

# Small Angle Scattering (SAS)

• what is SAS & what can it measure?

- how is it measured?
- sample considerations
  data analysis





### **Reference Texts**

- The SANS Toolbox, B. Hammouda, NIST (available as pdf: <u>http://www.ncnr.nist.gov/staff/hammouda/the\_SANS\_toolbox.pdf</u>)
- Structure Analysis by SAXS & SANS, L.A. Fegin & D.I. Svergun (1987) (available as pdf: <u>http://www.embl-</u> <u>hamburg.de/biosaxs/reprints/feigin\_svergun\_1987.pdf</u>)
- Small Angle X-ray Scattering, eds O. Glatter & O. Kratky (1982) (available as pdf: <u>http://physchem.kfunigraz.ac.at/sm/Software.htm</u>)

### What is SAS?

 Coherent, elastic scattering of radiation at small angles – close to the straight-through beam



### **Size Range Comparisons**



### **Scattering from Large Structures**

- Neutron/X-ray wavelength  $\lambda \approx$  space between atoms in crystal
  - $\Rightarrow$  bounce off layers of atoms like light off a mirror
  - ⇒ see diffraction peaks at high angles (correspond to atomic positions)
- BUT for larger objects, sees <u>average</u> structure



- large structures scatter at small angles
- ⇒ for techniques using small angles use material properties rather than atomic properties

### **SAS Instruments**



- Neutrons/X-rays must be parallel to each other; "collimated"
- Slit defines shape of beam (circle, square, slit)
- Distance from sample to detector & wavelength determines size range measured
  - Fof wide simultaneous Q range, lower flux
  - Reactor smaller Q range, higher flux at short sample-detector distances

### **Scattering Patterns: From detector to 1D**

**Real space** 

- eg diblock copolymers
- Circular 1D average
  - take average over ring





### **SAS Measurements**

• Observed intensity:

 $J(\lambda,\theta) = J_0(\lambda) \Delta \Omega \eta(\lambda) T V I(Q)$ 

where:

- $JO(\lambda) = flux$  incident on sample
- $\Delta\Omega$  = angle covered by detector
- $\eta$  = detector efficiency
- T = sample transmission
- V = volume of sample in beam

Can measure all of these

- $\Rightarrow$  Used to correct
- data during data reduction
- I(Q) = differential cross section

 $\Rightarrow$  contains information about sample

## **Sample Scattering**

- Measured intensity due to:
  - Scattering from sample
  - > Scattering from container, slits, air etc
  - Stray X-rays and electronic noise



Need to measure more than just sample scattering...

### Extra measurements

#### Empty cell



### Source

Scattering from:

- 1) empty cell
- 2) windows & collimation slits
- 3) air scattering
- Minimize air in beam path
- Carefully choose cell & window materials
- Measure an empty cell

#### Blocked beam



### Source

- 1) Detector dark current
- 2) Stray radiation
- 3) Cosmic radiation

#### **Detector efficiency**



Why? Sensitivity of each pixel is slightly different (~ 1%)

- Use isotropic
  - scattering material (Plexiglass or water) or "flood" source
- Measure a blocked beam

## **Standards - Intensity**

- Y-axis in "counts"
  - Need to convert to absolute intensity
- Intensity standards:
  - > water
  - glassy carbon
  - direct beam + attenuator (if flux is known)
  - standard polymer sample
- Scattering cross section (intensity) is known
- Measure intensity of standard under same conditions as sample
- Compare measured and known intensities
- Calculate "scale factor" to multiply data

### **Scattered Intensity**

 observed scattered intensity is Fourier Transform of real-space shapes

$$I(Q) = N_p V_p^2 (\rho_p - \rho_s)^2 F(Q) S(Q) + B$$

where:  $N_p$  = number of particles

 $V_p$  = volume of particle

- $\rho$  = scattering length density (of particle/solvent)
- B = background
- F(Q) = form factor
- S(Q) = structure factor
- Sample considerations...

