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History of Polarized Neutrons

1937	

 Theory of neutron polarization by a ferromagnet
	

 Schwinger  (Phys Rev, 51, 544)	



1938	

 Partial polarization of a neutron beam by passage through iron
	

 Frisch et al (Phys Rev 53, 719),  Powers (Phys Rev 54, 827)

1937 - 1941	

 Theory of magnetic neutron scattering 
                          (including neutron polarization)
	

               Halpern and Johnson (Phys Rev 51, 992; 52, 52; 55, 898)

1940	

 Magnetic moment of the neutron determined by polarization analysis
	

 Alvarez and Bloch (Phys Rev 57,111)

1932	

 Discovery of the neutron
	

 Chadwick (Proc Roy Soc A136 692)	



1951	

 Experiments with polarizing mirrors and proof of the neutron’s μ.B interaction
	

 Hughes and Burgy  (Phys Rev, 81, 498) 



History of Polarized Neutrons
1951	

 Polarizing crystals (magnetite Fe3O4, Co92Fe8) 

	

 	

 Shull et al (Phys Rev 83, 333; 84, 912)

1959	

 First polarized beam measurements (of magnetic form factors of Ni and Fe)
	

 Nathans et al (Phys Rev Lett, 2, 254)

1963   General theory of neutron polarization analysis
      Blume (Phys Rev 130, 1670)
      Maleyev (Sov. Phys.: Solid State 4, 2533)

1969	

 First implementation of neutron polarization analysis, Oak Ridge, USA
	

 Moon, Riste and Koehler  (Phys Rev 181, 920)



Polarized neutrons today

• Single crystal diffraction
• Diffuse scattering
• Inelastic scattering (3-axis and TOF)
• Reflectometry (on and off-specular)
• SANS - magnetic and non-magnetic
• Neutron Spin-Echo
• Neutron Resonance Spin-Echo
• Mieze Spectroscopy
• SESANS, SERGIS
• Larmor Diffraction
• Neutron Depolarization
• Polarized Neutron Tomography
• ......
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Polarized neutron beams
Each individual neutron has spin s=½ and an angular momentum of ±½ħ
Each neutron has a spin vector       and we define the polarization of a neutron beam 
as the ensemble average over all the neutron spin vectors, normalised to their modulus

+½ħ

-½ħ

“Spin-up” 

“Spin-down”

B

If we apply an external field (quantisation 
axis) then there are only two possible 
orientations of the neutrons: parallel and 
anti-parallel to the field. The polarization 
can then be expressed as a scalar:

where there are N+ neutrons with spin-up 

and N- neutrons with spin-down



Polarized neutron beams

This description of a polarized beam is OK for experiments in which a single 
quantisation axis is defined:  Longitudinal Polarization Analysis

The technique of 3-dimensional neutron polarimetry, however is termed:
Vector (or Spherical) Polarization Analysis

€ 

P =
N+ − N−

N+ − N−

  =
N+ /N−( ) −1
N+ /N−( ) +1

  =
F −1
F +1

Where                   is called the Flipping Ratio and is a measurable quantity in a

scattering experiment

€ 

F =
N+

N−

What we often would like to do in polarized neutron experiments is 



A Uniaxial PA experiment

analyserpolarizer

flipper 1

flipper 2

detector
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•First attempted by Moon, Riste and Koehler (Oak Ridge 1969)
Phys Rev. 181 (1969) 920
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A Uniaxial PA experiment

analyserpolarizer

flipper 1

flipper 2

detector

B
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“Non-spin-flip”
}

“Spin-flip”
•First attempted by Moon, Riste and Koehler (Oak Ridge 1969)

Phys Rev. 181 (1969) 920



Production of polarized beams

There are three principal (passive) methods of beam polarization, each with specific 
advantages in particular experimental situations

(a) polarizing filters (e.g. preferential absorption by polarized 3He nuclei)
(b) polarizing mirrors and supermirrors (using preferential reflection) 
(c) polarizing crystals (e.g. Co92Fe8, Heusler crystals (Cu2MnAl))  using
     preferential Bragg reflection) 

BG

polarizer



Polarizing Filters

The filter performance depends upon both P and T.   P can be increased by making 
the filter thicker, but only at the expense of total transmission, T.  As a compromise 
it is the quality factor P√T that is usually optimised 
(but see Cussen, J Neutron Res., 7, 15, 1998)

The polarizing efficiency of a filter, P, is defined in terms of the transmission of the 
two spin states, T+ and T-

where the total transmission of the filter is T = (T+ + T-) / 2

€ 

P =
T+ −T−
T+ + T−

For a generalised polarizing filter with total absorption cross sections given in terms 
of the spin-independent absorption cross section, σo  and a spin-dependent 
absorption cross section σp we have

€ 

σ ± =σ 0 ±σ p

See, e.g.  Williams in Polarized Neutrons, Oxford University 
Press, 1988

From which it can be shown (using                               that) 

and 

Where N is the number density of atoms/nuclei responsible for 
spin selection and t is the filter thickness 

€ 

P = −tanh(Nσ pt)

€ 

T = exp(−Nσ 0t)cosh(Nσ pt)
T = exp(�N�t)



