Neutron Instrum

EL SF SC

EUROPEAN SPALLATION SOURCE

Ken Andersen

Neutron Instruments Division, ESS

Oxford School of Neutron Scatt Oxford, 2013-09-05 & 06

- Overview of source characteristics
- Concepts and Technologies
 - De Broglie relations
 - Bragg's Law

EUROPEAN SPALLATION SOURCE

- Guides, Monochromators, Choppers, Detectors
- Elastic scattering: diffractometers
 - Continuous sources
 - Pulsed sources
- Inelastic scattering: spectrometers
 - Continuous sources
 - Pulsed sources
- Non-scattering techniques
 - Fundamental physics
 - Activation analysis
 - Imaging

Neutrons vs Light

	light	neutrons
λ	< µm	< nm
E	> eV	> meV
n	1→4	0.9997→1.0001
θ _c	90°	1 °
Φ/ΔΩ	10 ¹⁸ p/cm ² /ster/s	10 ¹⁴ n/cm ² /ster/s
	(60W lightbulb)	(60MW reactor)
P	left-right	up-down
spin	1	1/2
interaction	electromagnetic	strong force,
		magnetic
charge	0	0

De Broglie relations

Particle	Wave
p = mv	$p = \hbar k = h/\lambda$
$E = \frac{1}{2}mv^2$	$E = \hbar \omega = hf$

$$\hbar = h/2\pi$$

 $h = 6.6 \ 10^{-34} \text{ J} \times \text{s}$
 $m_n = 1.67 \ 10^{-27} \text{ kg}$

De Broglie relations

Particle	Wave
p = mv	$p = \hbar k = h/\lambda$
$E = \frac{1}{2}mv^2$	$E = \hbar \omega = hf$

$$h = h/2\pi$$

$$h = 6.6 \text{ ' } 10^{-34} \text{ J } \text{s}$$

$$m_n = 1.67 \text{ ' } 10^{-27} \text{ kg}$$

 $\lambda = h / mv$ $\lambda [\text{Å}] = 3.956 / v[\text{m/ms}]$ $t[\text{ms}] = L[\text{m}] \lambda [\text{Å}] / 3.956$

 $\lambda = 2d \sin \theta$

 $\lambda = 2d \sin \theta$

Wavevector: $k = \frac{2\pi}{m}$

 $p = \hbar k$

2

$$\vec{k}_i = \vec{k}_f + \vec{Q}$$

$$\Rightarrow \vec{Q} = \vec{k_i} - \vec{k_f}$$

Conversion: $Q = 4\pi \sin \theta / \lambda$

Reflection: Snell's Law

critical angle of total reflection θ_c

Reflection: Snell's Law

critical angle of total reflection θ_c

$$\cos \theta_{c} = n'/n = n'$$

$$n' = 1 - \frac{N\lambda^{2}b}{2\pi}$$

$$\cos \theta_{c} \approx 1 - \theta_{c}^{2}/2$$

Reflection: Snell's Law

critical angle of total reflection θ_c

$$\cos \theta_{c} = n'/n = n'$$

$$n' = 1 - \frac{N\lambda^{2}b}{2\pi}$$

$$\cos \theta_{c} \approx 1 - \theta_{c}^{2}/2$$

for natural Ni, $\theta_c = \lambda[\text{Å}] \times 0.1^{\circ}$ $Q_c = 0.0218 \text{ Å}^{-1}$

Distribution by Guides

Neutron transport by total internal reflection ~ 100m at present sources

Focusing

samples < 1 cm²

Neutron Supermirrors

PSI

Courtesy of J. Stahn, PSI

Courtesy of J. Stahn, PSI

5nm

An Fe/Si multilayer

Silicon substrate

Layer of element A

Multilayer material

Layer of element B

Diffractometers

- Measure structure (d-spacings)
- Assume k_i=k_f
- Measure k_i or k_f :
 - Bragg diffraction
 - Time-of-flight
 - Velocity selection
- Samples :
 - Crystals
 - Powders
 - Liquids
 - Large molecules or structures
 - Surfaces

- Measure crystal structure using Bragg's Law
- Large single crystals are rarely available