### **Sample thickness**

- Affects transmission (total intensity)
- Also affects shape of curve  $\Rightarrow$  hard to analyse
- More problematic for high flux, strongly scattering samples
- Aim for ~70% transmission (X-rays/D<sub>2</sub>O solutions, >~50% H<sub>2</sub>O solutions)



### Concentration

 $I(Q) \propto N_p V_p$ 

- Big particles scatter more (can hide small ones)
- Higher concentration = more signal

BUT

### Consider detector limits!

Don't burn out your detector...

High concentration can complicate analysis

especially for charged particles (see later)

- Minimum concentration for neutrons/lab X-ray source: ~10mg/ml
  - > watch out for highly coloured solutions eg nanoparticles

## Neutrons/X-rays & "Contrast"

- Neutrons more penetrating than X-rays (interact less with matter)
- Interaction of neutrons with nuclei depends on isotope
- Interaction of X-rays just depends on number of electrons
- b = scattering length (units Å or cm, normally)
- Scattered intensity measured depends on which isotopes are in sample for neutrons, only on elements for X-rays



### **Scattering from Large Structures**



 $\Rightarrow$  for distances > ~5 molecules, see only average density

```
Q = 2\pi/d
```

• so can use material properties for Q < ~0.6 Å<sup>-1</sup>

## **Scattering Length Density**

- scattering from an object/material depends on how many electrons or nuclei there are in a unit volume
- use scattering length density, Nb, to calculate scattering from molecules:

$$Nb = \frac{N_A \cdot \rho}{MW} \sum_i b_i$$

Units of Nb: cm<sup>-2</sup>

$$= N \sum_{i} b_{i}$$

where:  $b_i$  = scattering length for element, cm (for X-rays b =  $2.81 \times 10^{-13} \times no.$  of e<sup>-</sup> in atom)  $\rho$  = density of compound, g cm<sup>-3</sup>  $N_A$  = Avogadro's number, mol<sup>-1</sup> MW = molecular weight, g mol<sup>-1</sup> N = number density of atoms in material, cm<sup>-3</sup>

NB/ if feeling lazy see: www.ncnr.nist.gov/resources/sldcalc.html

### **Important Scattering Length Densities**

### **Contrast & Contrast Matching**

- Both tubes contain pyrex fibers + borosilicate beads + solvent.
- (A) solvent refractive index matched to pyrex fibres
- (B) solvent index different from both beads & fibers scattering from fibers dominates



Similarly, there must be a difference between object and surrounding to measure scattering

$$I(Q) \propto (\rho_p - \rho_s)^2$$

### **Babinet's Principle**





These two structures give the same scattering

$$I(Q) \propto (\rho_p - \rho_s)^2$$

- Contrast is relative
- Loss of phase information i.e.: is  $\rho_1 > \rho_2$ ?
- Very important in multi-phase systems
  - Solve by use of multiple contrasts using SANS! (for X-rays = anomalous scattering)

## Scattering ~ "Contrast"

- objects and solvent have different scattering length densities (SLD)
- Intensity ∝ SLD difference between solvent & particle
- in water for neutrons can manipulate solvent  $\rho$  by using mixture of H<sub>2</sub>O and D<sub>2</sub>O
- When solvent and object have same SLD they are said to be "contrast matched"

Example: silica spheres in water



30%  $\mathrm{D_2O}$  in  $\mathrm{H_2O}$ 



59%  $\mathrm{D_2O}$  in  $\mathrm{H_2O}$ 



95% D<sub>2</sub>O in H<sub>2</sub>O

### **Predicting Contrast Match Point**

- By calculating the SLD can predict %D<sub>2</sub>O where the scattering signal will be zero
- BUT if have exchangeable hydrogens in the structure the SLD will vary with %D<sub>2</sub>O



### Neutron "Contrast" Series

 intensity of scattering depends on difference between particle and solution.

$$I \propto (Nb_{particle} - Nb_{solution})^2$$

- measure scattering at a series of solution contrasts
- extrapolate scattering to Q = 0 and measure I<sub>0</sub>



### **Contrast Match Point**





- Place where line cuts zero is where the solution has the same scattering length density as the particle
   *⇒ contrast matched*
- Can use this to find the density of the particle