3He spin-filters

⇥± = ⇥a(1± �PN )

Close to a resonance energy the absorption cross sections of nuclei are dependent upon 
their polarization and the neutron spin direction   

where σa is the mean absorption cross section and PN  is the nuclear polarization, 

where σI-1/2  and σI+1/2  are the absorption cross sections for neutrons with spin down and 
spin up with respect to the orientation of the nuclear spin I

€ 

ρ =
I(1− 2x) − x

I +1

€ 

x =
σ
I − 12

σ
I + 12

+σ
I − 12

�± = �a(1� PN )
For 3He nuclei, all the absorption is in the σI-1/2  channel, and therefore, x = 1 and ρ = -1 giving

Therefore, for fully polarized 3He (PHe = 1), one spin state goes through the filter with zero 
absorption.  The other spin state is almost fully absorbed since σa = 5000 barns.  

T = exp(�O) cosh(OPHe)

O = N�at

P = tanh(OPHe)

where O is the opacity of the spin-filter

= 0.0732 x λ[Å] x p[bar] x t[cm]

We can now set σ0 = σa and σp = -σaPN which leads to the expressions



Optimizing Spin-filters

PHe = 0.7p [bar] x t [cm] = 10

Neutron wavelength (Å) Neutron wavelength (Å)

T = exp(�O) cosh(OPHe)
P = tanh(OPHe)

Q = P 2T

3He polarization produced via optical pumping methods



3He spin-filters in operation

Typical values: 75% initial 3He nuclear 
polarization with a relaxation time of 100 
hours

Relaxation of the 3He polarization arises from collisions with the 
container walls, from dipole-dipole interactions, and from stray 
magnetic fields. 

Single crystal Si 3He cell  (D17, ILL)

In situ SEOP 3He cell (CRISP, ISIS)



3He spin-filters in operation
Time-of-flight spectrometers require a neutron spin-filter that covers a wide solid angle (big 
detector angles) and is efficient at thermal energies - 3He spin filter is ideal for this 

Stewart et.al. Physica B 385-86 (2006) 1142-1145



Neutron mirror polarizers

Optical Neutron

€ 

n =
c
v

€ 

n =
λ1
λ2

=
k2
k1

All optical phenomena have their neutron counterparts: e.g. refractive index

If we assume that the neutron experiences a change of energy equivalent to <V> 
when it enters medium 2, we can write

assuming that 

€ 

n =
k2
k1

=
E1 − V
E1

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

1
2
≈1−

V
2E1

€ 

V << E1

The potential <V> will in general consist of a nuclear and magnetic part 
(Fermi pseudopotential)

  

€ 

V N =
2π2

m
Nb           V M =

2π2

m
Np = ±µnB



Neutron mirror polarizers
Therefore, the spin dependent refractive index of  magnetised mirrors for neutrons of 
wavelength λ is . 

where b  is mean coherent nuclear scattering length, N is the number density of 
scattering nuclei, and B is the flux density applied in the plane of the surface

€ 

n± =1− Nλ2

2π
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ b ± p ( )

Snell’s law for refraction states 

And the critical angle of reflection (defined when θ2 = 0) is

€ 

n1,2 = cosθc ≈1−
θc
2

2
€ 

n1,2 = cosθ1 cosθ2

Between these two critical angles the reflected beam is effectively fully polarized, and in 
some circumstances the critical angle for one spin state can be made zero

However, the critical angles are very small (typically 10 arc minutes)

There are therefore two critical glancing angles θc± for total (external) reflection:

€ 

θc ± = λ
N
π

b ± p ( )
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

1
2

Hughes and Burgy, Phys. Rev. 81 (1951) 498



Multi bi-layer mirrors

Therefore, with a judicious choice of N and b, it can be arranged that R- = 0 
implying perfect beam polarization (but not reflectivity) at all angles of incidence

In practice this is very difficult to achieve, since the spin-down neutrons have to go 
somewhere.  They are either transmitted or absorbed in an absorbing layer (often 
Gd, which has a non-zero reflectivity at very low angles)

Transmission polarizer

+

-
Very good polarization since 
clean separation of 
polarization states is 
achieved.  Can only accept 
limited divergence and one 
wavelength

In a polarizing neutron mirror, the basic unit is a non-magnetic/magnetic (A/B) bilayer, 
which has a reflectivity of the form

€ 

R± ∝ NAbA − NB bB ± pB( )[ ]2

Hughes and Burgy, Phys. Rev. 81 (1951) 498



Multi bi-layer mirrors

Therefore, with a judicious choice of N and b, it can be arranged that R- = 0 
implying perfect beam polarization (but not reflectivity) at all angles of incidence

In practice this is very difficult to achieve, since the spin-down neutrons have to go 
somewhere.  They are either transmitted or absorbed in an absorbing layer (often 
Gd, which has a non-zero reflectivity at very low angles)

In a polarizing neutron mirror, the basic unit is a non-magnetic/magnetic (A/B) bilayer, 
which has a reflectivity of the form

€ 

R± ∝ NAbA − NB bB ± pB( )[ ]2

Bender polarizers (D7, ILL)

