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Summary of Lecture I

• Discussion of disorder in our world.
• Concept of correlation in disordered systems.
• Use of radial distribution function to characterise 

the correlations in a disordered system.
• Use of diffraction to count atoms as a function of 

distance.
• How to characterise structure in molecular 

systems:
– SDF, bond angle distributions, OPCF



  

Summary of lecture II

• Extracting the structure factor from the diffraction 
experiment.

• Computer simulation as a tool to model disordered 
materials

• Use of computer simulation to go from 
measurements (D(Q), g(r)) to SDF, bond angle 
distribution, OPCF, etc.

• Some case studies: molten alumina, water, 
amorphous phosphorus, silica, silicon...
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The liquid structure factor:

Fd Q = ∑
,α β≥α

2−δ αβ  cα cβ bα bβ{4 πρ ∫ r 2 gαβ r −1 
sin Qr

Qr
dr }

The partial structure 
factors, Hαβ Q 

The site-site radial 
distribution 
functions, gαβ  r 

The atom scattering 
factor or “form factor”

Atomic fraction of
component “α”



  

A much more tricky question:
how do we interpret the data?

• For many years the next step was to simply 
invert our scattering equation:

d r  =
1

22 ρ
∫
0

∞

Q2 D Q 
sin Qr

Qr
dQ

= ∑
,α β≥α

2−δ αβ  cα cβ bα bβ  gαβ  r −1 



  

This leads to many problems

• Truncation errors.
• Systematic errors.
• Finite measuring statistics.
• Some site-site terms are more strongly weighted 

than others.
• These all make interpretation of the data 

unreliable.
• Radial distribution functions (g(r)) do not yield 

the Orientational Pair Correlation Function 
(OPCF).



  

Introduce: computer simulation

• Requires an atom-atom potential energy 
function.

• Place computer atoms in a (parallelpiped) 
box at same density as experiment.

• Apply periodic boundary conditions
– the box repeats itself indefinitely throughout 

space.

• Apply minimum image convention.



  

Minimum image convention

D

Count atoms out 
to D/2



  

Monte Carlo computer simulation

1.Using the specifed atom-atom potential function, 
calculate energy of atomic ensemble.
2.Displace one atom or molecule by a random 
amount in the interval ±δ.
3.Calculate change in energy of ensemble, ΔU.
4.Always accept move if ΔU < 0
5.If ΔU > 0, accept move with probability
exp[- ΔU/kT].
6.Go back to 2 and repeat sequence.



  

But there is a problem:

We don’t know the potential energy 
function!



  

Introduce Reverse Monte Carlo, 
RMC

1. Build a box of atoms as before. Calculate 
χ2=[D(Q)-F(Q)]2/σ2

2. Displace one atom or molecule by a random 
amount in the interval ±δ.

3. Calculate change in χ2 of ensemble, Δχ2.
4. Always accept move if Δ χ2 < 0
5. If Δ χ2 > 0, accept move with probability

exp[- Δ χ2].
6. Go back to 2 and repeat sequence.



  

This approach has problems, 
particularly with molecules.

• Molecules are usually introduced via 
unphysical coordination constraints.

• Especially with molecules the ensemble of 
atoms can get “stuck” i.e. it does not sample 
phase space correctly.

• Various reasons why this can occur.



  

Introduce Empirical Potential 
Structure Refinement, EPSR

• Use harmonic constraints to define molecules.
• Use an existing “reference” potential for the 

material in question taken from the literature (or 
generate your own if one does not exist).

• Use the diffraction data to perturb this reference 
potential, so that the simulated structure factor 
looks like the measured data.



