% on cooling the crystal 
through Tc. Use this observation to determine δ.  
 
(iii) Explain why it is advantageous to use neutron diffraction, rather than 
X-ray diffraction, to determine the ionic displacements.  
(Assume that the X-ray atomic scattering factors, f, for the (005) reflection 
are proportional to the atomic number Z.)  
 

Coherent scattering lengths:  
  bBa  =  5.25 x 10-15 m  
  bTi  =       -3.30 x 10-15 m  
  bO =  5.81 x 10-15 m  
 
atomic numbers:    
  ZBa  =  56 
  ZTi  = 22  
  ZO  =  8 
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           D.  Incoherent Inelastic Scattering 
         (with a Pulsed Neutron Spectrometer) 

 
 
IRIS is an "inverted-geometry" spectrometer, which is installed at 

the pulsed neutron source ISIS.  A white beam of neutrons strikes the 
sample, and is scattered to the pyrolytic-graphite analyser.  The 002  
planes of the analyser Bragg reflect  the neutrons to the detector.  The 
distance from the moderator to the sample is 36.54 m, and the distance  
sample-to-analyser-to-detector is 1.47 m.  (See Figure D1.) 

 

 
Figure D1.  Geometry of the IRIS spectrometer. 

 
 

The IRIS spectrum shown in Figure D2 is for a sample of ammonia 
intercalated between the layers of oriented graphite.  The central peak 
corresponds to elastic scattering by the sample, and the two outer peaks 
arise from inelastic scattering due to the tunnelling of hydrogen atoms 
between adjacent potential  wells of the ammonia molecule. 

 

Moderator

Sample

Analyser Detector
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Figure D2.  Time-of-flight spectrum of ammonia intercalated in graphite, 
measured on IRIS 
 
D1.  

(i) What is the energy selected by the crystal analyser ?   
 
(ii) The d-spacing of the (002) planes in pyrolytic graphite is 3.35 Å.  
What is the Bragg angle θA of the analyser?   
 
(iii) What is the advantage of using such a high take-off angle 2θA 
for the analyser? 

 
D2.  

Identify the peaks in the spectrum which are associated with energy 
gain and with energy loss.  What is the magnitude of the energy transfer for 
these peaks ? 

 
 

D3.  
(i) Why are the intensities of the energy-gain and energy-loss peaks 
    different?   
 
(ii) What does this difference tell us about the temperature of the 
sample? 

100
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0
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E.  Coherent Inelastic  Scattering 
(with a Three-Axis Spectrometer) 

 
 
One of the most important instruments used in neutron scattering is 

the three-axis spectrometer.  A schematic drawing of the machine is shown 
in Figure E1.  By employing a monochromatic neutron beam of a definite 
wave-vector ki (of magnitude ki = 2π / λi with λi the incident wavelength) , 
which is incident on a single crystal in a known orientation, and by 
measuring the final wave-vector kf after scattering by the sample, we can 
examine excitations such as phonons (in which the atoms are excited by 
thermal vibrations) or magnons (in which the spin system of the atom is 
excited).   

 
  

 
 
Figure E1.  Three-axis spectrometer. 

 
 

The three-axis instrument appears to be complicated, but it is conceptually 
simple and every movement may be mapped by considering the so-called 
scattering triangle (Figure E2).  In practice, what is difficult about a three-
axis machine is that there are many different ways of performing an 
experiment, and choosing the appropriate configuration is often the key to 
performing a successful experiment.  This is in contrast to a powder 
diffraction experiment, where one simply puts the sample in the beam and 
records the diffraction pattern. (See Section B). 

 
  

Neutron 
Source

Sample

Monochromator

Detector

Analyser

2θM

2θA

ki

kf

φ
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Figure E2.  Scattering triangle representing the momentum ħQ transferred 
to the sample when the wavevector of the neutron changes from ki to kf. φ 
is the scattering angle. 

 
In the following we shall consider how one actually measures a 

phonon excitation, using various diagrams in reciprocal space to represent 
the process. We use formulae which apply to all scattering processes (both 
neutrons and X-rays).   