Mirrors are bent to ensure at least one reflection of 
the neutrons.  Polarization less good due to finite 
reflectivity of absorbing layer.  But able to accept 
large divergence of angles (stacked device) 

 O Schärpf, Physica B 174 (1991) 514-527



Neutron “supermirrors”

Thin film (eg CoFe) 

Bi-layers (eg Co/Ti, Fe/Si) 

The multi-bilayer system introduces an 
additional Bragg peak at sinθ/λ = 1/2d

sinθc/λ sinθ/λ
Re
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Neutron “supermirrors”

Supermirror systems
(eg Co/Ti, Fe/Si etc) 

A gradient in the lattice spacing of the bilayers results in a range of effective Bragg 
angles, and therefore a reflectivity which extends beyond values expected for normal 
mirror reflections

Mezei, Commun. Phys. 1 (1976) 81

Supermirror

Broad band
multilayer

Periodic 
multilayer

d1}  

λ 1
λ 2

λ 3
λ 4

λ c

d2}  
d3}  

d4}  

   
R
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Supermirror m-number indicates the range of angles for good reflectivity
For a single (thick) layer of Ni, m = 1 = 0.1°/Å



Supermirrors in operation
Supermirror “bender” analyser array on D7, ILL.  There is over 250 m2 of supermirror in the 
full analyser array.  (c.f. doubles tennis court is 260 m2)

See also Boni et al, (Physica B 267-8(1999) 320 ) for the development of 
remnant supermirrors 

D7, ILL



Polarizing Crystals

The nuclear and magnetic structure factors can be either positive or negative, so beam 
polarization, Pf,  could be either “up” or “down” with respect to B . 

Crystal planes

Q

B

η̂

(-)

(+)

The cross section for Bragg reflection in 
the geometry shown left, in which the 
incident beam is considered as a 
superposition of P=1 and P=-1 states,  is

where  FN,M(Q) are the nuclear and 
magnetic structure factors for the 
reflection€ 

dσ /dΩ = FN
2(Q) + 2FN (Q)FM (Q)(P ⋅ ˆ η ) + FM

2 (Q)

In general the polarizing efficiency of a crystal reflection is given by

€ 

Pf =
2FN (Q)FM (Q)
FN
2(Q) + FM

2 (Q)[ ]

If  |FN (Q)| = |FM(Q)| the reflected beam will be polarized.  

For For

€ 

P ⋅ ˆ η = −1:    dσ /dΩ = FN (Q) + FM (Q)[ ]2

€ 

P ⋅ ˆ η = 1:    dσ /dΩ = FN (Q) − FM (Q)[ ]2+ -1:



Crystal monochromator polarizers
	

 	

 	

 Co92Fe8	

          Cu2MnAl	

        Fe3Si

Matched reflection	

                (200)	

 	

 (111)	

        (111)

d-spacing (Å)	

 	

   1.76	

  	

  3.43	

         3.27

2θ at λ=1Å	

 	

   33.1	

 	

  16.7	

         17.6

Maximum λ (Å)	

 	

    3.5	

 	

   6.9	

          6.5

Cu2MnAl has a higher reflectivity and lower absorption than Co92Fe8, 
also FN=-FM so the beam is negatively polarized with respect to B

Cu2MnAl (Heusler) crystal grown at ILL, 
with associated reflectivity curve. 



Guiding and flipping neutrons



Guiding the polarization
If the direction of the magnetic field (quantisation axis) remains constant in the rest 
frame of the neutrons then the direction of the polarization of the neutron beam will 
be preserved
However, if the direction of the field B changes sufficiently slowly in the rest frame of 
the neutrons, then the polarization component parallel to B is conserved - ie there is 
an adiabatic (or reversible) rotation of the polarization

B`B`

Beam 
direction

B
Adiabatic helical rotation 

of 
“guide” field

Pi

Pf

[rem:  An adiabatic process is one in which the system is always “infinitesimally close” to  equilibrium.  
Here the field is changed in such a way that the potential energy of the neutrons is close to its initial 
value – and returns to this value at the end of the process]



Larmor precession

Where the gyromagnetic ratio,      , is the ratio of the magnetic moment to the angular 
momentum

�n

�dI
dt

= µ�B
dµ

dt
= �nµ�B

Angular momentum of a spin in a magnetic field (in the z-direction), equation of motion is

or

�L

⇥L = �nB

µx = |µ| cos ⇥Lt µy = �|µ| sin⇥Lt
This gives oscillatory solutions of the form

describing a precession of the spin around the field direction, with an angular frequency 
of      , the Larmor precession frequency

B



Adiabatic rotation
The rate of angular rotation, ωB, of the 
field along the y-axis  in the rest frame of 
the neutron is: 

where v is the neutron velocity

€ 

ωB =
dθB
dt

=
dθB
dy

.dy
dt

=
dθB
dy

v

This inequality corresponds to 

with B in mT, θ in degrees, distance y in cm and neutron wavelength, λ in Å

€ 

dθB
dy

< 2.65Bλ degrees/cm

We can therefore define an adiabaticity 
parameter, E, where 

€ 

E =
ωL

ωB

=
γ n B
dθB
dy

v

For an adiabatic rotation without loss of polarization we require E>10 (by bitter experience)

after a π/2 spin-rotation



Non-adiabatic transitions
Although we can adiabatically reorient the polarization in the laboratory frame, the 
polarization of the beam remains constant with respect to the guide field  