  

• M measured datasets, N partial structure 
factors:    (Usually M  <  N )

• Assign a “feedback” factor f for the data:

• and (1 – f ) for the simulation:

• Form inversion of 

Introducing the data

F Q = ∑
,α β≥α

2−δ αβ  c α c β bα bβ Hαβ Q 

wij
' =fwij , 1≤i≤M

wij
' = 1− f  δ i−M  ,j , M<i≤M+N

wij
' , 1≤i≤M+N, 1≤ j≤N



  

F i =1,M+N  Q =[
fw11 fw12   fw1N

fw 21 fw22   fw2N

  

  

fw M1 fw M2 fw MN

1− f  0 . 0 0 . 0   0 . 0
0 .0 1− f  0 . 0   

0 .0 0 . 0 1− f  

   





   

  1− f  0 .0 0 . 0
   0 . 0 1− f  0 . 0

0 .0    0 . 0 0 .0  1− f 

] × [
S1

S2





S N

]

Refining the potential:  M datasets, N partial 
structure factors

ΔU j r =Fourier Transform of { ∑i=1, M

w ' ij
−1 Di Q −F i  Q  }, j=1, N
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Structure refinement of liquid 
water



  

Water
data

After
structure
refinement



  

Water partial g(r)’s



  

Water empirical potentials



  

The spatial density function of 
water...



  

Water structure

(Courtesy Phil Ball, H2O: A Biography of Water)
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Beyond g(r): the spatial density function



  

Choose distance range (0-5.7Å)

and a contour level

 (% of all molecules in distance range)
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Water under pressure



  



  

Water at 298K, 0kbar



  

Water at 268K, 0.26kbar



  

Water at 268K, 2.09kbar



  

Water at 268K, 4.00kbar



  

Bond angle distributions
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O-O-O angle distribution
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O-O-H angle distribution
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O-μ angle distribution
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(φM,θM,χM)

A step further: the orientational pair 
correlation function



  

Dipole orientations in water



  

Another 
example:

Molten 
Al2O3

[Courtesy of 

Neville Greaves

(Aberystwth)

and

Claude Landron

(Orleans)]



  

Molten Al2O3

Final
fit
after
Empirical
Potential
Structure
Refinement:



  

Partial g(r)’s for Al2O3



  

The problem of tetrahedrally 
coordinated glasses and liquids

(water, a-MX2, a-Si, a-Ge)



  

Amorphous SiO2

“First sharp diffraction peak” - FSDP



  

Radial distribution functions:



  

Coordination numbers:



  

Spatial density function for a-SiO2:



  

Spatial density function for a-SiO2:



  

Spatial density function for a-SiO2:



  

Compare with amorphous Si

FSDP is absent!



  

Amorphous SiO2

“First sharp diffraction peak” - FSDP



  

Coordination number- a-Si:



  

Coordination numbers – a-SiO
2
:



  

Triangle or “bond angle” distributions,
 a-Si:
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Triangle or “bond angle” distributions, 
a-SiO2:

1

2
3

θ



  

Compare number densities
Renormalise ρ to (near-neighbour distance)3

Water: * = 0.733ρ CN ~   4.5 

aSiO2: * = 0.685 ρ CN ~   4.0

aSi:  * = 0.540ρ CN ~   3.8

(lNi:  * = 1.270ρ CN ~ 12.5)  


* = d 3



  

Compare structure factors…
(renormalise Q to near-neighbour distance)



  

A puzzle: a-(red)P

FSDP is present!



  

Summary (1)

• Disorder is intrinsic to our existence, and 
occurs over a very wide range of length scales.

• We quantify disorder at the molecular level via 
the pair correlation function. For molecules this 
is the orientational PCF, which contains more 
information than the radial distribution 
functions, g(r).

• Structure factors measured in diffraction 
experiments are derive from the site-site radial 
distribution functions. 



  

Summary (2)

• Computer simulation is used to generate a 
model of the scattering system.

• Diffraction data are introduced either
– via χ2 (RMC),

 or 
– via an empirical potential, (EPSR).

• Simulated ensembles are used to calculate a 
number of distribution functions not 
accessible directly from the experiment.



  

Summary (3)

• Tetrahedrally bonded glasses and liquids show 
structural similarities.

• Relevance/role of the “FSDP” is unclear.
• We can only really study these properties by 

forming structural models consistent with the data.

Thank you for your attention!
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