

Andrew Harrison

Institut Laue-Langevin and The University of Edinburgh

12th Oxford School on Neutron Scattering September 2011 Oxford University

- Where places to get neutrons?
- Who eligibility to apply?
- How gaining access?

Why?

NEUTRONS FOR SCIENCE

Where in Europe?

- Sources in Europe: European Neutron and Muon portal (NMI3/FP7)
 - http://neutron.neutron-eu.net/
- Specific search facility: neutron pathfinder
 - http://pathfinder. neutron-eu.net/idb/1023
 - Methods
 - Science
 - Experiment
 - Instrument
 - Facility

Access Guidelines Access Activities allow scientists ing tacilities. If the proposal is approved through this progr F& CILIT ODCA NISATION JCNS FZ Jolici USET DOTH

Where in Europe?

NEUTRONS FOR SCIENCE

Centre	Organisation	Location	Web-site	Flux/power	Start-up
Spallation sources ISIS Rutherford Appleton Oxford, UK http://www.isis.rl.ac.uk/ 0.16 MW 198					
ISIS	Rutherford Appleton Laboratory	Oxford, UK	http://www.isis.rl.ac.uk/	0.16 MW	1985
SINQ	Paul Scherrer Institute	Nr Willigen, Switzerland	http://sinq.web.psi.ch/	1 MW	1996
ESS	ESS	Lund, Sweden	http://ess-scandinavia.eu/	5 MW	2019
		High-flux reactor	(>10 ¹⁵ n cm ⁻² s ⁻¹)		
ILL	Institut Laue-Langevin	Grenoble, France	www.ill.eu	58 MW	1971
	Medium-flux	reactor (10 ¹⁴ n c	m ⁻² s ⁻¹ < n _{th} < 10 ¹⁵ n cn	n ⁻² s ⁻¹)	
BENSC	Helmholtz Zentrum Berlin	Berlin, Germany	http://www.helmholtz- berlin.de/	10 MW	1992 (after rebuild)
LLB	CEA/CNRS	Gif-sur-Yvette, France	http://www-llb.cea.fr/en/	14 MW	1980
FRM-II	Munich Technical University	Munich, Germany	http://www.frm2.tum.de/	10 MW	2004
	Lo	w-flux reactor (n	_{th} ≤ 10 ¹⁴ n cm ⁻² s ⁻¹)		
BNC	Budapest Research Centre	Budapest, Hungary	http://www.bnc.hu/	10 MW	1992
RID	Delft University of Technology	Delft, Holland	http://www.tudelft.nl/	2 MW	1963
JEEP-II	Institute for Energy Technology	Kjeller, Norway	http://www.ife.no/	2 MW	1967
NPL - NRI	Nuclear Physics Institute of the Czech Academy of Sciences	Rez, nr Prague, Czech Republic	http://neutron.ujf.cas.cz/	10 MW	
FLNP	Joint Institute for Nuclear Research	Dubna, Russia	http://nfdfn.jinr.ru/	Mean 2 MW, pulse 1500 MW	1984, 2011

NEUTRONS FOR SCIENCE Where on Earth?

Centre	Organisation	Location	Web-site	Flux/power	Start-up
		Spallatio	n sources		-
LANSCE	Los Alamos National Laboratory	Los Alamos, USA	http://lansce.lanl.gov/	0.16 MW	1972
SNS	Oak Ridge National Laboratory	Oak Ridge, USA	http://www.sns.gov/faciliti es/facilities_sns.shtml	0.8 MW (2009) ramping to 1.4 then 2-5 MW	2006
JSNS/MLF	J-PARC	Tokaimura, Japan	http://j- parc.jp/MatLife/en/index.h tml	0.2 MW (2011) ramping to 1 then 5 MW	2008
Various	Various	China		Various	> 2010
		High-flux reactor	(>10 ¹⁵ n cm ⁻² s ⁻¹)		
HIFR	Oak Ridge National Laboratory	Oak Ridge, USA	http://www.sns.gov/hfir/hfi r_facilities.shtml	85 MW	1965 (1990 restart)
	Medium-flux	reactor (10 ¹⁴ n c	m ⁻² s ⁻¹ < n _{th} < 10 ¹⁵ n cm ⁻²	s ⁻¹)	
NRU	Chalk River Laboratories	Chalk River, Canada	http://www.nrc- cnrc.gc.ca/eng/ibp/cnbc/a bout/nru-reactor.html	125 MW	1962
NIST	National institute of Standards and Technology	Gaithershurg, USA	http://rrdjazz.nist.gov/	20 MW	1969
JRR-3M	Japan Atomic Energy Research Institute JAERI	Tokaimura, Japan	http://neutrons.issp.u- tokyo.ac.jp/modules/pico/i ndex.php?content_id=16	20 MW	1990
OPAL	ANSTO	Lucas Heights Australia	http://www.ansto.gov.au/o pal	20 MW	2006