However, for a non-adiabatic reorientation of the guide field (ΔE≠0) the polarization 
will not re-orient - instead the beam will preserve its initial direction, and begin to 
precess about the new field direction

Non-adiabatic rotations enable the beam polarization to be effectively “flipped” with 
respect to the guide field 

y

x

z

-B-B

zB Non-adiabatic rotation of 
“guide” field

Beam 
direction

Pi Pf=-Pi



Non-adiabatic transitions
Although we can adiabatically reorient the polarization in the laboratory frame, the 
polarization of the beam remains constant with respect to the guide field  

However, for a non-adiabatic reorientation of the guide field (ΔE≠0) the polarization 
will not re-orient - instead the beam will preserve its initial direction, and begin to 
precess about the new field direction

Non-adiabatic rotations enable the beam polarization to be effectively “flipped” with 
respect to the guide field 

z
Pi

y

x B⊥

B Non-adiabatic rotation of 
“guide” field

Beam 
direction

B⊥ B⊥



Drabkin flipper
A wide variety of devices have been employed as effective non-adiabatic field reversing 
“spin-flippers”:

π-flipper

Radial magnetic field off-axis
Results in low flipping ratios

Useful for thin beams only

BUT
No material in beam

Drabkin flipper: useful for white beams of limited size
 - used on the reflectometers CRISP and SURF at ISIS

Bout

PoutPin

Bin



Current Sheet (Dabbs Foil)

I

BF

BG BG

- BG

Another example of a “sudden field-reversal” π-flipper.
Works for wide wavelength band
(for wavelengths which adiabatically follow the field)



Mezei flipper

e.g. a 1Å neutron will be spin flipped by π radians in a distance of 1cm if BR=1mT

For further details see, e.g. Hayter Z Physik B 31, 117 (1978)

BF

BC

y

z BG BG

BF

d
BR = BG + BF + BC

d =
⇥v

�nBR

A flip of φ radians with respect to the guide field can be achieved if the resultant field 
within the coil, BR, is perpendicular to BG and

The Mezei flipper uses a non-adiabatic 90° field change to project the polarization 
direction of the beam onto any arbitrary field axis:

Useful for monochromatic beams



AFP Flipper
Adiabatic fast passage (see Abragam, Principles of Nuclear Magnetism)

dµ

dt
= �nµ�B

Equation of motion of a magnetic moment in a field B

dµ

dt
= �nµ⇥ (B� ⇤

�n
)

Now convert to a rotating frame, with angular velocity ω

In the rotating frame, we’ve replaced the field, by an effective field  
dµ

dt
= �nµ⇥ (B� ⇤

�n
)

So, running around a static field B with 
increasing angular velocity, will reduce the 
field, then cause it to disappear (when the 
rotating frame is at Larmor frequency) 
and then reverse the field.

B

Brf

Beff

B-B’

B’ = ω/γn 



AFP flipper

Guide Field
Coils

BG

Neutron beam

Rf-field at constant frequency

BG swept from high to low 
fields, through resonance with 
Brf

So in rotating frame the 
effective field Beff reverses - 
flipping the spins

RF-Coil - Brf



AFP flipper
BG -ω/γn

Brf

(BG-ω/γn)

Beff = Brf + (BG-ω/γn)

AFP flipper installed on D22 at ILL

AFP  can also be used to flip polarized 3He nuclei
is neutron spin-filters, using a frequency sweep



Uniaxial Polarization Analysis



Neutron polarization and 
scattering

We start with the (elastic - |ki| = |kf|) scattering cross-section

Where the spin-state of the neutron S is either spin-up or spin down

  

€ 

dσ
dΩ

=
mn

2π2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ʹ′ k ʹ′ S V kS 2

€ 

↑ =
1
0
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

€ 

↓ =
0
1
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

1) Nuclear (I = 0) scattering
V is the Fermi pseudopotential, and the matrix element is

where we have used the fact that the spin states are orthogonal and normalised

€ 

ʹ′ S b S = b ʹ′ S S =

b 
↑ → ↑

↓ → ↓

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

0 
↑ → ↓

↓ → ↑

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

Non-spin-flip

Spin-flip

€ 

↑↓ = ↓↑ = 0,  ↑↑ = ↓↓ =1



Neutron polarization and 
scattering

(see e.g. Squires)

2) Magnetic scattering
V is the magnetic scattering potential given by

where ζ = x, y, z.  Here M⊥(Q) represents the component of the Fourier transform of the 
magnetisation of the sample, which is perpendicular to the scattering vector Q - i.e. the 
neutron sensitive part.  σζ are the Pauli spin matrices
€ 

