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Scope of the lecture

● Diffraction techniques (X-ray, neutron)
are used to study thin films , engineering 
materials, liquids, polymers, crystalline solids.

●  Whatever the technique used (Small Angle Scattering, Reflectometry, Strain-Scanning,
 conventional powder or single crystal Diffraction), all of these refer to the coherent 
 elastic scattering of a beam of neutrons or X-rays.  

● The keyword here is “elastic”, which means no energy is transferred between the beam and 
the sample, which in virtue of the conservation of energy means that the incident and scattered 
wave have the same wavelength. 

● Of course, momentum is also a conserved quantity.
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Scope of the lecture
● This lecture will focus on Crystallography, i.e. the study of crystalline solids.
● This form of matter is characterized by infinite translational symmetry
(infinite periodic)

● We will study the periodic arrangement of  atoms and magnetic moments 
(magnetism :lecture from Prof. A. Wildes)
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Outline

Direct lattices,  symmetry

Reciprocal system of axes and reciprocal lattice

Fourier transform of a Dirac comb

Nuclear scattering from crystalline materials.

Unit-cell structure factors

 Ewald construction and different type of diffractometers

Basics of Rietveld refinement 
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Periodic solids: Crystal systems

a

b

c

o






7 crystal systems :
Crystal system Type of axes

Triclinic abc, 
Monoclinic abc, 90°, 

90°

Orthorhombic abc, 90°

Tetragonal abc, 90°

Trigonal ab=c, 90°

Hexagonal abc, 
90°,=120°

Cubic abc, 90°
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Periodic solids: Centring translations

It is often inconvenient to work with primitive lattices, and one uses centered lattices:  

Centring type Symbol Translations

Primitive P

(One face 
centred)
A-centred
B-centred
C-centred

A
B
C

x,y+1/2,z+1/2
x+1/2,y,z+1/2
x+1/2,y+1/2,z

Body centred I x+1/2,y+1/2,z+1/2

Face centred F x+1/2,y+1/2,z
x,y+1/2,z+1/2
x+1/2,y,z+1/2

Rhombohedr
ally centred

R x+2/3,y+1/3,z+1/3
x+1/3,y+2/3,z+2/3
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Bravais lattice

● Crystal classes + centring translations → 14 Bravais lattices 
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Symmetry operations
Mirror planes (m)

Inversion point (   )1

Rotations (order n :  /n)

Roto-inversion (  )n
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Symmetry operations

Screw axis (n
m
) is a 

compound operation of: 
- rotation of order n 
- translation of 1/m

Example: screw axis 2
1
 along a  

Glide plane is a compound operation 
of: 
- mirror symmetry 
- translation 

Example: c glide plane  a
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Symmetry operations

(
x '
y '
z ' )=(

R11 R12 R13

R21 R22 R23

R31 R32 R33
)⋅(

x
y
z )+(

t 1

t 2

t 3
)

● Seitz notation: (R|t)

● Symmetry contained in the coordinate triplet:
for example 2

1
 screw axis along b: -x,y+1/2,-z 

Determinant +1 (proper) -1 (improper)
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Space groups : International Tables

Combining the 14 Bravais lattices and all symmetry operations, 
leads to the 230 space groups. 
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Space groups : Example

Space group symbol

Crystal class

Symmetry operations
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Space groups : Example

High symmetry points
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Reciprocal system

r⃗=α a⃗+β b⃗+γ c⃗

● First introduced by Gibbs : 
Vector analysis: A textbook for the use of students 
of mathematics and Physics by E. Wilson, 
New Haven Yale University Press, 1901

[Wikipedia ]
How to express a vector in terms of three non-coplanar vectors ? 
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Reciprocal system

r⃗⋅[ b⃗× c⃗ ]=α a⃗⋅[ b⃗× c⃗ ]+β b⃗⋅[ b⃗× c⃗ ]+γ c⃗⋅[ b⃗× c⃗ ]

α= r⃗⋅
b⃗× c⃗

a⃗⋅[ b⃗× c⃗ ]

=0 =0

β= r⃗⋅
c⃗× a⃗

a⃗⋅[ b⃗× c⃗ ]
γ= r⃗⋅

a⃗× b⃗

a⃗⋅[ b⃗× c⃗ ]

α= r⃗⋅⃗a * β= r⃗⋅⃗b* γ= r⃗⋅⃗c*

Equally, and
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Reciprocal system

a⃗ i⋅⃗a j *=δij

a⃗ *=
b⃗× c⃗

a⃗⋅[ b⃗× c⃗ ]
b⃗ *=

c⃗×a⃗

a⃗⋅[ b⃗× c⃗ ]
c⃗ *=

a⃗× b⃗

a⃗⋅[ b⃗× c⃗ ]

● For each system of three non-coplanar vectors, one can construct a dual system of 
vectors, also non-coplanar, called the reciprocal system. 