More information: http://www.neutron.anl.gov/

So where do you go?

- Depends what you want!
- Where you can do the best science
 - Type and quality of instrument
 - Flux

FOR SCIENCE

- Sample environment T, P, H, ambient, chemical
- Technical/user support/interface laboratories
- Proximity/ease of access
- Personal connections/collaborations

Does size matter? Yes, but it's not everything!

So where do you go?

- Depends what you want!
- Where you can do the best science
 - Type and quality of instrument
 - Flux
 - Sample environment T, P, H, ambient, chemical
 - Technical/user support/interface laboratories
- Proximity/ease of access
- Personal connections/collaborations
- Enjoyment!

- Institut Laue-Langevin, Grenoble
- World's most powerful neutron source (58 MW reactor)
- 27 public instruments + 10 CRGs
- Specialities
 - Single-crystal diffraction
 - Triple-axis spectroscopy
 - Structure and excitations in non-crystalline materials
 - Small-angle scattering
 - Magnetic polarisation techniques
 - Hot neutrons
 - Fundamental physics
 - Support for biology (D), engineering, soft condensed matter, computing
 - The great outdoors
- www.ill.eu

NEUTRONS FOR SCIENCE

- The ISIS Facility, Oxfordshire
- World's most effective spallation source, plus muons
- > 25 public instruments (and rising)
- Specialities
 - Spallation techniques in general
 - Spectroscopy with large-area detectors
 - Powder diffraction
 - Reflectometry
 - User support and software
 - GSOH
- http://www.isis.stfc.ac.uk/

- Swiss Spallation Neutron Source
- Continuous spallation source next to muon and synchrotron facilities
- > 13 public instruments
- Specialities
 - Small-angle scattering (plus field)
 - Triple-axis spectroscopy
 - Imaging
 - Fundamental physics
 - Strong in-house science
 - Complementary facilities
 - Canteen
- http://sinq.web.psi.ch/

HZB (formerly HMI)

- Helmholtz Zentrum Berlin
- Relatively small reactor with some very strong niche facilities
- >18 public instruments
- Specialities
 - Sample environment
 - Low-temperature measurements
 - High-field magnetic measurements
 - Magnetism strong in-house team
 - Berlin!

 http://www.helmholtzberlin.de/userservice/neutrons/inde x_en.html

- World's most powerful (5 MW) longpulse (> 1ms) spallation source
- First neutrons by 2020

ESS

- Case for funding driven by what it gives to society
- Specialities to be discussed, but likely:
 - Low-energy spectroscopy
 - Reflectometry
 - Small-angle scattering
 - Strong links to support/complemetary facilities

SNS

J-PARC

ESS

• http://ess-scandinavia.eu/

TRONS SCIENCE Others

- LLB, Paris
 - Established medium-flux reactor with good, all-round facilities
- FRM-II, Munich
 - New reactor, ~ 20 instruments and irradiation facilities, strong in spectroscopy, fundamental physics, applications (neutron therapy, isotope production)
- NIST, Washington
 - Established medium-flux reactor with tremendous output particularly in soft matter (great support laboratories)
- SNS, Oak Ridge
 - Users for four years, working up to 24 instruments (backscattering, spin echo...) and 0.8 ${\rightarrow}1.4~\text{MW}$
- OPAL, Sydney
 - World-class instruments (>10...) optimised for medium-power; irradiation reactor
- JCNS/J-PARC, Tokaimura
 - Ramping up beam, user programme starting
- RIP (recently): Risø, IPNS, (NRU?)

Who is eligible?