### **Neutron "Contrast" for Complex Objects**

 contrast matching allows us to "remove" scattering from parts of an object





"shell-contrast"  $\Rightarrow$  see only core

"core-contrast"  $\Rightarrow$  see only shell

### Solvent matching for COC2-actin assembly

- cardiac myosin binding protein C (COC2) has extended modular structure
- Mixing COC2 with G- actin solutions results in a dramatic increase in scattering signal due to formation of a large, rod-shaped assembly





Whitten, Jeffries, Harris, Trewhella (2008) Proc Natl Acad Sci USA 105, 18360-18365

### **Scattered Intensity**

• For concentrated solutions:

$$I(Q) = N_p V_p^2 (\rho_p - \rho_s)^2 F(Q) S(Q) + B$$

- where:  $N_p$  = number of particles
  - $V_p$  = volume of particle
  - $\rho$  = scattering length density (of particle/solvent)
  - B = background
  - F(Q) = form factor
  - S(Q) = structure factor
- Form Factor = scattering from within same particle  $\Rightarrow$  depends on particle shape

Structure Factor = scattering from different particles ⇒ depends on interactions between particles

### **Solution of particles**



SolutionMotif\*LatticeI(c,Q)(protein, micelle, nanoparticle)S(c,Q)F(0,Q)

Form factor of the particle

Structure factor of the particle

c = concentration

### **SAS Data Analysis**

### • Simple but not very accurate:

- Porod slopes
- Guinier analysis
- More helpful, but more complex:
  - fitting models to data
- Most complex (need more data):
  - fitting protein structures
  - > monte carlo/simulated annealing methods

### **Scattering from Independent Particles**

- Scattered intensity per unit volume of sample
  - arises from spatial distribution of regions with different scattering length density

$$I(q) = \frac{d\sigma}{d\Omega} = \frac{1}{V} \left| \int_{V} \rho(\mathbf{r}) e^{i\mathbf{q}\cdot\mathbf{r}} d\mathbf{r} \right|^{2}$$

For identical particles:

$$V_{p}, \rho_{p}$$
  
 $V, \rho_{s}$ 

$$I(q) = \frac{N}{V} (\rho_p - \rho_s)^2 V_p^2 \left| \frac{1}{V_p} \left| \int_{particle} e^{iq.r} dr \right|^2 \right|$$
  
Particle form factor, F(Q)

### Dilute Randomly Ordered Uniform Particles

scattering from independent particles:

$$I(q) = \frac{N}{V} (\rho_p - \rho_s)^2 V_p^2 \left( \frac{1}{V_p} \left| \int_{particle} e^{i\boldsymbol{q}.\boldsymbol{r}} \, d\boldsymbol{r} \right|^2 \right)$$

• Assume: i) system is isotropic, then  $\langle e^{-iqr} \rangle = \frac{\sin(qr)}{qr}$ ii) no long range order, so no correlations between two widely separated particles

$$I(q) = I_e(q)(\rho_p - \rho_s)^2 V_p \int_0^\infty \gamma(r) \frac{\sin(qr)}{qr} 4\pi r^2 dr$$

 $\gamma(r)$  = correlation function within particle

 $P(r)=4\pi r^2\gamma(r)$  is the probability of finding two points in the particle separated by r

### **Porod's Law**

- Start with form factor:  $F(q) = \frac{1}{V_n} \int_0^\infty \gamma(r) \frac{\sin(qr)}{qr} 4\pi r^2 dr$
- Now consider radial pair correlation function for sphere, with sharp edges, radius R:

$$\gamma(r) = 1 - \frac{3}{4} \left(\frac{r}{R}\right) + \frac{1}{16} \left(\frac{r}{R}\right)^3$$
$$F(qR) = \frac{1}{V_p} \int_0^\infty \left[1 - \frac{3}{4} \left(\frac{r}{R}\right) + \frac{1}{16} \left(\frac{r}{R}\right)^3\right] \frac{\sin(qr)}{qr} 4\pi r^2 dr$$



Integrate by parts three times:  $F(qR) \approx \frac{3}{2R^3} \frac{S_p}{V_p} \frac{1}{q^4}$ 

At high scattering angles, for any system with sharp, smooth surfaces:  $I(Q) \propto \frac{1}{q^4}$ 