 
Momentum conservation gives 

 
     Q = ki - kf               (E1) 

 
where Q is the scattering vector.  If φ is the angle between ki and kf, we 
have 
    Q2 = ki

2 + kf
2 - 2 ki kf  cos φ    (E2) 

 
Energy conservation gives 
 
     ΔE = Ei - Ef        (E3) 
 
where Ei is the energy of the incident neutron, Ef is its energy after 
scattering, and ΔE is the energy transferred to the scattering system.  ΔE 
may be positive (neutrons lose energy) or negative (neutrons gain energy).  
If k is the wave-number of a neutron, its energy E is related to k by 
 
    E = 81.8 / λ2 = 2.072 k2          (E4) 
 
where E is in  meV, λ is in Å  and k is in Å-1.   

 
  

kf

ki
Q

φ
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For the following exercises, imagine that you wish to investigate the 
low-energy spectra of silver chloride, AgCl, which is a cubic crystal with a 
face-centred cubic unit cell.  You have been allocated time on a three-axis 
spectrometer, which works with incident neutrons of energy from 3 to 14 
meV.   

 
Figure E3 shows the (HHL) plane of reciprocal space.  The cubic 

lattice parameter a0 of AgCl is 5.56 Å.  One reciprocal lattice unit (r.l.u.) is 
equal to 2π / a0 or 1.13 Å-1.  The vector from the origin to any point HKL of 
the reciprocal lattice is of length, 2π / dHKL where dHKL is the spacing of the 
(HKL) planes in the real-space lattice.   

 

 
 
Figure E3.  (HHL) plane in reciprocal space of cubic crystal. 
 

 
 
  

(HH0)

(00L)
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F1 
 
Which are the allowed points (giving non-zero Bragg reflections) of the 
reciprocal lattice in Figure E3?  Mark them with a filled-in circle—they are 
the so-called zone-centres of the Brillouin zone.  Leave the disallowed 
points as open points—these are the zone-boundaries of the Brillouin zone.  
(Note that the reciprocal lattice of a face-centred cubic crystal is a body-
centred cubic lattice.) 

 
 
F2 
 
Ei ranges from 3 to 14 meV.  Calculate the maximum and minimum values 
of the wavelength λi and the wave number ki of the incident beam.   

 
F3. 
 
We shall begin our experiment using the maximum value of ki and orienting 
our crystal to find the 220 Bragg reflection.  The scattering we observe is 
elastic scattering, which is much stronger than the inelastic scattering. 
 

(i) What is the magnitude of Q220 = 2π / d220 
      Draw Q, ki and kf for the 220 reflection. 
 

(ii) What is the angle φ between ki and kf? 
 
(iii) What is the relation between the Bragg angle θB at the sample 
       and φ? 
 
 

F4. 
 
We can now start our inelastic experiment.  Consider the dispersion 

curves for AgCl shown in Figure E4.  Let us suppose that we wish to 
measure the phonon with a reduced wave vector of 0.4 propagating in the 
[00L] direction and that the phonon is transverse acoustic.  (A shorthand 
notation for this is TA[00L].)  Using the conversion constants on p1 we see 
that the energy of this phonon is about 3meV.   

 
In Figure E3 draw the wave-vector q of this phonon away from the 

220 zone-centre.  (By zone-centre we mean q = 0) 
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Figure E4.  Phonon dispersion curves of cubic AgCl. 
 
 
We will perform our experiment by using the maximum value of ki. 
 
E5. 

 
Work out the possible values of kf and φ.  (There are two solutions 
depending on whether ΔE which is the phonon energy, is chosen to be 
positive or negative.) 

 
E6. 

 
It turns out that better resolution occurs for energy loss than for energy 
gain.  Draw the configuration of ki and kf in Figure F3 for energy loss. 

 
Another factor influencing the intensity which we observe in our 
experiment is the so-called Bose factor n(E).  This gives the population of 
phonon states at any given energy and temperature: 

 
     

 
The intensity for neutron energy loss is proportional to [1 + n(E)],  whereas 
for neutron energy gain  it is proportional to n(E) . 
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E7. 
 

(i) Calculate the Bose factors for the energy gain and energy loss 
     configurations in our example assuming that the sample is at a 
     temperature of: (a) 300 K, (b) 0 K.   
 
(ii) Given the intensity relationships above, which way would we do 

        the experiment with the sample at (a) room temperature,  
                (b) liquid helium temperature ? 

 
E8. 

 
Is it possible to measure the TA[00L] phonon around the 440 reciprocal-
lattice point ?  
 