- In general, scientists in universities, research institutes including central facilities and industry (fees may apply ~ 10 K€/day)
- PhD students 'through supervisors'
- Sometimes national membership restrictions, but:
 - Research centres will fight to give time to amazing science
 - FP7/NMI3 'Access' funding

Centre	Organisation	Location	Web-site	Flux/power	Start-up
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					
ISIS	Rutherford Appleton Laboratory	Oxford, UK	http://www.isis.rl.ac.uk/	0.16 MW	1985
SINQ	Paul Scherrer Institute	Nr Willigen, Switzerland	http://sinq.web.psi.ch/	1 MW	1996
ESS	ESS	Lund, Sweden	http://ess-scandinavia.eu/	5 MW	2019
High-flux reactor (>10 ¹⁵ n cm ⁻² s ⁻¹)					
ILL	Institut Laue-Langevin	Grenoble, France	www.ill.eu	58 MW	1971
	Institut Lade-Langevin Grenoble, France www.in.ed 35 N/V 197 1 Medium-flux reactor (10 ¹⁴ n cm ⁻² s ⁻¹ < n _{th} < 10 ¹⁵ n cm ⁻² s ⁻¹) 10 MW 1992 (after rebuild) C Helmholtz Zentrum Berlin Berlin, Germany Perlin.de/ http://www.helmholtz- berlin.de/ 10 MW 1992 (after rebuild) CEA/CNRS Gif-sur-Yvette, France http://www.flb.cea.fr/en/ 14 MW 1980 II Munich Technical Munich, Ourser http://www.frm2.tum.de/ 10 MW 2004				
BENSC	Helmholtz Zentrum Berlin	Berlin, Germany	http://www.helmholtz- berlin.de/	10 MW	1992 (after rebuild)
LLB	CEA/CNRS	Gif-sur-Yvette, France	http://www-llb.cea.fr/en/	14 MW	1980
FRM-II	Munich Technical University	Munich, Germany	http://www.frm2.tum.de/	10 MW	2004
Low-flux reactor ($n_{th} \le 10^{14}$ n cm ⁻² s ⁻¹)					
BNC	Budapest Research Centre	Budapest, Hungary	http://www.bnc.hu/	10 MW	1992
RID	Delft University of Technology	Delft, Holland	http://www.tudelft.nl/	2 MW	1963
JEEP-II	Institute for Energy Technology	Kjeller, Norway	http://www.ife.no/	2 MW	1967
NPL - NRI	Nuclear Physics Institute of the Czech Academy of Sciences	Rez, nr Prague, Czech Republic	http://neutron.ujf.cas.cz/	10 MW	
FLNP	Joint Institute for Nuclear Research	Dubna, Russia	http://nfdfn.jinr.ru/	Mean 2 MW, pulse 1500 MW	1984, 2011

Collaborations with 'members'

Access: NMI3-funding for travel for scientists of EU and Associated States- not awarded to scientists from same country as the facility

DDT, LTP, EASY – ILL nomenclature for (i) rapid access for 'hot' science, (ii) long-term proposals and (iii) access for samples mailed to facility for relatively simple, rapid measurements

- 'Normal' access proposal plus peer review (75%)
- 'Hot science' direct appeal to institute (<< 5%)
- Back door collaborations/tests with institute scientists (5-10 %)
- For cash for industry, no obligation to publish (< 1%, ~10 K€/day)
- Postal service for relatively simple measurements (<1 %)
- Long-term proposals for development work (<1 %)
- Others? tickets, block grants...

Percent access figures for ILL – the difference between the sum and 100% reflects instrument set-up or repair/development

Proposal process

- ILL process common to most neutron institutes
 - Call for proposals twice a year
 - The deadline is the deadline no late submissions (tricks!)
 - Internal classification (subject) and filtering (feasible, safe, ethical)
 - Send out to external review panel members
 - 9 panels (subcommittees) for ILL comprising broad range of experts
 - Panel meeting to set priorities
 - driven by quality of science, balance instruments between panels, confidential,
 - Balance (internally) e.g. national funding
 - Send out announcements

Guidelines for the scientific background and detailed description of the proposed experiment

ISTITUT MAX VON LAUE - PAUL LANGEVIN (ILL)

(For electronic proposal submission only)

Please remove this first page before creating your post-script file

The two pages of this form are to be filled in by all users or groups of users who apply for beamtime for experiments at the ILL via the Internet. Please print pages two and three of this document into a postscript file and attach it to your proposal on the Electronic Proposal System. This two-page description will be reduced by the system to a one-page, A4 format, and will be attached to your web proposal.