Vm (Q) = −
γ nr0
2µB

σ ⋅M⊥ (Q) = −
γ nr0
2µB

σζ ⋅ M⊥ζ (Q)
ζ

∑

€ 

σx =
0 1
1 0
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,  σy =

0 − i
i 0
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,  σ z =

1 0
0 −1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Substitution of these into the magnetic potential gives us the matrix elements

€ 

ʹ′ S Vm (Q) S = −
γ nr0
2µB

M⊥z (Q)
−M⊥z (Q)

M⊥x (Q) − iM⊥y (Q)
M⊥x (Q) + iM⊥y (Q)

 
↑ → ↑

↓ → ↓

⎫ 
⎬ 
⎭ 

 
↑ → ↓

↓ → ↑

⎫ 
⎬ 
⎭ 

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

Non-spin-flip

Spin-flip



Magnetic scattering rule

The non-spin-flip scattering is sensitive only 
to those components of the magnetisation 

parallel to the neutron spin

The spin-flip scattering is sensitive only to 
those components of the magnetisation 

perpendicular to the neutron spin

NB  This is one of those points that you should take away with you.  It is 
the basis of all magnetic polarization analysis techniques



Neutron polarization and 
scattering

3) Nuclear spin-dependent scattering
In general a bound state is formed between the nucleus and the neutron during 
scattering with either spins antiparallel (spin-singlet) or spins parallel (spin-triplet).  The 
scattering lengths for these situations are different and are termed b- and b+. 

(see e.g. Squires, p173)

We define the scattering length operator

€ 

ˆ b = A + Bσ ⋅ I

€ 

A =
(I +1)b+ + Ib−

2I +1
,  B =

b+ − b−
2I +1

The calculation of the matrix elements now proceeds analogously to the case of 
magnetic scattering

€ 

ʹ′ S ˆ b S =

A + BIz
A − BIz
B(Ix − iIy )
B(Ix + iIy )

 
↑ → ↑

↓ → ↓

⎫ 
⎬ 
⎭ 

 
↑ → ↓

↓ → ↑

⎫ 
⎬ 
⎭ 

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

Non-spin-flip

Spin-flip

Since the nuclear spins are (normally) random
Therefore with the coherent scattering amplitude proportional to   , we can write

€ 

b 

€ 

Ix = Iy = Iz = 0

€ 

b = A i.e. the coherent scattering is entirely non-spin-flip 



Moon-Riste-Koehler Equations

If the polarization is parallel to the scattering vector, then the 
magnetisation in the direction of the polarization will not be 
observed since the magnetic interaction vector is zero.  i.e. all 
magnetic scattering will be spin-flip

Bringing all this together, we get 

Moon, Riste and Koehler  (Phys Rev 181 (1969) 920)

Remember that: (see e.g. Squires)

€ 

M⊥ = −2µB ˆ η − ( ˆ η ⋅ ˆ Q ) ˆ Q [ ]
€ 

↑ → ↑ = b − γ nr0
2µB

M⊥z + BIz

↓ → ↓ = b + γ nr0
2µB

M⊥z − BIz

↑ → ↓ = −
γ nr0
2µB

M⊥x − iM⊥y( ) + B Ix − iIy( )

↓ → ↑ = −
γ nr0
2µB

M⊥x + iM⊥y( ) + B Ix + iIy( )



Spin-incoherent scattering

Isotope incoherent scattering spin incoherent scattering

The other transitions are dealt with in a similar way

Now, let’s take another look at the nuclear incoherent scattering.  We know that this 
is given by 

€ 

b2 − b ( )
2

Applying this to the                  transition, and neglecting magnetic scattering, we get 

€ 

↑ → ↑

€ 

b2 = b + BIz( )
2

    = b ( )
2

+ B2Iz
2 + 2 b BIz

Now, for a randomly oriented distribution of nuclei of spin I, we have

since the distribution is isotropic

€ 

I = I(I +1) = Ix
2 + Iy

2 + Iz
2

   ⇒ Ix
2 = Iy

2 = Iz
2 =

1
3
I(I +1)

Therefore we can write

€ 

b2 − b ( )
2

= b ( )
2
− b ( )

2
+
1
3

B2I(I +1)



Moon-Riste-Koehler II
Finally, we get 

The details of the magnetic scattering will in general depend on the direction of the 
neutron polarization with respect to the scattering vector, and also on the nature of 
the orientation of the magnetic moments

where

€ 

↑ → ↑ = b − γ nr0
2µB

M⊥z + bII +
1
3

bSI

↓ → ↓ = b + γ nr0
2µB

M⊥z + bII +
1
3

bSI

↑ → ↓ = −
γ nr0
2µB

M⊥x − iM⊥y( ) +
2
3

bSI

↓ → ↑ = −
γ nr0
2µB

M⊥x + iM⊥y( ) +
2
3

bSI

€ 

bII = b ( )
2
− b ( )

2

bSI = B2I(I +1)



Scientific Examples



Magnetic form-factors in 
ferromagnets

For a ferromagnet the cross section for unpolarized neutrons is 

€ 

dσ
dΩ

= FN
2(Q) + FM

2 (Q)