To map out the dispersion curves in Figure E4, we would do energy scans, 
say from 2 to 8 meV, at a series of q values between [220] and [221].  A 
single peak would appear on each scan, giving the phonon energy for that 
reduced wave-vector. 

 
E9. 

 
Suppose an experiment is performed to measure the phonon dispersion 
curves of potassium on a three-axis spectrometer, when the energy of the 
beam scattered into the analyser is held fixed at 3.5 THz. For a 
measurement of the LA mode at Q = [2.5, 0, 0], what will be the energy of 
the incident beam for an experiment in which the neutron beam loses 
energy in the creation of a phonon. The phonon dispersion curves of 
potassium are given in Fig. E9, and the lattice parameter of potassium is 
5.23 Å. 
 
 
Figure E9. Acoustic mode 
dispersion curves for 
potassium (bcc) measured 
by inelastic neutron 
scattering. (Data taken from 
Cowley et al. Phys. Rev. 15, 
487, 1966.) 

 
 
 
 
 
 

0
0

1 0

1

2

(0 0 ζ) (ζ ζ ζ)

Reduced wave vector (ζ)

Fr
eq

ue
nc

y 
(T

H
z)



 

 21 

 
   F.  Magnetic Neutron Scattering  
 

F1. Derive the expression for the convolution of two Gaussians. 
 

 
Figure F1:  The cubic perovskite structure of KNiF3 

 
 
F2. KNiF3 has a cubic perovskite structure, shown in Figure F1. It 
becomes antiferromagnetic below a Néel temperature of  TN = 275 K.  In 
this magnetic structure, the magnetic moments lie along the edges of the 
cube.  Each moment is antiferromagnetically coupled to its nearest 
neighbour. 
 
 Start by assuming that the material has a single magnetic domain and 
that the magnetic moments point along c. 
 
2.1 Draw the magnetic unit cell in real space. 
 
2.2 Draw the nuclear reciprocal lattice plane spanned by [110],[001] 
from –2 ≤ h,k,l ≤ 2 
 
2.3 Superimpose on this the magnetic reciprocal lattice.  Index the 
magnetic points with the magnetic reciprocal lattice units. 
 

Ni

F

K

a
b

c
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2.4 Write the magnetic structure factor for the magnetic peaks.  Will all 
the peaks have the same intensity?  If not, why not?  What implication does 
this have for the symmetry of the magnetic lattice? 
 
 
F3.   KNiF3 is said to be an excellent example of a Heisenberg 
antiferromagnet.  This means that it will have almost no anisotropy and the 
spin waves between the Brillouin zone centres will resemble something 
like in figure D2. 
 

Assume that the spin waves can be described using a classical 
picture (i.e. magnetic moments precessing on cones).  Identify the Brillouin 
zone centres along the [001] and [110] axes.  Will spin waves be 
measurable along these directions?  If yes, how will the intensities 
compare? 
  
 

 
Figure F2: Schematic showing a spin wave dispersion from a 

Heisenberg antiferromagnet. 
 
 
F4.   Now assume that the sample has many domains.  What will happen 
to the intensities of the Bragg peaks and the inelastic scattering? 
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G.  Disordered Materials Diffraction 

 
G1. 
The interatomic potential, the pair distribution function, the 
coordination number, and the structure factor. (N.B. To do this 
exercise it is helpful to have access to a computer spreadsheet.) 
Typically atomic overlap is prevented by strong repulsive forces that come 
into play as soon as two atoms approach one another below some 
characteristic separation distance σ (which is usually expressed in units of 
Å = 10-10m). At greater distances the atoms are normally attracted to one 
another by weak van der Waals (dispersion) forces, the magnitude of which 
is governed by an interaction parameter ε, which can be expressed in units 
of kJ per gm mole. 
These facts can be conveniently (but only approximately) expressed by the 
model Lennard-Jones potential energy for two atoms separated by a 
distance r: 

     (G1.1) 

The radial distribution function (RDF), normally written g(r) and also 
called the pair distribution function (PDF), describes the relative density of 
atoms (compared to the bulk density) of atoms a distance r from an atom at 
the origin. 
G1.1 The pair potential. 

a) With ε = 0.6kJ/mole and σ = 3.0Å, sketch this function approximately in 
the distance range 0 – 10Å. 