When preparing your description, please follow the instructions below:

- Give a brief statement of the background and the general importance of the research.
- Give a clear account of the aims of the proposed experiment and a detailed description of the
 experiment; keep in mind that not all of the subcommittee members are experts in the field.
- Give results of preliminary work carried out, e.g. NMR, x-rays, light scattering, etc. and the relationship with your proposed experiment.
- Give the number of samples and estimate the measuring time for each sample; show how you
 calculate the beamtime requirements.
- State why the ILL is necessary for your experiment, especially with regard to the need of neutrons in particular.
- The description must be typewritten in English.
- A typeface such as "Times New Roman", 14 points with at least 1 line spacing is recommended because of the 70% reduction.
- Please respect the available space on the form.

For submitting the description:

- · Fill in page 2 and 3 of the document,
- Print page 2 and 3 of the document into a postscript file (according to the instructions given below)
- Attach it to your proposal on the Electronic Proposal System.

To print into a postscript file in Microsoft Word:

- Choose print from the menu File
- Select a postscript printer from the list of printers
- Tick the box print to file, and click ok.
 On Macintosh you might find the option 'destination' change it from printer to file and click ok
 You will be asked to give a file name, click on ok to confirm.

(Detailed guidelines http://www.ill.fr/SCO/eps-guide.html)

- All on-line submission
 - Read the guidelines!
 - Ask for advice!
 - Supervisor and group
 - Instrument scientist/local contact

Putting it down on

• Facility user office

- Give a brief statement of the background and the general importance of the research.
- Give a clear account of the aims of the proposed experiment and a detailed description of the
 experiment; keep in mind that not all of the subcommittee members are experts in the field.
- Give results of preliminary work carried out, e.e. NMR, x-rays, light scattering, etc. and the relationship with your proposed experiment. What's the bigger picture – or is

Clear, readable, accessible: enthuse someone who is not an expert in the particular problem that this should be done *now*

Tips

What's the bigger picture – or is te tⁱ it just you who is interested?

experiment, especially with regard to the need of neutrons

nglish.

, 14 points with at least 1 line spacing is recommended

because of the 70% reduction.

Please respect the available space on the form.

ION:

- Give a brief statement of the **background** and the general importance of the research.
- Give a clear account of the aims of the proposed experiment and a detailed description of the experiment; keep in mind that not all of the subcommittee members are experts in the field.
- Give results of preliminary work carried out, e.o. NMR, x-rays, light scattering, etc. and the relationship with your proposed experiment. What's the bigger picture – or is

Clear, readable, accessible: enthuse someone who is not an expert in the particular problem that this should be done now

te th it just you who is interested? experiment, especially with regard to the need of neutrons

nglish.

, 14 points with at least 1 line spacing is recommended

because of the 70% reduction.

Please respect the available space

What are you going to measure and how (not everyone does this, and it's not the panel's job to write the proposal for you)?

226

- Give a brief statement of the background and the general importance of the research.
- Give a clear account of the aims of the proposed experiment and a detailed description of the experiment; keep in mind that not all of the subcommittee members are experts in the field.
- Give results of preliminary work carried out, e.g. NMR, x-rays, light scattering, etc. and the relationship with your proposed experiment.
- Give the number of samples and estimate the measuring time for each sample; show how you
 calculate the beamtime requirements.
- State why the ILL is necessary for your experiment, especially with regard to the need of neutrons in particular.
- The description must be typewritten in English.

Tips

 A typeface such as "Times New Roman", 14 points with at least 1 line spacing is recommended because of the 70% reduction.