● The reciprocal of a reciprocal system is the direct axis itself.

● Reciprocal and direct systems are equal only for an orthonormal unit lattice.

● Condition (2) is necessary and sufficient for {a
j
*} to be reciprocal system of {a

j
} 
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Reciprocal lattice
Let's construct a periodic lattice from the {a

i
} and {a

i
*} systems of vectors called R and G 

The scalar product between any vector R
i
 in R and any vector G

j
 in G is an integer!  
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Fourier transform of a Dirac comb 

a

comba (x )=∑
n=−∞

∞

δ( x−na)

x

∫ ∑
n=−∞

∞

δ( x−na)e−ikx . dx=∑
n=−∞

∞

∫ δ( x−na)e−ikx . dx=∑
n=−∞

∞

e−ikna

Fourier transform:

∑
n=−∞

∞

e−ikna
=

2 π
a ∑h=−∞

∞

δ(k−
2 π
a

h)
2a

k
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Fourier transform of Dirac comb in 3D

L ( r⃗ )=comba⃗bc( r⃗ )= ∑⃗
R n∈R

δ3( r⃗−R⃗n)

FT (L( r⃗ ))=∫ ∑⃗
Rn∈R

δ
3
( r⃗− R⃗n)e

−i k⃗⋅⃗r d r⃗= ∑
− R⃗n∈R

e
−i k⃗⋅⃗R n

Let L be a direct lattice of volume V. Consider a Dirac comb of this lattice ( function at every lattice point) 

Fourier transform:

∑⃗
Rn∈R

e
−i k⃗⋅⃗Rn=

(2π)3

V
∑⃗

G j∈G⃗

δ3( k⃗−2π G⃗ j)

What is the set of k vectors that ensure that this sum is non-zero ? 

Fourier transform of a Bravais lattice of Dirac functions is a lattice of Dirac functions 
centred at the reciprocal lattice points!
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Reciprocal lattice

a⃗ i⋅⃗a j *=2 πδij

a⃗*=2 π
b⃗× c⃗

a⃗⋅[ b⃗× c⃗ ]
b⃗ *=2 π

c⃗× a⃗

a⃗⋅[ b⃗× c⃗ ]
c⃗ *=2π

a⃗×b⃗

a⃗⋅[ b⃗× c⃗ ]

From now on, we shall use the alternate definition:

A vector of the reciprocal lattice G will usually be written as: 

G⃗=h⋅a⃗*+k⋅b⃗*+l⋅c⃗* h,k,l are named the Miller indices.
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Scattering by a potential V(r)

V(r)





Flux 

d

dn⏞
n.s−1

= Φ⏞
n.cm−2 .s−1

dΩ⏞
n.u

σ (θ ,φ)

●has the dimension of a surface
●  Usually in barns=10­24 cm2
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Nuclear scattering

V(r)

r

● Nuclear scattering mediated 
by the strong force, extremely 
short range (fm=1.10-15 m).

● Neutron wavelength much 
larger (Å=1.10-10m), can not 
probe internal nuclear 
structure: scattering is 
isotropic.

● The interaction between the 
neutron and the atomic 
nucleus is represented  by the 
Fermi pseudo-potential, a 
scalar field that is zero 
except very close to the 

nucleus ( function). V ( r⃗ )=
2π ℏ2

mr

aδ3
( r⃗ )



 

Oxford Neutron School – Diffraction - 2013

Scattering lengths
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Scattering by a potential V(r)

The wavefunction at a spatial position r = sum of transmitted and scattered spherical wavefunction:

ψ=e i k⃗⋅r⃗
+ f k (θ ,ϕ)

e i k⋅r

r
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Reminder Born approximation

[k2
] r =2

ℏ
2
V r  r 

●In the integral equation of scattering, the stationary wave-function is written : 
 

f k(θ ,φ)∝−∫V (r )e
−iQrd3r

●In the quantum mechanical treatment of scattering by a central potential, 
the stationary states (r) verify: 