b) What do the values of ε and σ signify? 
c) Mark on your graph the repulsive core and dispersive regions. 
G1.2 Low density limit.  
According to the theory of liquids (see for example Theory of Simple 
Liquids, J P Hansen and I R McDonald, 2nd Edition, Academic Press, 
1986), in the limit of very low density (e.g. like the density of the air in the 
atmosphere), the PDF between atom pairs is given by the exact expression: 

      (G1.2) 
where kB is Boltzmann’s constant.  In the units of kJ per mole kB = 
0.008314 kJ/mole/K. 
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a) Sketch this function for the Lennard-Jones potential used in G1.1 a) at 
(say) T = 300K. g(r) is the primary function which is being measured in a 
diffraction experiment. 
b) From your sketch, describe briefly the main differences between U(r) 
and g(r). 
c) Describe qualitatively what would happen to glow(r) for example if you 
increased ε by a factor of 2, or increased σ by 20%? 
Note that in the limit of zero density glow(r) does not go to zero. 
G1.3  High densities.  
Of course real materials occur with much higher densities than those of low 
density gases. This gives rise to an additional contribution to g(r) from 
three-body and higher order correlations. In general these are difficult or 
impossible to calculate analytically, so that resort has to be made to 
computer simulation to estimate the effect of many body correlations. 
Figure G1.1 shows a simulated g(r) for our “Lennard-Jonesium” of G1.1, at 
two densities, (a) r = 0.02 and (b) r = 0.035 atoms/Å3 respectively. 

 
Figure G1.1 
a) Comparing these with your “zero density” sketch of g(r) from G1.2, 
describe the main effects of many-body correlations on g(r). In particular:- 
i) How does the position of the first peak move with the change in density? 
ii) How do the positions of the second and subsequent peaks move with 
change in density? 
iii) Is the amount of peak movement what you expect based on the density 
change? 
b) Why do you think many-body correlations have the effect they do? 
G1.4 Coordination numbers  
These are defined as the integral of g(r) in three dimensions over a 
specified radius range:- 
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  (G1.3) 
The “running" coordination number at radius r is defined as N(0, r) , which 
is sometimes written simply as N(r) . Figure G1.2 shows the running 
coordination numbers for the RDFs of Figure G1.1 

 
Figure G1.2 
a) Using the grid provided estimate approximately the coordination number 
up to the first minimum in g(r) for each of the cases shown in Figure G1.1 
This is what is frequently quoted as the “coordination number” of the atom 
at each density. Do these numbers scale with the density? 
b) If instead we had used the same distance range for both densities would 
the coordination numbers scale with density? 
G1.5 The structure factor.  
The diffraction experiment does not measure g(r), but its Fourier transform, 
the structure factor, H(Q), where 

    (G1.4) 
where Q, the wavevector transfer in the diffraction experiment, is given by, 
Q= 4π sin θ/λ , with 2θ the detector scattering angle, and λ the radiation 
wavelength. 
The structure factors corresponding to the two densities of Lennard-
Jonesium in G1.3 are shown in Figure G1.3. 
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a) Describe the effect of changing the density on the structure factor. How 
does this compare with effect of changing the density on the radial 
distribution function? 
b) What is the (approximate) relationship between the position of the first 
peak in g(r) and the first (primary) peak in H(Q)? 
c) What would happen to the position of the first peak in H(Q) if we 
increased the value of σ ? 
d) Given that the radial distribution function remains finite at all densities, 
using Eq. G1.4 what is the structure factor of an infinitely dilute gas? 
 
G 2.  
Two component systems: use of isotope substitution and the case of 
molten ZnCl2. 
The diffraction pattern from a system containing 2 atomic components can 
be written as 

    (G2.1) 
where  cα is the atomic fraction and bα is the neutron scattering length of 
component α, Hαβ(Q) is the partial structure factor (psf), analogous to (1.4) 
above, for the pair of atoms α,β, defined by: 

       (G2.2) 
and gαβ(r) is the site-site radial distribution function of β atoms about α. 
The brackets around the scattering lengths indicate that the scattering 
lengths have to be averaged over the spin and isotope states of each atomic 
component. The coordination number of β atoms about atom α can be 
defined in an analogous manner to Eq. G1.3 