There should be no doubt that you have – or will have – a wellcharacterised sample of sufficient quality. If the panel has an reason to believe that a sample is difficult to prepare they will expect a clear statement that it exists already

- Give a brief statement of the background and the general importance of the research.
- Give a clear account of the aims of the proposed experiment and a detailed description of the
 experiment; keep in mind that not all of the subcommittee members are experts in the field.
- Give results of preliminary work carried out, e.g. NMR, x-rays, light scattering, etc. and the relationship with your proposed experiment.
- Give the number of samples and estimate the measuring time for each sample; show how you
 calculate the beamtime requirements.
- State why the ILL is necessary for your experiment, especially with regard to the need of neutrons in particular.
- The description must be typewritten in English.

Tips

 A typeface such as "Times New Roman", 14 points with at least 1 line spacing is recommended because of the 70% reduction.

If in doubt, talk to the local contact/instrument responsible about what is needed (panel may adjust this)

- Give a brief statement of the background and the general importance of the research.
- Give a clear account of the aims of the proposed experiment and a detailed description of the
 experiment; keep in mind that not all of the subcommittee members are experts in the field.
- Give results of preliminary work carried out, e.g. NMR, x-rays, light scattering, etc. and the relationship with your proposed experiment.
- Give the number of samples and estimate the measuring time for each sample; show how you
 calculate the beamtime requirements.
- State why the ILL is necessary for your experiment, especially with regard to the need of neutrons in particular.
- The description must be typewritten in English.

Tips

 A typeface such as "Times New Roman", 14 points with at least 1 line spacing is recommended because of the 70% reduction.

If low-flux neutrons will suffice, or X-rays just as suitable to get the result panel will probably reject

- Give a brief statement of the background and the general importance of the research.
- Give a clear account of the aims of the proposed experiment and a detailed description of the
 experiment; keep in mind that not all of the subcommittee members are experts in the field.
- Give results of preliminary work carried out, e.g. NMR, x-rays, light scattering, etc. and the relationship with your proposed experiment.
- Give the number of samples and estimate the measuring time for each sample; show how you
 calculate the beamtime requirements.
- State why the ILL is necessary for your experiment, especially with regard to the need of neutrons in particular.
- The description must be typewritten in English.

Tips

- A typeface such as "Times New Roman", 14 points with at least 1 line spacing is recommended because of the 70% reduction.
- Please respect the available space on the form.

Few things irritate the panel more than trying to cram too much into the proposal !

Statistics, distributions (ILL, 2000s)...

---Engineering

-----Materials

Methods and
 Instrumentation
 Nuclear Physics

---Soft Matter

Condensed
 Matter Physics
 Other

Instrument	Days	Days	Overload
	requested	allocated	factor
ADAM	16	30	0.53
D17*	102	75	1.36
FIGARO	54	25	2.16
D1A	46	50	0.92
D2B	139	72	1.93
D1B	49	39	1.26
D20	150	67	2.24
D3	119	78	1.53
D4	118	55	2.15
D7	100	65	1.54
D9	83	67	1.24
D10	62	70	0.89
D15	17	29	0.59
D19	63	65	0.97
D23	55	28	1.96
D11	98	58	1.69
D22	216	75	2.88
D16	33	70	0.47
DB21	42	42	1.00
LADI	149	80	1.86
SALSA	94	79	1.19
VIVALDI	125	80	1.56
IN1	36	24	1.50
IN8	104	68	1.53
BRISP	42	30	1.40
IN4	110	70	1.57
IN5	122	48	2.54
IN6	117	70	1.67
IN10	35	67	0.52
IN16	188	75	2.51
IN13	93	37	2.51
IN11	176	75	2.35
IN15	95	38	2.50
IN12	62	21	2.95
IN14	101	74	1.36
IN20	78	65	1.20
IN22	68	29	2.34

Proposal process

Statistics, distributions...

