Disordered Materials:

Lecture II

Finding and refining a structural model

Alan Soper

Disordered Materials Group

ISIS

Summary of Lecture I

- Discussion of disorder in our world.
- Concept of correlation in disordered systems.
- Use of radial distribution function to characterise the correlations in a disordered system.
- Use of diffraction to count atoms as a function of distance.
- How to characterise structure in molecular systems:
 - SDF, bond angle distributions, OPCF

Summary of lecture II

- Extracting the structure factor from the diffraction experiment.
- Computer simulation as a tool to model disordered materials
- Use of computer simulation to go from measurements (*D*(*Q*), *g*(*r*)) to SDF, bond angle distribution, OPCF, etc.
- Some case studies: molten alumina, water, amorphous phosphorus, silica, silicon...

The liquid structure factor:

A much more tricky question: how do we interpret the data?

• For many years the next step was to simply invert our scattering equation:

$$d(r) = \frac{1}{2\pi^{2}\rho} \int_{0}^{\infty} Q^{2}D(Q) \frac{\sin Qr}{Qr} dQ$$
$$= \sum_{\alpha,\beta \geq \alpha} \left(2 - \delta_{\alpha\beta}\right) c_{\alpha} c_{\beta} b_{\alpha} b_{\beta} \left(g_{\alpha\beta}(r) - 1\right)$$

This leads to many problems

- Truncation errors.
- Systematic errors.
- Finite measuring statistics.
- Some site-site terms are more strongly weighted than others.
- These all make interpretation of the data unreliable.
- Radial distribution functions (*g*(*r*)) do not yield the Orientational Pair Correlation Function (OPCF).

Introduce: computer simulation

- Requires an atom-atom potential energy function.
- Place computer atoms in a (parallelpiped) box at same density as experiment.
- Apply periodic boundary conditions

 the box repeats itself indefinitely throughout space.
- Apply minimum image convention.

Minimum image convention

Count atoms out to D/2

Monte Carlo computer simulation

1.Using the specifed atom-atom potential function, calculate energy of atomic ensemble.

- 2.Displace one atom or molecule by a random amount in the interval $\pm \delta$.
- 3.Calculate change in energy of ensemble, ΔU .
- 4. Always accept move if $\Delta U < 0$
- 5.If $\Delta U > 0$, accept move with probability exp[- $\Delta U/kT$].
- 6.Go back to 2 and repeat sequence.

But there is a problem:

We don't know the potential energy function!

Introduce Reverse Monte Carlo, RMC

- 1. Build a box of atoms as before. Calculate $\chi^2 = [D(Q) F(Q)]^2 / \sigma^2$
- 2. Displace one atom or molecule by a random amount in the interval $\pm \delta$.
- 3. Calculate change in χ^2 of ensemble, $\Delta \chi^2$.
- 4. Always accept move if $\Delta \chi^2 < 0$
- 5. If $\Delta \chi^2 > 0$, accept move with probability $exp[-\Delta \chi^2]$.
- 6. Go back to 2 and repeat sequence.

This approach has problems, particularly with molecules.

- Molecules are usually introduced via unphysical coordination constraints.
- Especially with molecules the ensemble of atoms can get "stuck" i.e. it does not sample phase space correctly.
- Various reasons why this can occur.

Introduce Empirical Potential Structure Refinement, EPSR

- Use harmonic constraints to define molecules.
- Use an existing "reference" potential for the material in question taken from the literature (or generate your own if one does not exist).
- Use the diffraction data to perturb this reference potential, so that the simulated structure factor looks like the measured data.

Introducing the data

$$F(Q) = \sum_{\alpha,\beta \ge \alpha} \left(2 - \delta_{\alpha\beta} \right) c_{\alpha} c_{\beta} b_{\alpha} b_{\beta} H_{\alpha\beta}(Q)$$

- *M* measured datasets, *N* partial structure factors: (Usually *M* < *N*)
- Assign a "feedback" factor *f* for the data:
 w'_{ij} = fw_{ij}, 1≤i≤M
 and (1 − *f*) for the simulation:

$$w_{ij}^{'} = (1 - f) \delta_{(i-M),j}, M < i \le M + N$$

• Form inversion of w_{ij}^{i} , $1 \le i \le M+N$, $1 \le j \le N$

Refining the potential: M datasets, N partial structure factors

 $\Delta U_{j}(r) = \text{Fourier Transform of} \left\{ \sum_{i=1,M} w'_{ij}^{-1} \left(D_{i}(Q) - F_{i}(Q) \right) \right\}, \ j=1,N$

Structure refinement of liquid water

Water partial g(r)'s

g(r)

Water empirical potentials

The spatial density function of water...

Water structure

Beyond g(r): the spatial density function

Choose distance range (0-5.7Å) and a contour level (% of all molecules in distance range)

1%

2%

3%

4%

5%

7%

9%

12%

15%

18%

21%

25%

30%

Water under pressure

Water at 298K, 0kbar

Water at 268K, 0.26kbar

Water at 268K, 2.09kbar

Water at 268K, 4.00kbar

Bond angle distributions

O-O-O angle distribution

O-O-H angle distribution

O-*μ* angle distribution

A step further: the orientational pair correlation function

Dipole orientations in water

Another example:

 $\frac{Molten}{Al_2O_3}$

[Courtesy of

Neville Greaves

(Aberystwth)

and

Claude Landron

(Orleans)]

Molten Al_2O_2

Final fit after FQ **Empirical Potential** *Structure* Refinemen

Partial g(r)'s for Al_2O_3

The problem of tetrahedrally coordinated glasses and liquids

(*water*, *a*-*MX*₂, *a*-*Si*, *a*-*Ge*)

Amorphous SiO₂

"First sharp diffraction peak" - FSDP

Radial distribution functions:

Coordination numbers:

Spatial density function for a-SiO₂:

Spatial density function for a-SiO₂:

Spatial density function for a-SiO₂:

Compare with amorphous Si

F(Q)

Amorphous SiO₂

"First sharp diffraction peak" - FSDP

Coordination number- a-Si:

Coordination numbers – a-SiO₂:

Triangle or "bond angle" distributions, a-Si:

Triangle or "bond angle" distributions, $a-SiO_2$:

Compare number densities Renormalise ρ to (near-neighbour distance)³

$$\rho^* = \rho d^3$$

Water: $\rho^* = 0.733$ $CN \sim 4.5$ a-SiO2: $\rho^* = 0.685$ $CN \sim 4.0$ a-Si: $\rho^* = 0.540$ $CN \sim 3.8$ (l-Ni: $\rho^* = 1.270$ $CN \sim 12.5$)

Compare structure factors... (renormalise Q to near-neighbour distance)

A puzzle: a-(red)P

Summary (1)

- Disorder is intrinsic to our existence, and occurs over a very wide range of length scales.
- We quantify disorder at the molecular level via the pair correlation function. For molecules this is the *orientational* PCF, which contains more information than the radial distribution functions, *g*(*r*).
- Structure factors measured in diffraction experiments are derive from the site-site radial distribution functions.

Summary (2)

- Computer simulation is used to generate a model of the scattering system.
- Diffraction data are introduced either

 via χ² (RMC),

or

– via an empirical potential, (EPSR).

• Simulated ensembles are used to calculate a number of distribution functions not accessible directly from the experiment.

Summary (3)

- Tetrahedrally bonded glasses and liquids show structural similarities.
- Relevance/role of the "FSDP" is unclear.
- We can only really study these properties by forming structural models consistent with the data.

Thank you for your attention!