  (G2.3) 

F (Q) = c2
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A general rule is that if there are N distinct atomic components in a system, 
then there are N(N +1)/2 site-site radial distribution functions and partial 
structure factors to be determined. By “distinct atomic components” we do 
not necessarily mean atom types. For example a methyl hydrogen atom on 
an alcohol molecule is distinct from the point of view of the structure to a 
hydroxyl hydrogen atom, even though they are the same atom type. 
G2.1 A classic example of the application of the isotope substitution 
method to a two-component liquid is the molten ZnCl2 experiment of 
Biggin and Enderby (J. Phys. C: Solid State Phys., 14, 3129-3136 (1981)). 
a) What are the atomic fractions of Zn and Cl in ZnCl2 salt? 
b) Hence, based on Eq. G2.1, write down a formula for the diffraction 
pattern of ZnCl2 in terms of the Zn-Zn, Zn-Cl and Cl-Cl partial structure 
factors. 
c) Given that two isotopes of chlorine are available, 35Cl and 37Cl, with 
markedly different scattering lengths (11.65fm and 3.08fm respectively) 
briefly explain how you might extract the three partial structure factors for 
ZnCl2 experimentally. 
d) Are there any other experimental techniques that could be used to do 
this? 
G2.2  Figure G2.1 shows the actual diffraction data of Biggin and Enderby, 
while Table GI below lists the neutron weights outside each partial 
structure factor for each of the Biggin and Enderby samples: 

 
Table GI 
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Figure G2.1 Diffraction data (points) for molten zinc chloride using 
different mixtures of chlorine isotopes. The line is a modern fit to these 
data using an EPSR (empirical potential structure refinement) computer 
simulation. 
a) On the basis of the numbers in this table describe any problems that 
might arise in attempting to invert the diffraction data to partial structure 
factors. Look also at the diffraction data themselves, in Figure G2.1. 
b) Given those reservations, what might happen when we try to convert the 
extracted partial structure factors to radial distribution functions using the 
inverse Fourier transform: 

  (G2.4) 
c) Describe another method that might be used to separate out the site-site 
radial distribution functions from the measured diffraction data. 
G2.3 Figure G2.2 shows a computer simulation of the radial distribution 
functions and running coordination numbers of molten zinc chloride, 
ZnCl2, as derived from the Biggin and Enderby diffraction data. 
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Figure G2.2  Radial distribution functions (lines, left-hand scale) and 
running coordination numbers (point, right-hand scale) for molten zinc 
chloride. 
 
a) Using the grid, or other method, estimate approximately the coordination 
number of Cl around Zn. What would be the corresponding coordination 
number of Zn around Cl? 
b) Given this number, and the position of the Zn-Zn and Cl-Cl first peaks, 
what can you say about the local structure in molten ZnCl2? 
c) For the region beyond the first peaks, what do you notice about the three 
site-site rdfs for molten ZnCl2? Use this to speculate on what might be 
happening to the ordering of the Zn and Cl atoms. 
 



 30 

H: Polarized Neutrons 
 

 
H1. a) A measurement of a Si Bragg peak using the instrument in Fig. 

H1, give 51402 counts/second with the flipper off and 1903 counts 
per second with the flipper on?  What is: a) the Flipping Ratio, and 
b) the beam polarization?  Provide also a calculation of the 
experimental uncertainty in these values. 
 
b) What would be the main sources of systematic error in this 
measurement?  
 
 

Figure H1 
 

 
 
H2. a) Fig. H2 shows a configuration for a Dabbs-foil (current sheet) 

flipper, designed for neutrons of wavelength 2 Å.  A current I flows 
vertically along the foil, giving rise to a horizontal field BF = 3mT.  
The overall guide field BG – also equal to 3 mT – is cancelled at the 
foil position by correction coils.  The overall distance between the 
purely vertical guide field regions is 20 cm.  By checking the rate of 
the field rotation, state whether you believe that this is a good design 
for a π-flipper.   
 
[Hint: The neutron gyromagnetic ratio, γn, is the ratio of the neutron 
magnetic moment to its angular momentum, i.e.:  γn = μn / ½ħ  = 1.83 
× 108 rad. s-1 T-1 ] 
 
b) Suggest ways in which the design may be improved. 