If we take a simple ferromagnet such as Ni 
(bNi=1.03×10-12cm, µNi= 0.6µB) aligned such that the 
magnetisation is perpendicular to Q (i.e. magnetic 
interaction vector = 1)  the ratio of the magnetic to 
the nuclear contribution to the intensity of even the 
lowest angle (111) reflection is only  

€ 

FM
2 (Q) FN

2(Q) = 0.017

By the (400) reflection this ratio has fallen as a 
consequence of the magnetic form factor to  

€ 

FM
2 (Q) FN

2(Q) = 6 ×10−4



Polarized magnetic diffraction
For a ferromagnetic sample aligned in a field perpendicular to the scattering vector we have

and M⊥ has no component in the xy-plane, so that the spin-flip scattering is zero.
This implies that we don’t need to analyse the neutron spin, it will always end up
in the same direction it started in.  Therefore

€ 

M⊥ = −2µB ˆ η − ( ˆ η ⋅ ˆ Q ) ˆ Q [ ] = −2µB ˆ η 

for neutrons polarized antiparallel to the field

for neutrons polarized parallel to the field

where
€ 

dσ dΩ = FN (Q) − FM (Q)[ ]2

€ 

dσ dΩ = FN (Q) + FM (Q)[ ]2

€ 

FN (Q) = bi exp(iQ ⋅ ri)
i
∑

FM (Q) = γ nr0 gJi Ji f i(Q)exp(iQ ⋅ ri)
i
∑

Notice that to simulate an unpolarized measurement, we simply average the two polarized cross 
sections

NB we have neglected incoherent scattering here

€ 

dσ
dΩ

=
1
2

FN (Q) − FM (Q)( )2
+ FN (Q) + FM (Q)( )2[ ]

      = FN
2(Q) + FM

2 (Q)

Squires: pp 129 - 135



Polarized magnetic diffraction

So, for example, in the case of Ni we measure a flipping 
ratio of 1.7 at the (111) reflection and  1.1 at the (400) 
reflection 

The goal is, of course, to determine FM(Q) which can then 
be Fourier transformed to give a full 3-dimensional spin 
density distribution

Ni

Using a spin flipper to access these two polarized cross sections we can determine the “flipping 
ratio”, R, of a particular Bragg reflection: 

€ 

R =
dσ dΩ( )⇓
dσ dΩ( )⇑

=
FN (Q) + FM (Q)[ ]2

FN (Q) − FM (Q)[ ]2
=
1+ γ
1− γ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

€ 

γ =
FM (Q)
FN (Q)

with



D3, ILL

polarizing monochromator

Cryomagnet

detectorCryoflipper



Spin-density maps
K2NaCrF6

K2NaCrF6 is a cubic insulator in which Cr3+ 
ions are at the centre of an octahedron of 
F- 

T2g symmetry around Cr and islands of 
spin density around F indicative of spin 
transfer through covalent bonding 

Wedgwood, Proc Roy Soc A349, 447 (1976)

Antiferromagnetic Cr metal

Pure Cr is an itinerant electron spin 
density wave antiferromagnet.
However a field induced magnetic form 
factor can be measured 
Results (analysed using Max. Ent. methods) 
are consistent with 60% orbital and 40% spin 
contributions  

Strempfer et al Physica B 267-8 56 (1999)



Polarization analysis with multi-
detectors

In order to separate nuclear, magnetic and spin-incoherent scattering on a multi-detector 
neutron instrument, we need to employ XYZ polarization analysis

Since it is difficult to get a wide angle spin-flipper to cover the multi-detector, we make do 
with one flipper before the sample.  Therefore we see the following transitions 

The cross-sections (considering magnetic part only) are therefore

€ 

↑ → ↑ = b − γ nr0
2µB

M⊥z + bII +
1
3
bSI

↓ → ↑ = −
γ nr0
2µB

M⊥x + iM⊥y( ) +
2
3
bSI

€ 

dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
NSF

=
γ nr0
2µB

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

M⊥z
* M⊥z

dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
SF

=
γ nr0
2µB

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

M⊥x + iM⊥y( )
*
M⊥x + iM⊥y( )

             =
γ nr0
2µB

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

M⊥x
* M⊥x + M⊥y

* M⊥y



XYZ-Polarization analysis
It can be shown (see Squires p 179) that in the case of a fully disordered paramagnet 
these expressions reduce to

We can immediately see that setting the polarization (ζ) direction along the scattering 
vector has the desired effect of rendering all the magnetic scattering in the spin-flip cross-
section.

where we have replaced the z-direction with the general direction ζ = x, y, or z€ 

dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
NSF

ζ

=
1
3
γr0
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

g2 f 2(Q)J(J +1) 1− ˆ P ⋅ ˆ Q ( )
2⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ 

€ 

dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
SF

ζ

=
1
3
γr0
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

g2 f 2(Q)J(J +1) 1+ ˆ P ⋅ ˆ Q ( )
2⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ 

Now we suppose that we have a multi-detector in the x-y plane.  In this case the 
unit scattering vector is

y

x

z

Q

α
where α is the angle between
Q and an arbitrary x-axis
- the “Schärpf angle”

€ 

ˆ Q =
cosα
sinα

0

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 



The Schärpf Equations
Substituting this unit scattering vector into the NSF and SF cross sections leads then to 6 
equations (including now the nuclear coherent, isotope incoherent and spin-incoherent terms)