## **Porod Scattering**

- Slope at high q the same
- But point where slope changes depends on particle dimensions



### **Fractal Systems**

Fractals are systems that are self-similar as you change scale



Diffusion-limited aggregation in 3 dimensions (Paul Bourke, http://local.wasp.uwa.edu.au/~pbourke/fractals/dla3d/)

For a Mass Fractal the number of particles within a sphere radius
 R is proportional to R<sup>D</sup> where D = fractal dimension

### • Thus:

 $4\pi R^2 \gamma(R) dR$  = number of particles between distance R and R+dR

 $= cR^{D-1}dR$ 

### Fractal Systems Continued...

• So for a Mass Fractal:

$$F(Q) = \int dR \ e^{iQR} \gamma(R) = \frac{2\pi}{Q} \int dR \ Rsin(QR) \ \left(\frac{c}{4\pi}\right) R^{D-3}$$
$$= \frac{c}{2} \frac{1}{Q^D} \int dx \ x^{D-2} \ sinx = \frac{constant}{Q^D}$$
Paul Bourke  
• For a fractal surface can show that  $F(Q) = \frac{constant}{Q^{6-D}}$  (this reduces to the Porod Law for smooth surfaces of dimension 2)  
First stages of Koch (triangle) surface (Robert Dickau)



The SANS Toolbox. Boualem Hammouda, NIST

http://www.ncnr.nist.gov/staff/hammouda/the\_SANS\_toolbox.pdf

### **Porod Slopes & Structures**



### **Form Factors**

• Form factors are the sum of scattering from every point inside a particle  $\sum \sum |\sin(\theta r_u)|$ 

$$F(Q) = \sum_{I} \sum_{J} \left\langle \frac{\sin(Qr_{IJ})}{Qr_{IJ}} \right\rangle_{orientations}$$

- Simplify to the integral
- Scattering pattern calculated from the Fourier transform of the



- real-space density distribution
- Pattern for most shapes must be solved analytically
- Some simple shapes can be solved directly

### **Simple Analysis - Guinier Approximation**

• Assume particle is a sphere in dilute solution  $F(Q) = \left[\frac{3(\sin(QR_p) - QR_p\cos(QR_p))}{(QR_p)^3}\right]^2$   $R_p = \text{radius of sphere}$ 

Measure scattering at very low angles so

$$R_g Q \lesssim 1$$

• Use mathematical expansion of F(Q)

$$F(Q) = 1 - \left(\frac{Q^2 R_g^2}{3}\right) + O()^5 \dots$$

• Write in logarithmic form  $\Rightarrow$ 



## **Guinier Plots**

• at low concentrations <u>and</u> small values of Q, can write intensity as:

$$I(Q) = I(0) \exp\left(\frac{-R_g^2 Q^2}{3}\right)$$

- so plot of ln(I) against Q<sup>2</sup> will have slope =  $-R_g^2$
- <u>only</u> valid for  $R_g Q \leq 1$

Radius of Gyration – depends on particle shape

• Sphere 
$$R_g^2 = \frac{3}{5}R^2$$

## What do we mean by "R<sub>g</sub>"?

### Radius of gyration:

R<sub>g</sub><sup>2</sup> is the average squared distance of the scatterers from the centre of the object



$$R_g^2 = (1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 3^2)/6 = 20/6$$
  
 $R_g = \sqrt{3.333} = 1.82$ 

*Radius of Gyration* – depends on particle shape

• Sphere  $R_g^2 = \frac{3}{5}R^2$ • Ellipse  $R_g^2 = \frac{a^2 + b^2}{4}$ • Cylinder  $R_g^2 = \frac{R^2}{2} + \frac{h}{12}$ 

### **Guinier Plot Example**

### Polymerised surfactant micelles

Large Scale Structures, ISIS Annual Report, 1999-2000 http://www.isis.rl.ac.uk/isis2000/science/laraescale.htm