 
 
 
 
  

polarizer 

analyser 

detector π-flipper 

Si sample 
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Figure H2: Design for a Dabbs’ Foil π-Flipper 
 
 

H3. a) Assuming that a polarizing filter has an absorption cross-section 
consisting of a spin-dependent part and a spin-independent part of the 
form 
     𝜎± = 𝜎! ± 𝜎!   
show that the neutron polarization and transmission through the filter 
are given by 
   𝑃 = −tanh(𝜎!𝑁𝑡), and 𝑃 = exp(−𝜎!𝑁𝑡)cosh(𝜎!𝑁𝑡) 
 
[Hint: the number of neutrons transmitted through the filter will be 
proportional to exp(-Nσ t) where N is the number density of scatterers 
in the filter, and t is the thickness] 
 
b) Show that the polarization of the 3He nuclei is given by: 

      
0

p
HeP

σ

σ
= − , 

and hence find expressions for the polarization and transmission of a 
3He spin-filter. 
 
[Hint: use the expression 𝜎± = 𝜎!(1 ∓ 𝑃!") for the absorption of 3He 
gas of polarization PHe] 
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H4. a) Show that the polarizing efficiency of a crystal monochromator is 
given by 

     𝑃 = !!!!!
!!
!!!!

! , 

where the symbols have their usual meanings. 
 
b) By expressing the polarization as a function of the ratio of structure 
factors, show that the maximum polarization is obtained when the 
nuclear and magnetic structure factors are equal in magnitude. 
 
 

H5. Why is it not necessary to analyse the neutron spin when scattering 
from a ferromagnet saturated in a direction perpendicular to Q? 
 
 

H6. a) Verify the following relations (so-called Pauli spin relations): 

    

,

,

,

x x

y y

z z

i i

σ σ

σ σ

σ σ

↑ = ↓ ↓ = ↑

↑ = ↓ ↓ = − ↑

↑ = ↑ ↓ = − ↓

 

where σx, σy and σz are the Pauli spin matrices and the spin-up and 

spin-down (along z) eigenstates are given by 1
0
⎛ ⎞

↑ = ⎜ ⎟
⎝ ⎠

 and 0
1
⎛ ⎞

↓ = ⎜ ⎟
⎝ ⎠

 

 
b) Hence, by calculating the magnetic neutron scattering potential: 
                                     

for each spin-state transition show that the spin flip scattering is 
sensitive only to those components of the magnetisation M⊥ 
perpendicular to the neutron polarization vector (along z). 
 

H7. Using the Moon, Riste and Koehler expressions, together with the 
definition of the Fourier component of the magnetisation 
perpendicular to Q, M⊥, show that the magnetic scattering is entirely 
spin-flip if the neutron polarization is parallel to Q. 
 
 

H8. What is the advantage of the X-Y-Z difference method of magnetic 
scattering separation over the method of measuring with the neutron 
polarization P || Q? 
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I.  High resolution spectroscopy 
(TOF, backscattering and Spin-Echo) 

 

The aim of this section is to get a feeling for the energy resolution of 
different spectrometer types: time-of-flight (TOF), backscattering (BS) and 
spin echo (NSE) spectrometers.  
 
All the following calculations assume a neutron wavelength of λ=6.3 Å.  
Planck’s constant is h=6.6225 10-34 Js, sometimes usefully expressed as  
h = 4.136 µeV ns. Neutron mass mn=1.675 10-27 kg. 
 
I1. 
Calculate the neutron speed vn  in [m/s] and the neutron energy in µeV.  
vn=________ m/s; En= ________µeV.  
  
I2. - Time-of-flight spectroscopy 
 
 
 
 
Figure I1  Time-of-flight spectrometer with two choppers CH1 and CH2 
separated by a distance L 
 
All contributions to the energy resolution in time-of-flight can be 
formulated as time uncertainty Δt/t. We consider only the primary 
spectrometer (before sample) and aim for an energy resolution better than 
1µeV.  
a) Show first that ΔE/E = 2Δt/t  (express E as fct. of v and assume Δd =0):  
 
E =________________________and with Δd = 0:  
 
ΔE = _____________________, which results in ΔE/E =_____________.  
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Several contributions add to the neutron flight time uncertainty Δt. To 
simplify, let’s consider a chopper spectrometer with flight path L between 
two choppers as sketched in the Figure. I1. and let’s first look at neutrons 
flying parallel to z.  
 