EUROPEAN SPALLATION SOURCE

Polycrystal

Time-of-flight (TOF) method

EUROPEAN SPALLATION SOURCE

Time-of-flight (TOF) method

POLARIS @ ISIS TS1

Crystal Monochromators

Copper 200

	d-spacing
Germanium 333	1.089 Å
Copper 200	1.807 Å
Silicon 111	3.135 Å
Graphite 002	3.355 Å

EUROPEAN SPALLATION Constant-Wavelength Diffraction

Constant-Wavelength Diffraction EUROPEAN SPALLATION SOURCE

EUROPEAN SPALLATION Constant-Wavelength Diffraction

 $n\lambda = 2d\sin\theta$

255

SOURCE

Powder Diffraction

- Determining the structure
 - Rietveld refinement
- Measuring strain
 - Engineering applications

Diffuse Scattering

Resolution in Diffraction

$$\left(\Delta d\right)^{2} = \left(\frac{\partial d}{\partial \lambda}\Delta\lambda\right)^{2} + \left(\frac{\partial d}{\partial\theta}\Delta\theta\right)^{2}$$

Mosaic-Crystal Monochromators

 $\Delta\lambda/\lambda \rightarrow 0$!

<hkl>

Time-of-flight Resolution

Time-of-flight Resolution

Single-Crystal Diffraction

- Availability of large (mm³) crystals
- No loss of information from powder average
- Direct and unambiguous structural determination

 Complex structures

Laue Diffraction

- White-beam method
- No prior knowledge of k_i or k_f

Peak position depends only on angle of crystal plane, not on d-spacing

Good for crystal orientation, and looking for odd reflections

Laue Diffraction

LADI @ ILL

EUROPEAN SPALLATION SOURCE

- TOF determination of k_i, k_f
- Large solid-angle coverage
 - Lower flux than standard Laue method

EUROPEAN SPALLATION SOURCE

Nanomaterials

Macromolecules Filter materials

Semiconductors Protein conformation Drug-targeting

EUROPEAN SPALLATION

- Access to smallest angles: remove direct beam
- Good collimation required

- Access to smallest angles: remove direct beam
- Good collimation required

Soller collimator

Pin-holes separated by distance

Constant-Wavelength SANS

$$d = \frac{\lambda}{2\sin \theta} \approx \frac{\lambda}{2\theta}$$

$$\left(\frac{\Delta d}{d}\right)^2 = \left(\frac{\Delta \lambda}{\lambda}\right)^2 + \left(\frac{\Delta \theta}{\theta}\right)^2$$

Direct beam spot ~ 10% of detector size $\Rightarrow \Delta \theta / \theta > 10\%$

$$\Delta\lambda/\lambda \approx 10\%$$

Time-of-Flight SANS

- Collimation and detectors basically the same as CW SANS
- Large increase in Q-range: 2 orders of magnitude
 - 4-20Å in single measurement
 - Same or larger coverage of detector angles

Reflectometry

Reflection from surfaces and interfaces

Specular Reflectometry

EUROPEAN SPALLATION SOURCE

Vertical sample geometry

no free liquids (fine for magnetism) straightforward to vary θ

Off-Specular Reflectometry

Neutron Instruments I & II

- Overview of source characteristics
- Concepts and Technologies
 - De Broglie relations
 - Bragg's Law
 - Guides, Monochromators, Choppers, Detectors
- Elastic scattering: diffractometers
 - Continuous sources
 - Pulsed sources
- Inelastic scattering: spectrometers
 - Continuous sources
 - Pulsed sources
- Non-scattering techniques
 - Fundamental physics
 - Activation analysis
 - Imaging

- Excitations: vibrations and other movements
- Structural knowledge is prerequisite
 - Measure diffraction first
- $k_i \neq k_f$

EUROPEAN SPALLATION SOURCE

- Measure k_i and k_f:
 - Bragg Diffraction
 - Time-of-flight
 - Resonant absorption
 - Larmor precession
- Methods:
 - Fix k_i and scan k_f "direct geometry"
 - Fix k_f and scan k_i "indirect geometry"
- Energy scales: < $\mu eV \rightarrow > eV$

