Complementary techniques

Stephen J. Blundell

Clarendon Laboratory, Department of Physics, University Of Oxford, UK

Oxford neutron school – September 2013

Lecture plan

Magnetization

v

- · Spin precession: NMR and ESR
- · Some examples of NMR
- Muon-spin rotation
- Some examples of µSR

Magnetic moment: $\mu = \gamma \mathbf{L}$ Energy: $E = -\mu \cdot \mathbf{B}$ Torque: $\mathbf{G} = \mu \times \mathbf{B}$ $\frac{\mathrm{d}\mu}{\mathrm{d}t} = \gamma \mu \times \mathbf{B}$

Magnetic moment

 Magnetic moment comes from thermodynamics, via the partition function Z

$$F = -k_{\rm B}T \ln Z$$
 $\mu = -\left(\frac{\partial F}{\partial B}\right)_T$

Magnetization is the magnetic moment per unit volume

$$M = \frac{\text{magnetic moment}}{\text{volume}}$$

Susceptibility is a bulk measurement measures "volume-averaged" magnetic properties.

$$\chi = \lim_{\delta H \to 0} \frac{\delta M_{\rm av}}{\delta H} \qquad M_{\rm av} = \frac{1}{V} \int_V M \, {\rm d} V$$

Consider the case in which ${\bf B}$ is along the z-direction and ${\boldsymbol \mu}$ is initially at an angle of θ to ${\bf B}$ and in the xz plane. Then

 $\begin{array}{rcl} \mu_x &=& \gamma B \mu_y \\ \mu_y &=& -\gamma B \mu_x \\ \mu_z &=& 0, \end{array}$ so that μ_z is constant with time and μ_x and μ_y both oscillate. Solving these differential equations leads to $\begin{array}{ll} \mu_x(t) &=& |\boldsymbol{\mu}| \sin \theta \cos(\omega_{\rm L} t) \\ \mu_y(t) &=& |\boldsymbol{\mu}| \sin \theta \sin(\omega_{\rm L} t) \\ \mu_z(t) &=& |\boldsymbol{\mu}| \cos \theta, \end{array}$ where $\begin{aligned} \omega_{\rm L} &=& \gamma B \\ \text{is called the Larmor precession frequency.} \end{aligned}$

Bloch equations

$$\frac{\mathrm{d}M_x}{\mathrm{d}t} = \gamma (\mathbf{M} \times \mathbf{B})_x - \frac{M_x}{T_2},$$

$$\frac{\mathrm{d}M_y}{\mathrm{d}t} = \gamma (\mathbf{M} \times \mathbf{B})_y - \frac{M_y}{T_2},$$

$$\frac{\mathrm{d}M_z}{\mathrm{d}t} = \gamma (\mathbf{M} \times \mathbf{B})_z + \frac{M_0 - M_z}{T_1}$$

Nucleus	Ζ	N	Ι	$\mu/\mu_{ m N}$	g_I	ν (in MHz
						for $B = 1$ T)
n	0	1	$\frac{1}{2}$	-1.913	-3.826	29.17
$p=^{1}H$	1	0	$\frac{1}{2}$	2.793	5.586	42.58
$d = {}^{2}H$	1	1	1	0.857	0.857	6.536
$t = {}^{3}H$	1	2	$\frac{1}{2}$	-2.128	4.255	32.43
^{12}C	6	6	0	0	0	0
^{13}C	6	7	$\frac{1}{2}$	0.702	1.404	10.71
14 N	7	7	1	0.404	0.404	3.076
$^{16}0$	8	8	0	0	0	0
^{17}O	8	9	$\frac{5}{2}$	-1.893	-0.757	5.772
19 F	9	10	$\frac{1}{2}$	2.628	5.257	40.05
^{31}P	15	16	1/2	1.132	2.263	17.24
^{33}S	16	17	3	0.643	0.429	3.266

Electron mass m_{e} , charge -e, spin 1/2 moment -1.001 μ_{B} , γ_{e} =28024.2 MHz/T lifetime > 4x10²³ years Muon mass 206.8 m_{e} , charge +e, spin 1/2 moment 0.00484 μ_{B} , γ_{μ} =135.53 MHz/T lifetime = 2.19903x10⁻⁶ s

Susceptibility is a bulk measurement measures "volume-averaged" magnetic properties.

$$\chi = \lim_{\delta H \to 0} \frac{\delta M_{\rm av}}{\delta H} \qquad M_{\rm av} = \frac{1}{V} \int_V M \, {\rm d} V$$

Muon-spin rotation is a local measurement measures magnetic properties at a local level

$$\omega_{\mu} = \frac{B_{\mu}}{\gamma_{\mu}} \qquad B_{\mu} \propto M \qquad p(M) \Longrightarrow p(B_{\mu})$$

A purely one-dimensional system will not undergo a transition to long range order (LRO) because fluctuations (entropy) win when T>0. Nevertheless, as you cool down, spins begin to correlate and the size of correlated region increases

Comparison with neutrons

- No problem with Ir, B, etc
- Samples not deuterated
- High throughput of samples
- Sensitive to very weak moments
- Good for problems involving phase separation
- Complementary information on superconductivity
- Local probes have a role to play

BUT

- Lack the direct mapping of S(Q,ω)
 Neutrons best for magnetic structure
 - determination