b) Calculate the flight time along path L = 100 m:   T0 ~ ___________ s.  
If we want to get an energy resolution of 1µeV, this corresponds to  
ΔE/E ~ _____________for 6.3Å neutrons.  
This can give us an idea for the maximum allowed flight time difference 

along L: ΔE/E0 * T0/2 ~ _____________________________µsec 

 

c) Path difference in neutron guide 
For the reflected neutrons estimate the max. flight path differences in a 
super-mirror guide with m=2 coating and width w. The critical angle α 
(maximal reflection angle = half divergence) in such a guide is α ~ 0.1° m 
λ = __________°.  
Estimate the flight path difference with respect to neutrons which fly 
parallel. One way is to show that ΔL/L = (1/cos α) - 1 and thus: 
ΔL/L = ______________ = Δt/t  and therefore: 
ΔE/E ~ ______________.    
We prove this by referring to Fig. I.1: 

l = ____________;  

la = ___________;  

la / l = ____________________________ independent of w; if n is the 
number of reflections, then we can write the full path difference as: 
ΔL = n*(la-l) = _________________________________  
and thus ΔL/L = (1/cos α)-1.  

 
d) Chopper Opening Time 
Another contribution is the chopper opening time which leads to a spread 
in neutron velocity and thus to flight time differences dt. In order to reach 
similar Δt/t = Δv/v as above one needs fast rotating choppers delivering 
short pulses.  
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If CH1 releases at t = 0 an arbitrarily sharp pulse of a white beam, then the 
CH2 delay T selects a neutron velocity v0 and the CH2 opening time 
determines Δv/v.  
We want again 1µeV energy resolution therefore we need 

Δv/v0=Δt/T=______________.  

The chopper opening time must then be  
ΔtCH2 < 1/2*(1µeV/E0)*/v0 = _____________ [s/m] * L [s].   
 
Mechanically, the chopper opening time is defined as: ΔtCH2 = β / 360 / f, 
where β is the chopper window angular opening and β/360 is the duty cycle 
(which equals the fraction of neutrons transmitted by the chopper). We see 
that this condition can be achieved by increasing the flight path (or by 
decreasing vn), by increasing the chopper frequency or by narrowing the 
chopper window (intensity loss).  
 
Choosing a duty cycle of 0.01 one needs a very long flight path between 
CH1 and CH2 of L=100m and a high chopper frequency of  

________Hz  = __________ rpm  

to reach 1µeV energy resolution. 

 
This condition becomes more restrictive if we consider the finite opening 
time of the first chopper as well.  Finally, we mention that all the 
contributions in the primary and secondary spectrometer have to be added 
in quadrature: 
 Δt/t = sqrt[(Δt1/t1)2+(Δt2/t2)2+.......]  
Additional choppers are usually needed to avoid frame overlap and 
harmonics, which reduces the intensity further. To achieve a 1µeV energy 
resolution by TOF is technically demanding (choppers), expensive (guides) 
and low in flux. Thus TOF-chopper-instruments have typically energy 
resolutions > 10 µeV. ex.: IN5 at 6.3Å has roughly 40 µeV energy 
resolution.  
Increasing λ helps but reduces the maximum Q. Calculate the elastic Q for 
3Å, 6Å and 15Å neutrons, assuming a maximum scattering angle of 140°:  
Q = _______________ = ______ Å-1, _______ Å-1 and ________. Å-1 
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I2. - Backscattering spectroscopy 
Reactor backscattering spectrometers are based on perfect crystal optics. 
High energy resolution is achieved by choosing Bragg angles Θ as close as 
possible to 90°. Two major terms determine then the energy resolution: the 
spread in lattice spacing Δd/d  of the monochromator and the angular 
deviation ε from backscattering direction (the latter includes the beam 
divergence α if considered as ε = α/2). 
Write down the Bragg equation (neglecting higher orders): 
___________________ or equivalently using k=2π/λ and τ = 2π/d 
(reciprocal lattice vector of the Bragg reflection): _________________.  