Chopper Spectrometers

Chopper Spectrometers

Chopper Spectrometers

Choppers

Chopper Spectrometers

- General-Purpose Spectrometers
 - Incident energy ranges from 1meV to 1eV
- Huge position-sensitive detector arrays
 - Single-crystal samples

Detectors

³He gas tubes n + ³He → ³H + ¹H + 0.764 MeV >1mm resolution High efficiency Low gamma-sensitivity ³He supply problem

EUROPEAN SPALLATION SOURCE

Scintillators

n + ⁶Li → ⁴He + ³H + 4.79 MeV
<1mm resolution
Medium efficiency
Some gamma-sensitivity
Magnetic-field sensitivity</pre>

Direct-geometry kinematics

EUROPEAN SPALLATION

Direct-geometry kinematics

EUROPEAN SPALLATION

Direct Geometry Spectrometers

Alternative to direct geometry

Indirect-geometry kinematics

eV spectroscopy

Use resonant absorption to define k_f . TOF defines k_i .

1) Measure with absorber in and out. Count neutrons. Take difference

2) Measure with absorber in.

EUROPEAN SPALLATION SOURCE

Chemical spectroscopy

TOSCA@ISIS

states measurements

EUROPEAN SOURCE High Resolution 1: Backscattering

$$\lambda = 2d \sin \theta$$
$$\Rightarrow \frac{\Delta \lambda}{\lambda} = \frac{\Delta d}{d} + \cot \theta \Delta \theta$$

$$\theta \to \frac{\pi}{2}$$
$$\cot \theta = \frac{\cos \theta}{\sin \theta} \to 0$$

Use single crystals in as close to backscattering as possible to define k_f . Scan through k_i with as good energy resolution.

Pulsed-Source Backscattering

High k_i resolution: long instrument on sharp moderator

EUROPEAN SPALLATION SOURCE

detectors

analyser crystals

Backscattering

Continuous-Source Backscattering

Continuous-Source Backscattering

Fix k_f by backscattering analysers Scan k_i by Doppler-shifting backscattering monochromator

Energy resolution < 1µeV Energy range ~ ± 15 µeV

EUROPEAN SPALLATION SOURCE

High Resolution 2: Neutron Spin Echo

EUROPEAN

Triple-Axis Spectrometers

- Only at continuous sources
- Very flexible
- Measures a single point in Q -E space at a time
- Scans:
 - Constant \vec{Q} : Scan E at constant \vec{k}_i or \mathbf{k}_f
 - Constant E: ScarQ in any direction

TAS with Multiplexing

EUROPEAN SPALLATION SOURCE

Non-Scattering Techniques: Fundamental Physics

Non-Scattering Techniques: Fundamental Physics

- Tests of quantum mechanics, e.g. by interferometry
- Precision tests of the Standard Model of particle physics
 - cold or ultra-cold neutrons (E<µeV)
 - neutron electric dipole moment
 - neutron β-decay

- Irradiate and measure gamma spectrum
 - very sensitive to trace elements (10⁻⁹ level)
- Wide range of applications
 - archeology (autoradiography of paintings)
 - biomedicine
 - environmental sciences
 - forensics
 - geology

- Irradiate and measure gamma spectrum
 - very sensitive to trace elements (10⁻⁹ level)
- Wide range of applications
 - archeology (autoradiography of paintings)
 - biomedicine
 - environmental sciences
 - forensics
 - geology

- Irradiate and measure gamma spectrum
 - very sensitive to trace elements (10⁻⁹ level)
- Wide range of applications
 - archeology (autoradiography of paintings)
 - biomedicine
 - environmental sciences
 - forensics
 - geology

St. Sebastian ca 1649, Georges de la Tour?

Results: Stroke analysis Painting technique Paint composition Conclusion: Copy of original by Georges de la Tour himself St. Sebastian ca 1649, Georges de la

x-ray radiography

Imaging: Neutron Radiography & Tomography

Neutrons

Imaging: Neutron Radiography & Tomography

Imaging: Neutron Radiography & Tomography

4 mins

1 hr

EUF SPA SOL

EUROPEAN SPALLATION SOURCE

Ken Andersen

Neutron Instruments Division, ESS

Thank you!