Reactor & Spalla Neutron Sources

Ken Andersen

ESS Neutron Instruments Division

Oxford School of Neutron Scatt Oxford, 2013-09-04

Overview

- Neutron Facilities
 - overview & trends
- Reactor-based sources
 - Institut Laue-Langevin
- Fission vs Spallation
 - principles & limitations
- Components of a pulsed spallation neutron source
 - accelerator
 - target
 - moderators
- Neutron source time structure
 - the time-of-flight method
- Long-pulse neutron sources

EUROPEAN SPALLATION SOURCE

	2000	2010	2020	
ILL (F)				
HZB (D)				C
PSI (CH)				<u> </u>
FRM-II (D)				
HFIR (USA)				
NIST (USA)				
JRR-3 (J)				် က
PIK (RU)				
IBR-2/2M (RU)				
ISIS-1 (UK)				τ
ISIS-2 (UK)				
SNS (USA)				
J-PARC (J)				
ESS (SE)				

Fission/Spallation Continuous/Pulsed

ILL (F)	X	X
HZB (D)	X	X
PSI (CH)	X	X
FRM-II (D)	X	X
HFIR (USA)	X	X
NIST (USA)	X	X
JRR-3 (J)	X	X
PIK (RU)	X	X
IBR-2/2M (RU)	X	X
ISIS-1 (UK)	X	X
ISIS-2 (UK)	X	X
SNS (USA)	X	X
J-PARC (J)	X	X
ESS (SE)	X	X

Neutron Sources

EUROPEAN

- About 10 major neutron facilities worldwide
- Fission (continuous)
- Spallation (pulsed)
- User facilities
- Number 1 is Institut Laue-Langevin (ILL) in Grenoble, France
 - 40 instruments
 - 700 experiments a year
 - Mainly condensed-matter physics, chemistry and soft matter

2.5 m

EUROPEAN SPALLATION

- Highly-enriched uranium
- Compact design for high brightness
- Heavy-water cooling
- Single control rod
- 57MW thermal power

́H7

HI

	cold	thermal	hot	H5 H4
moderator	liquid D ₂	Liquid D ₂ O	graphite	H6 V5 IH3
moderator temperature	20K	300K	2000K	
neutron wavelength	3→20Å	1→3Å	0.3→1Å	
sample lengthscale	1Å→100 nm	0.3→5Å	0.1→2Å	
sample timescale	1kHz→1 THz	0.1→10 THz	1→100 THz	

EUROPEAN SPALLATION SOURCE

EUROPEAN

EUROPEAN SPALLATION SOURCE

ILL Moderator Brightnesses

Evolution of neutron sources

EUROPEAN SPALLATION SOURCE

(Updated from Neutron Scattering, K. Skold and D. L. Price, eds., Academic Press, 1986)

EUROPEAN SPALLATION SOURCE

two daughter nuclei

two daughter nuclei

two daughter nuclei

two daughter nuclei

<u>1 GeV proton in:</u> 250 MeV becomes mass (endothermic reaction) 30 neutrons freed => 25 MeV/neutron

two daughter nuclei

<u>1 GeV proton in:</u> 250 MeV becomes mass (endothermic reaction) 30 neutrons freed => 25 MeV/neutron

6x more neutrons per unit heat

Spallation Sources

- Proton beam parameters: energy (=voltage) and current
- Current: neutron production is proportional to number of protons
- Energy: neutron production is proportional to proton energy (E>500MeV)

ussed above, target geometry and parasitic absorption in the target primarily (*v*-energy neutrons from the target. The increased parasitic absorption in tune

- Neutron production is proportional to Power = Voltage x Current
 - e.g. ISIS: 800MeV x 200uA = 160kW
 - e.g. ESS: 2.5GeV x 2mA = 5MW

Spallation Sources

 $\partial^3 N$

- Spallation: 10x higher neutron brightness per unit heat
 - about 6x more neutrons per unit heat
 - about ½ production volume

EUROPEAN SPALLATION SOURCE

Spallation Sources

 $\partial^3 N$

- Spallation: 10x higher neutron brightness per unit heat
 - about 6x more neutrons per unit heat
 - about $\frac{1}{2}$ production volume

EUROPEAN SPALLATION SOURCE

- 1MW spallation source = 10MW reactor
 - e.g. 800MeV at 1.25mA
 - e.g. 2.5GeV at 0.4mA
- Pulsed nature gives additional information
- Spallation has not yet reached the limit imposed by cooling power
 - Short-pulse limitations: peak power on target

(Updated from Neutron Scattering, K. Skold and D. L. Price, eds., Academic Press, 1986)

Neutrons vs Light

	light	neutrons
λ	< µm	< nm
E	> eV	> meV
n	1→4	0.9997→1.0001
θ _c	90°	1 °
	10 ¹⁸ p/cm ² /ster/s	10 ¹⁴ n/cm ² /ster/s
$\Psi/\Delta\Omega$	(60W lightbulb)	(60MW reactor)
P	left-right	up-down
spin	1	1/2
interaction	electromagnetic	strong force,
		magnetic
charge	0	0

Why neutrons?