Deduce the wavelength resolution Δλ/λ by differentiating the Bragg 
equation: 
Δλ =________________ + _________________ and thus  

Δλ/λ = ____________ +_____________ , or equivalently: 

Δk=________________ + _________________________ and thus  

Δk/k= _____________ + _____________.  
The energy resolution is given by two terms. The first one, Δd/d =Δτ/τ , 
can be calculated by dynamical scattering theory as Δτ/τ = h2/m 4 Fτ Nc, 
where Fτ is the structure factor of the reflection used and Nc the number 
density of atoms in the unit cell. The second one, the angular deviation, can 
for Θ ≈ 90° be expanded  in powers of Θ and contributes approximately as 
Δλ/λ ~ ΔΘ2/4 (ΔΘ in radians).  
Calculate now the contribution to the energy resolution of both terms for a 
perfect crystal Si(111) monochromator (6.271Å, but approximate by 6.3Å 
as above). 
 

With Fτ=(111) and Nc for Si(111) the extinction contribution for Si(111) in 
backscattering is Δd/d=1.86 10-5 and thus ΔE/E=______________ and 
ΔE=_______µeV.  

 

Estimate the energy resolution contribution due to deviation from 
backscattering: 
1)  given by a sample diameter of 4 cm in 2 m distance from the analyser.  
ΔE/E=_____________, ΔE=_______µeV   
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2) given by this sample at 1m distance:  
ΔE/E=_____________, ΔE=_______µeV 
3) given by a detector being placed near backscattering, a sample - analyser 
distance of 1m and the distance sample center - detector center = 10cm 
below the scattering plane; the  focus of the analyser sphere is placed in the 
middle between sample and detector:  
ΔE/E= ____________. ΔE=_______µeV 
These examples show that for small enough deviations from BS energy 
resolutions of < 1µeV are easily achievable. Comparing this to TOF 
contributions above, it becomes clear that for a spallation source 
backscattering instrument, which combines TOF in the primary 
spectrometer with near-BS in the secondary spectrometer, it is very 
difficult to achieve sub-µeV resolution. The SNS BS (BASIS) instrument 
with 80m flight path has for example an energy resolution for Si(111) of 
2.5 µeV. 

I3. - Neutron spin-echo spectroscopy 
In neutron spin echo one uses the neutron spin which undergoes 
precessions in a magnetic field B. The precession angle φ after a path 
length L depends on the field integral, given by φ =γ*B*L/vn (γ = 
gyromagnetic ratio of the neutron, vn=neutron speed). For a polychromatic 
beam the precession angles of the neutron spins will be very different 
depending on the neutron speed and thus a previously polarized beam 
becomes depolarized. The trick is then to send the neutrons after the 
sample through a field with opposite sign and with the same field integral. 
Therefore, for elastic scattering, the precessions are “turned backwards”, 
again depending on the neutron velocity, and the full polarization is 
recovered. This allows the use of a wide wavelength band (range of 
incident neutron speeds) and therefore a high intensity which is 
‘decoupled’ from the energy resolution.  
In order to estimate a typically achievable energy resolution, we can 
calculate the longest time which is easily accessible in NSE.  
The NSE time is given by: tNSE= ħγ BL / (mn vn

3)  thus it is proportional to 
the largest achievable field integral B*L, which we take as 0.25 [T*m].  
 Calculate the longest NSE time tNSE for λ=6.3Å neutrons (use vn calculated 
above), knowing that γ = 1.832 108 [T-1 s-1] , ħ= 1.054*10-34 J s; and mn= 
1.675*10-27 kg:  
tNSE = __________ ns.  
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Convert this time into an energy by multiplying its reciprocal value with  

h=4.136 µeV ns; we get: ENSE= ________ µeV. 

For comparing measurements in time and in energy one often refers to 
Fourier-transformation which relates e.g. the characteristic relaxation time 
τ of an exponential relaxation in time to the width of a Lorentzian function 
in energy by τ = 1/ω. In spite of the fact that the relaxation time is usually 
smaller than the longest NSE time, converting the corresponding energy 
resolution by this relation gives:   
E τ = ____________ µeV . 
 Because of τ < tNSE and also because energy spectrometers can usually 
resolve better than the HWHM, the comparable resolution energy lies 
somewhere in between the two values calculated. 

Note that the longest NSE time depends on wavelength λ as tNSE ∝_____.  
Thus the resolution improves fast for increasing λ, but like calculated for 
the other spectrometers above, the maximum Q is reduced. 
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