Quantum Mechanics, 
Claude Cohen-Tannoudji et al., Vol 2, Chapt 8

vk
scat
r =eiki.r

2
ℏ

2 ∫G+r−r 'V r 'vk
scat
r 'd3r '

●One can expend iteratively this expression (Born expansion).
If the potential is weak, one can limit the expansion to the first term, this is the first
Born approximation. 
In this case the scattering amplitude is related to the Fourier transform of the potential function:

I=∣f k(θ , φ)∣
2
=∣V (Q⃗)∣2
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Conventions for this lecture

k
i

k
f

Q

f k(θ ,φ)∝−∫V (r )e
−iQrd3r

Q⃗=k⃗ f−k⃗i
= momentum transferred from the crystal to the neutron

∥k⃗ f∥=∥k⃗i∥ (elastic scattering)

V(r) is positive for a repulsive potential
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Nuclear scattering

Imagine a crystal with only one atom per unit-cell. For which Q, is the intensity non zero? 

During a diffraction experiment, a crystalline material can 
only provide discrete momentum kicks !

V(r) is a 3D Dirac comb!

k
i

k
f

Q=G
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Diffraction condition in real and reciprocal space

2 d sin (θ)=n λ
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Diffraction condition in real and reciprocal space

● Lattice planes (Miller planes) are indexed by the indices h,k,l. 
● A (h,k,l) plane intercept the real crystal axes at a/h, b/k, l/c
● d

hkl
 is the distance to the origin.

● Diffraction can be considered as the coherent superposition 
of scattered waves from these the set of planes parallel to 
the (h,k,l) plane and equidistant.

● The reciprocal lattice vector G=ha*+kb*+lc* is : 
- Perpendicular to the lattice plane (h,k,l)
- Of length: 2d

hkl

  

1/2

1/2

1/2

d
hkl

G

k
i

k
f
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More than one atom/unit cell (1D example)

=
x

V(x)

 a

x

a

a

V
UC

(x) comb
a
(x)
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Unit cell structure factor (approximation: no atomic displacement)

From the convolution theorem, the Fourier transform of a convolution is 
the product of the individual Fourier transforms:  

V (Q⃗)=FT (V (r⃗ ))=FT (V UC(r⃗ )⊗comb
a⃗bc
(r⃗ ))

 =FT (V UC(r⃗ ))×FT (comb
a⃗bc
(r⃗ ))

=0 unless Q is 
a reciprocal lattice vector

∑
atom j∈UC

b j e
−i Q⃗⋅r⃗ j

Rl

rj
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Q

X-rayNeutrons

1.0

10-15 m10-10 m

Nuclear from factor (X-ray comparison)

Q

1.0

f(Q)
f(Q)
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Unit cell structure factor (including Atomic Displacement)

● There is one approximation in the previous slide: We haven't taken into account the 
effect of thermal motion, i.e. the fact that the atoms are not a fixed position but undergo
very large displacements with respect to the Fermi length.  
● Needs to consider a Quantum Harmonic Oscillator 

 ψn
2(u)

un=0
n=1
n=2

En=ℏω(n+
1
2
)
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Unit cell structure factor (including Atomic Displacement)

P (u)=
∑

n

ψn
2 (u)⋅e

−E n

k.T

∑
n

e
−En

k.T

=
1

√2π 〈u2
〉

e
−u 2

2 〈u2 〉

● Probability to find the atom displaces by u is related to the Boltzmann distribution:

 

T

 ….a Gaussian distribution 

T 〈 x2〉P ( x)
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Unit cell structure factor (Isotropic ADP)

P (u)=
1

√2 π 〈u2
〉

e
−u2

2 〈 u2
〉

● Fourier transform of a Gaussian is also a Gaussian
 

FT
e
−1

2
u2 Q2

=e
−8π2

〈 u2
〉

sin2
(θ)

λ
2

B j=8π2
〈u j

2
〉

● If the motion is isotropic, the Atomic Displacement Parameter for atom j is: 
 

For full nomenclature on ADP from IUCR: see Acta Cryst. (1996). A52, 770-781

F (Q⃗)= ∑
atom j∈UC

b j e
−i Q⃗⋅⃗r j⋅e

−B j

sin(θ)2

λ
2

Unit-cell structure factor: 

F (h , k , l)= ∑
atom j∈UC

b j e
−i 2π(h⋅x j+ k⋅y j+l⋅z j)⋅e

−B j

sin (θ)2

λ
2
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Unit cell structure factor (Anisotropic ADP)

● The Atomic Displacement parameter can be 
anisotropic, in which case a trivariate Gaussian 
is assumed. 