 Schärpf and Capellmann Phys Stat Sol a135 (1993) 359

x-direction

€ 

dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
X

NSF

=
1
2
sin2α dσ

dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
mag

+
1
3
dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
SI

+
dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
nuc+II

dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
X

SF

=
1
2
cos2α +1( ) dσ

dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
mag

+
2
3
dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
SI

y-direction

€ 

dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
Y

NSF

=
1
2
cos2α dσ

dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
mag

+
1
3
dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
SI

+
dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
nuc+II

dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
Y

SF

=
1
2
sin2α +1( ) dσ

dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
mag

+
2
3
dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
SI

z-direction

€ 

dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
Z

NSF

=
1
2
dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
mag

+
1
3
dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
SI

+
dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
nuc+II

dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
Z

SF

=
1
2
dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
mag

+
2
3
dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
SI



Separation of scattering
The principal cross sections can be extracted by combining the six partials:

The 3-directional, or xyz- difference method is most widely used for diffuse scattering studies of 
magnetic correlations in spin glasses, antiferromagnets and frustrated systems – the general 
requirement being that these equations only work if there are no collinear (or chiral) components 
to the magnetisation

Stewart, et. al. J. Applied Phys. 87 (2000) 

The magnetic cross-section is independently calculated in 2 ways

€ 

dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
mag

= 2 dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
SF

X

+
dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
SF

Y

− 2 dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
SF

Z⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥     

dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
mag

= 2 2 dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
NSF

Z

−
dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
NSF

X

−
dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
NSF

Y⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

⎫ 

⎬ 

⎪ 
⎪ 

⎭ 

⎪ 
⎪ 

=
2
3
γ nr0

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

gJ
2 f 2(Q)J(J +1)

For the other cross-sections, we have

where the subscript, TNSF or TSF refers to the total (x + y + z) NSF or SF scattering cross sections 

€ 

dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

SI

=
1
2

dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

TSF

−
dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

mag

= B2I(I +1)

dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

nuc +II

=
1
6
2 dσ

dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

TNSF

−
dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

TSF

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = b2S(Q) + b2 − b ( )

2
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Diffuse scattering examples

Magnetic short-range order in Gd2Ti2O7 - due to 
geometrical frustration of anti-ferromagnetic exchange 
interactions 

Stewart et al, J Phys: Condensed Matter 16, L321 (2004)



Diffuse scattering examples
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Polymer diffraction

Complete separation of SI 
scattering

Internal normalisation (inc. D-W 
factor)

Careful analysis of multiple 
scattering

Close comparison with MD 
simulations

Polyisoprene: (CH2CH = C(CH3)CH2)n

Alvarez, et. al.PI-h8

PI-d5

PI-d3

PI-d8

Q (Å-1)
Alvarez, et.al., Macromolecules 36 (2003) 238



Inelastic magnetic scattering

Rule, et. al., Phys. Rev. B 76 212405 (2007)

Pyrochlore - Tb2Sn2O7



Neutron Polarimetry



Neutron Polarimetry

For a full description of the scattering processes we must perform “polarization analysis” in its true 
sense, i.e. we must measure all components of the polarization vector

Blume (Phys Rev 130, 1670, 1963, Physica B 267-268, 211, 1999)

To this point we have only been concerned with applying uniaxial polarization analysis - i.e. with 
measuring the scattered intensity associated with a scalar change of polarization along a particular axis.

This is “uniaxial (longitudinal) polarization analysis”

This is “neutron polarimetry”

or:  Hicks (Advances in physics, 45, 243, 1996)

and 

The general equations are (and I’m just going to quote them!) can found by repeating our
previous uniaxial analysis in three dimensions 

Nuclear

Nuclear

Magnetic

Magnetic

NM Interference

NM Interference

€ 

σ =

NN*

M⊥ ⋅M⊥
* + iPi ⋅ M⊥

* ×M⊥( )
Pi ⋅ M⊥N

* +M⊥
*N( )

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

€ 

Pfσ =

PiNN
*

−Pi M⊥ ⋅M⊥
*( ) +M⊥ Pi ⋅M⊥

*( ) +M⊥
* Pi ⋅M⊥( ) − i M⊥

* ×M⊥( )
M⊥N

* +M⊥
*N − i NM⊥

* − N*M⊥( ) ×Pi

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 



Neutron Polarimetry

Points to note are:

1) Pure nuclear scattering does not effect the neutron polarization
2) The cross-terms are non zero only for non-collinear (e.g. spiral) structures
    where M⊥

* and M⊥ are not parallel. 
3) Scattering by NM interference will only occur when the nuclear and magnetic
    contributions occur with the same wavevector.

Where there is no NM interference and no chiral terms (which is generally true for 
paramagnets and glassy systems) the above equations reduce to the uniaxial 
equations.