Check validity:  $R_g \times Q_{max} = 11.6 \times 0.095 = 1.1$  OK

### **More Complex: Fitting Scattering**

 observed scattered intensity is Fourier Transform of real-space shapes

$$I(Q) = N_p V_p^2 (\rho_p - \rho_s)^2 F(Q) S(Q) + B$$

where:  $N_p$  = number of particles  $V_p$  = volume of particle  $\rho$  = scattering length density (of particle/solvent) B = background F(Q) = form factor S(Q) = structure factor

Form Factor = scattering from within same particle
⇒ depends on particle shape
Structure Factor = scattering from different particles
⇒ depends on interactions between particles

### **Form Factors**

- depend on shape of particle
- for dilute solutions S(Q) = 1 and so  $I(Q) \propto F(Q)$



## Polydispersity

- "smears out" sharp features in pattern
- "smearing" can also be due to poor Q resolution or beam shape (correct for this during data reduction)



### Au Nanorods

Fitted to charged cylinders

- Radius 80Å
- Length 190Å
- Polydispersity 0.29





### **Structure Factors**

- for dilute solutions S(Q) = 1
- particle interactions will affect the way they are distributed in space ⇒ changes scattering
- for charged spheres:



Average distance between nearest neighbours relatively constant

= "correlation distance"

Position of first maximum related to correlation distance



### **Concentration effects**





Figure 1: Cross-section for several different volume fractions of PS spheres in glycerol vs. QR.

Figure 2: Measured and model structure factors, S(Q), (circles and dashed lines, respectively) vs. QR for PS spheres in glycerol.

#### Small Angle X-ray Scattering Study of a Hard-Sphere Suspension: Concentrated Polystyrene Latex Spheres in Glycerol

L. B. Lurio<sup>1</sup>, D. Lumma<sup>1</sup>, A. R. Sandy<sup>1</sup>, M. A. Borthwick<sup>1</sup>, P. Falus<sup>1</sup>, S. G. J. Mochrie<sup>1</sup>, J. F. Pelletier<sup>2</sup>, M. Sutton<sup>2</sup>, Lynne Regan<sup>3</sup>, A. Malik<sup>4</sup> and G. B. Stephenson<sup>4</sup>

# Combining F(Q) & S(Q)

- In most cases when fitting will need to include both form and structure factor
- Can tell by taking concentration series
  - if shape of scattering doesn't change when sample is diluted then S(Q) = 1



- Polymer-lipid discs
- Normalised for concentration

# Combining F(Q) & S(Q)

Use computer programs to combine form factor and structure factor:



- Fit using ellipse + structure factor for charged objects which repel each other ⇒ many parameters!
- Use three contrasts to help pin down shape and size accurately

### **Fourier Inversion Techniques**

- Scattering from dilute, uniform, independent particles
- Assuming i) system is isotropic, then  $\langle e^{-iQr} \rangle = \frac{\sin(Qr)}{Qr}$

ii) no long range order, so no correlations between two widely separated particles

$$I(Q) = I_e(Q)(\rho_p - \rho_s)^2 V_p \int_0^\infty \gamma(r) \frac{\sin(Qr)}{Qr} 4\pi r^2 dr$$

 $\gamma(r)$  = correlation function

 $P(r)=4\pi r^2\gamma(r)$  is the probability of finding two points in the particle separated by r

 If can measure I(Q) over big enough range can take inverse Fourier transform to find P(r):

$$\mathsf{P}(\mathsf{r}) = 4\pi \mathsf{r} 2\gamma(\mathsf{r}) = \frac{2}{\pi} \int QI(Q) \sin(Qr) \, dQ$$

## P(r) for Simple Shapes



## **Effects of Sample Alignment**

- Scattering no longer circular
- Form areas of high intensity perpendicular to direction of alignment



### **Isotropic vs Nonisotropic Structures**



Edler, Reynolds, Brown, Slawecki, White, J. Chem. Soc., Faraday Trans. **1998**, 94(9) 1287

### **Free SANS Fitting Software**

DANSE SANSView software

- Designed for fitting neutron data but can also be used (with care) for X-ray data
- Includes reflectivity analysis
- Available from: <u>http://danse.chem.utk.edu/sansview.html</u>

OR library of other available software at:

http://www.small-angle.ac.uk/small-angle/Software.html