Scientific Council April 2009 all countries before national balance after national balance requested allocated allocated allocated allocated country requested days in % in % in % days days ΔE 0.29 0.01 0.29 0.01 0.29 0.01 AR 2.71 0,06 0.00 0.00 0.00 0.00 AT 0.76 40.33 0.89 18.54 0.75 18.54 AU 0.42 22.02 0.49 11.45 0.46 10.25 BE 0.68 34.15 0.76 16.68 0.67 16.68 BG 5.25 0.12 1.75 0.07 1.75 0.07 BH 0.86 0.02 0.86 0.03 0,86 0.04 BR 0.30 9.62 0.21 7.40 0.30 7,40 BY 1.00 0.02 0.60 0.02 0.60 0.02 CA 12.27 0.27 5.60 0.23 5,60 0.23 CH 100.90 2.23 52.60 2.15 52.60 2.11 CN 4.67 0.10 4.67 0.19 4.67 0.19 CZ DE 0.68 26.17 0.58 16.58 0.67 16.58 645.76 14.30 325.39 13.07 325.39 13.29 DK 68.68 46.55 46.55 1.90 1.52 1.87 EG 2.00 0.04 0.00 0.00 0.00 0.00 ES 207.30 4.59 98.77 3.97 98.77 4.04 ESRF 42.27 0.94 23.61 0.95 23.61 0,96 0.63 0.33 0.33 28.38 8.13 8.13 FR 694.91 15.39 450.60 18.11 450.60 18.41 GB 19.40 764.95 16.94 474.86 474.86 19.08 GR 0.67 0.01 0.33 0.01 0.33 0.01 HU 11.93 0.26 3.25 0.13 3.25 0.13 IE 5.53 0.12 2.87 0.12 0.12 2.87 2.00 0.04 0.00 0.00 0.00 0.00 ILL 812.61 17.99 474.79 19.08 466.79 19.07 IN 46.33 1.03 15.17 0.61 15.17 0.62 ١. 319.70 7.08 141.45 5.68 141.45 5.78 JP 44.54 0.99 21.94 0.88 15.94 0.65 KR 0.07 0.07 3.43 0.08 1.71 1.71 MY 40.00 0,89 0.00 0.00 0.00 0,00 NL 0.66 20.43 0.45 16.15 0.65 16.15 NO 0.12 6.27 0.14 3.00 0.12 3.00 NZ 0.43 0.01 0.43 0.02 0.43 0.02 PL PT 0.28 31.30 0.69 6.90 0.28 6.90 5.93 0.13 4.77 0.19 4.77 0.19 RU 94.98 2.10 49.11 1.97 49.11 2.01 SE 82.45 1.83 34.13 1.37 34.13 1.39 SG 0.02 0.60 0,01 0.60 0.02 0,60 SK 6.67 0.15 2.67 0.11 2.67 0.11 TH 0.33 8.00 0.18 8.00 0.32 8.00 UA US 0.05 4.55 0.10 1.20 0.05 1.20 237.77 5.26 123.91 4.98 98.11 4.01 ZA 0.47 15.92 0,35 11.50 0.46 11.50

Beam-time request & allocation

total

4516.50

100.00

2488.80

100.00

2461.25

100.00

Proposal process

Statistics, distributions...

For those who succeed...

- Fix a date with local contact/instrument scientists
- Make arrangements for sample environment, special technical support (generally via local contact/instrument scientists) well before
- Confirm travel and accommodation arrangements asap (user office)
- Insurance (work and medical care), visas, ID to enter site
- Ensure well-characterised sample of sufficient quality; bring any necessary supporting information with you and take care that there are not restrictions on taking it by plane (liquids, toxins, bioproducts..)

During and after the visit...

- Safety training on site is generally obligatory.
- Give the local contact the opportunity to be a full member of the experimental team.
- If necessary, learn how to correct and analyse data before you leave.
- Keep an accurate record of your experiment (instrument log and own copy).
- If experiment could not be completed, explore possibility of picking up some 'test time' for relatively short, additional access to beam
- Where appropriate, check samples for activity on departure arrange for storage if too 'hot'.
- Analyse and write up experiment asap after experiment and wherever possible involve the local contact so that co-authorship is appropriate. Most institutes require a short experimental report in the year following the experiment.

- Wide range of central facilities (national/international, reactor/spallation, with different strengths)
- Take advice discuss proposed experiment with facility scientists, supervisor, group...
- Proposals should be driven by excellent, timely science and written to enthuse non-experts that your experiment must be done as soon as possible
- Ensure high-quality, well-characterised sample, and state clearly that it exists – or that preparation is straightforward.
- Safety is paramount during the experiment

Summary

- Wherever possible and appropriate, involve the instrument scientist/local contact as a 'proper' member of the experimental team and provide him/her with the opportunity to contribute to co-authored publications
- Enjoy!