Nuclear

Nuclear

Magnetic

Magnetic

NM Interference

NM Interference

€ 

σ =

NN*

M⊥ ⋅M⊥
* + iPi ⋅ M⊥

* ×M⊥( )
Pi ⋅ M⊥N

* +M⊥
*N( )

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

€ 

Pfσ =

PiNN
*

−Pi M⊥ ⋅M⊥
*( ) +M⊥ Pi ⋅M⊥

*( ) +M⊥
* Pi ⋅M⊥( ) − i M⊥

* ×M⊥( )
M⊥N

* +M⊥
*N − i NM⊥

* − N*M⊥( ) ×Pi

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 



Flipping-ratios revisited
Nuclear

Nuclear

Magnetic

Magnetic

NM Interference

NM Interference

€ 

σ =

NN*

M⊥ ⋅M⊥
* + iPi ⋅ M⊥

* ×M⊥( )
Pi ⋅ M⊥N

* +M⊥
*N( )

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

€ 

Pfσ =

PiNN
*

−Pi M⊥ ⋅M⊥
*( ) +M⊥ Pi ⋅M⊥

*( ) +M⊥
* Pi ⋅M⊥( ) − i M⊥

* ×M⊥( )
M⊥N

* +M⊥
*N − i NM⊥

* − N*M⊥( ) ×Pi

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

The imaginary part of M⊥ contains the 
phase information on the magnetic 
order. For non-chiral structures,

€ 

    M⊥ =M⊥
*

⇒M⊥
* ×M⊥ = 0

€ 

M⊥ ∝Q ×M ×Q
M⊥Q

⎫ 
⎬ 
⎭ 
⇒M⊥ M⇒M⊥ Pi

                             ⇒ Pi = Pf

Interaction vector

Sample is magnetised

So we recover the form of the cross-section for magnetic diffraction - and the observation that
there is no spin-flip scattering



Polarimetry examples

• e.g.  M⊥ and M⊥
* are parallel – 

• no nuclear scattering

O

PiM⊥
2

-PiM⊥
2

2M⊥(Pi.M⊥)

Pfσ

€ 

Pfσ = −PiM⊥
2 + 2M⊥ Pi ⋅M⊥( )

• e.g.  M⊥ and M⊥
* are perpendicular – 

• no nuclear scattering - chiral systems

M⊥

M⊥
*

Pfσ =  -iM⊥∧ M⊥
*

P

Creation of polarization - independent of incident Pi

€ 

Pfσ =

PiNN
*

−Pi M⊥ ⋅M⊥
*( ) +M⊥ Pi ⋅M⊥

*( ) +M⊥
* Pi ⋅M⊥( ) − i M⊥

* ×M⊥( )
M⊥N

* +M⊥
*N − i NM⊥

* − N*M⊥( ) ×Pi

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 



Polarimetry - M real



Polarimetry - M complex



Polarimetry - NM (real/real)



As an illustrative example, in the case of collinear antiferromagnet - aligned in the z-
direction, the polarization tensor would be

The appearance of any non-collinear magnetism would feed through into the off-
diagonal components

€ 

P =

−1 0 0
0 −1 0
0 0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

The Polarization Tensor
The goal is to determine complex magnetic structures.  In practice this is done by measuring 
the polarization tensor P which is unambiguously defines all the terms in the Blume equations

In practice, this is what is measured in a neutron polarimetry measurement

NB The 3-directional PA method (D7) only measures the diagonal 
components of this matrix and would therefore miss this information
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Pf = PPi                     P =

Pxx Pxy Pxz
Pyx Pyy Pyz
Pzx Pzy Pzz
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⎥ 

where



CRYOPAD
CRYOPAD has been developed by Tasset and co-workers at ILL in order to determine the vector 
polarization of the scattered beam for any predetermined direction of the vector polarization of 
the incident beam (i.e. measurement of the polarization tensor)

The field along the whole of the neutron beam is perfectly defined with the help of spin 
nutators, precession coils, Meissner screens, in order to align and analyse the polarization in 
any direction in space. 

Tasset et al, Physica B 267-8, 69, (1999)
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CRYOPAD



Examples from CRYOPAD

It is anti-centrosymmetric and therefore information about 180o 
antiferromagnetic domains cannot be obtained by measuring just 
the cross section or with uniaxial polarized neutron measurements

By cooling under various conditions of electric and magnetic fields an 
imbalance in domain populations is achieved - the crystal is then 
measured in zero field

Not only are the magnetic structures for the cooling 
conditions obtained - but for the first time the zero field 
magnetic form factor of an antiferromagnet is determined

Cr2O3 is a collinear antiferromagnet with zero 
propagation vector for which the magnetic and nuclear scattering are 
phase shifted by °90

Cr2O3  Brown et al, Physica B 267-268, 215, 1999)

Other studies include inelastic scattering measurements of, for 
example, CuGeO3  (Regnault et al, Physica B 267-268, 227, 1999) and 
structural studies of complex magnetic phases e.g. Nd  



Examples from CRYOPAD

Stereograms showing the directions of incident and scattered 
polarizations for the 1 0 5/2 
and 1 1 3/2 reflections. The symbols • and ◊  represent respectively 
the incident and scattered polarization directions. The numbers are 
used to identify the corresponding pairs.

Harrison et. al., 2005

Magnetic order in kagome lattice magnets



The End