- Thermal neutrons have wavelengths similar to atomic distances
- Thermal neutrons have energies comparable to lattice vibrations
- Neutrons are non-destructive
- Neutrons interact weakly: they penetrate into the bulk
- Neutrons interact via a simple point-like potential: amplitudes are straightforward to interpret
- Neutrons have a magnetic moment: great for magnetism
- Neutrons see a completely different contrast to x-rays e.g. hydrogen very visible

EUROPEAN SPALLATION SOURCE

ISIS, Oxfordshire, UK (160kW)

ISIS, Oxfordshire, UK (160kW)

ISIS: Today's leading spallation neutron

source 160kW

SNS, Oak Ridge, USA: 1MW today

J-PARC, Tokai, Japan: 1MW soon

Short-Pulse Spallation Sources

SPALLATION SOURCE

EUROPEAN

- Accelerator
 - H- ion source
 - Linear accelerator
 - Stripper converts H- to H+
 - Synchrotron
- Spallation target
- Reflector
- Moderators

Linear accelerator: LINAC

Linear accelerator: LINAC

SNS ion source: H-

Synchrotron

- Synchronise:
 - B-field: bend
 - E-field: accelerate
 - E & B field: focus
 - Magnets to each other
- Injection
 - Stripper foil
- Extraction
 - Kicker magnet

Synchrotron

- Synchronise:
 - B-field: bend
 - E-field: accelerate
 - E & B field: focus
 - Magnets to each other
- Injection
 - Stripper foil
- Extraction
 - Kicker magnet

Synchrotron

- Δt_{linac} ≈ 1 ms
- E_{ring}≈1 GeV $-v \approx 3x10^8 \text{ m/s}$
- L_{ring} ≈ 200 m
 Δt_{ring} ≈ 1 μs

ISIS target 1: solid tungsten

SNS target: liquid mercury

J-PARC target

ISIS TS2 Target

EUROPEAN SPALLATION Target-Reflector-Moderator Neutronics

- Target produces neutrons in MeV range
- Moderators contain H to thermalise neutrons
 - Largest scattering cross-section (80b)
 - Lowest mass: same as neutron
 - on average, 1/2 energy lost per collision
 - 100MeV -> 10meV requires about 25 collisions
- Moderators embedded in reflector, usually D_2O -cooled Be
 - Minimal absorption
 - Large scattering cross-section (8b)
 - Little thermalisation

SNS moderators

Moderator Temperature

EUROP SPALLA SOURCE

EUROPEAN SPALLATION Comparison between pulsed sources

Facility	Power	Rep.Rat e	Start	Instr.	Thml AvB @1.5Å	Thml PkB @1.5Å	Cold AvB @3Å	Cold PkB @3Å
ILL	57/57 MW	-	1971	38	2.6x10 ¹³	2.6x10 ¹³	7x10 ¹²	7x10 ¹²
ISIS- TS1	128/192 kW	50 Hz	1984	18	4x10 ¹⁰	5x10 ¹³	1.5x10 ¹⁰	7x10 ¹²
ISIS- TS2	32/48 kW	10 Hz	2009	11	1.1x10 ¹⁰	4x10 ¹³	2.7x10 ¹⁰	1.8x10 ¹³
SNS	0.9/1.4 MW	60 Hz	2006	20	2.7x10 ¹¹	1.5x10 ¹⁴	5x10 ¹¹	5x10 ¹³
J-PARC	0.3/1.0 MW	25 Hz	2009	21	1.4x10 ¹¹	2x10 ¹⁴	5x10 ¹¹	1.3x10 ¹⁴
ESS	-/5 MW	14 Hz	2019	22	1.1x10 ¹³	2.8x10 ¹⁴	9x10 ¹²	2x10 ¹⁴

Beyond short-pulse limits

SNS instantaneous power on target: 17kJ in 1µs:

17

Χ

EUROPEAN SPALLATION SOURCE

Reaches limits of spallation source technology:

shock waves in target. space charge

Beyond short-pulse limits

SNS instantaneous power on target: 17kJ in 1µs:

EUROPEAN SPALLATION SOURCE

x ESS instantaneous power on target: 125MW

360kJ in 2.86ms

17

Long-Pulse Principle

Thank you!

Oxford School of Neutron Scatt Oxford, 2013-09-04

EUROPEAN SPALLATION SOURCE

Ken Andersen

ESS Neutron Instruments Division