● In the most general case (no constraint from 
point symmetry of the site), there are 6 independent
u

ij
 displacement parameter (second rank tensor). 

(
u11 u12 u13

u21 u22 u23

u31 u32 u33
)

F ( h⃗)=F (h , k , l )= ∑
atom j∈UC

b j e
−i 2π(h⋅x j+ k⋅y j+l⋅z j )⋅e−2π2

〈( u⃗⋅⃗h )2 〉
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Effect of ADP on intensities

sin (θ)/λ

Reduction of F(h,k,l)
for B=1Å2

Reduction of |F(h,k,l)|2

for B=1Å2

● Scattering function is damped at high momentum transfer
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Reminder: the phase problem

F u,v =
1

N xN y

∑
x
∑
y

f x , y e
−2 i 

xu
N x


yv
N y

 

James Chadwick

M



f 'x , y = 1
NuN v

∑
u
∑
v

M u ,v e
2 i 

xu
N

yv
N


F u,v =M u ,ve i

Loss of information in a physical measurement :
The phase information is crucial to reconstruct the image
One can not determine V(r) without model

Now that you know how to write structure factors:
-Reminder: We measure F2 ! 
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Symmetry in reciprocal space(Friedel's law)

F (Q⃗)=∑
j

f j⋅e
i Q⃗⋅⃗R j

Friedel's law, relates the scattering intensity of inverse Q points and
 stems from the property of Fourier transforms of real functions: 

If f
j
  is real then : 

 
F (−Q⃗)=∑

j

f j⋅e
−i Q⃗⋅⃗R j=F*(Q⃗)

Since the scattered intensity is proportional to FF*:  
 

I (Q⃗)=F (Q⃗)F*
(Q⃗)=F *

(−Q⃗)F (−Q⃗)= I (−Q⃗)

Even if the lattice lacks inversion symmetry, in the case when f
j
  are reals, the scattered intensity

of Friedel pairs are equal. 

Q

-Q
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Symmetry in reciprocal space(Friedel's law)

● Friedel's  law is violated if we are close to a resonance, in which case one needs to consider the
anomalous part of the scattering length: b=b'-ib''. 

● In such case, and in the absence of inversion symmetry in the crystal:

 

● This property can be used to determine the absolute handedness of chiral crystals for example. 
(most commonly X-ray anomalous scattering is used)

F (−Q⃗)=∑
j

f j⋅e
−i Q⃗⋅⃗R j≠F*

(Q⃗)
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Symmetry in reciprocal space

● Friedel's law holds most of the time (especially in neutron scattering unless very high 
incident energies are employed)

● The symmetries that we have listed in real space, are also valid symmetries in reciprocal 
space once their translational part has been taken away. 

●  Combining the two → 11 Laue groups

Crystal system Laue Class

Triclinic -1

Monoclinic 2/m

Orthorhombic mmm

Tetragonal 4/m ; 4/mmm

Trigonal -3 ; -3/m

Hexagonal 6/m; 6/mmm

Cubic m3 ; m3m; 
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Systematic absences

Systematic absences referred to the systematic lack of intensity  (for some 
crystal symmetries) for certain lines or planes in reciprocal space and are due to: 
● Lattice centering
● Symmetry operations with translations (screw axes and glide planes)  

a

b

c This is a direct consequence of exact cancellation 
of structure factors. Example: C-centering   

F (h , k , l )=b (e2π i (hx+ky+lz )
+e2 πi (h (x +1/2)+k ( y +1/2)+lz ))

F (h , k , l)=b e 2π i(hx+ ky+lz) (1+eπ i(h+k ))

h+k=2n
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Ewald construction (monochromatic source)

● The idea of P. P. Ewald is to 
decouple real and reciprocal 
spaces. 

● The crystal is drawn at the 
center of the figure.

● Use incident wavenumber

s
i
=k

i
/2

● Draw a sphere of radius 
s=1/ 

● Origin of reciprocal space 

is at the extreme point of s
i
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Ewald construction -scan
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Ewald construction -2scan

Rotate the crystal and the detector simultaneously
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4-circle diffractometer

D10 @ ILL

● Detector in place in the horizontal scattering plane. 
● Crystal is rotated through a 3-axis goniometer (Like Euler rotations ZYZ)
● Access a large number of Bragg peaks by rotating the crystal  
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Ewald construction (Laue method)

1/min

1/max
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Laue method

Copyright © The Nobel Foundation, 
M. Von. Laue Nobel Lecture

“During my first stay in 
Gottingen I had made a half-
hearted attempt to attend a 
mineralogy course but had 
given up very soon. From 
books I then learned the 
rudiments of 
crystallography,that is to say, 
crystal classes, that was all.”
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Laue method

Neutron Laue Cyclops @ILL
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T.O.F Single Crystal

TOF Laue SXD @ ISIS

This volume is available in a single shot

For each pixel on the Detector: 

tof
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Debye-Scherrer cones (powder method)
Intersection of Ewald sphere with spheres in reciprocal space. 
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Debye-Scherrer cones (powder method)

Intersection of scattering cones with cylindrical detector 

WISH@ISIS
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CW  powder instruments

D2B, ILL 

D20, ILL 
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 d
d
=

1
2
U. cot2

V. cot W

LLB, Saclay, 3T2


m







CW  powder instrument: Resolution function
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Trade resolution-flux
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TOF- powder diffracion

L1+L2

Time 

60ms20ms 40ms

D
ista nce

TOF

L1

The x-axis is simply the time-of-flight usually given in microseconds

p=hk=
h

=

h
2dsin 

p=m
L
t

d=
ht

2mLsin 
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TOF powder data from WISH@ISIS
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TOF powder data from WISH@ISIS

Electronic focussing
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Geometric focussing

● L.sin(θ)=const.
● L= total flight path

h

dmL
t

θsin2=

80 100 120 140 160

0

2

4

6

8

10

12

14

 

 

L2
 (

m
)

2θ (deg)
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)sin(

)sin(
* 00

ii

i

l

lt
t

θ
θ=

Reference detector

i

Electronic focussing
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TOF resolution function

δd
d
=√( δt

t )
2

+( δ L
L )

2

+(δθcot θ)2
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Powder data: peak overlap

In powder data there is a substantial amount of overlap from the compression of data to 1D
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Hugo Rietveld High Flux Reactor of the Energy Reseach
Foundation ECN in Petten, The Netherlands. (1987)
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Powder diffraction: The Rietveld method
The method of using the total integrated intensities of the separate groups of
overlapping peaks in the least-squares refinement of structures, leads to the loss
of all the information contained in the often detailed profile of these composite
peaks. By the use of these profile intensities instead of the integrated quantities
in the refinement procedure, however, this difficulty is overcome and it allows the
extraction of the maximum amount of information contained in the powder
diagram." H. M. Rietveld
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Powder instrument-Multiplicity

j=8

j=4

In the powder case, the data is compressed to 1 Dimension. Several equivalent Bragg peaks contribute 
to the intensity at the same scattering angle. To calculate the intensity, one needs to include this 
“multiplicity” (j) 

F (h , k , l)= ∑
atom j∈UC

b j e
−i 2π(h⋅x j+ k⋅y j+l⋅z j)⋅e

−B j

sin (θ)2

λ
2

I (h , k , l)∝ j∣F (h , k , l)∣2
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tt=0

α
β

TOF profile function(1): Back to back exponential

0.0 100

1.0 108

2.0 108

3.0 108

4.0 108

5.0 108

6.0 108

7.0 108

8.0 108

-400 -200 0 200 400

S-CH
4

L-H
2

τ (µsec)

λ = 2 Å

Profile functions for CW , usually Pseudo-Voigt including asymmetry

In the case of TOF, requires convolution with “pulse” function 
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Slow-down 
spectrum

Mixing:
-Delta function
-Exponential decay

More complex analytic expression but often used

TOF profile function(2) : Ikeda-Carpenter
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Microstructure (strain/size)

The profile function results from: 

1) the specific instrumental resolution 
2) broadening from microstructural effects

- Microsize: small coherent diffracting domain (not quite crystallite size but often related)
- Microstrain: crystal lattice distortion with a coherent domain due to

dislocations

The two later effects have different Q dependences an usually can be separated. 

Size effects: Q=cste Strain effects: Q/Q=cste
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Microstructure (example)

Example of anisotropic strain 
(given in FullProf Manual)

Instrumental resolution function

Refinement with anisotropic strain 
to model the peak-shape function
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