Neutron scattering in Earth Sciences Martin Dove

The structure of the Earth

Properties under Earth conditions

Changes in structure

Phase changes, including displacive, cation ordering and reconstructive

Changes in properties

Density, elasticity, diffusivity/conductivity, phonon frequencies

What do we want to know?

- ▶ Same as in many fields ...
- Structure, in absolute sense and also as function of external variables
- Lattice dynamics, in part to understand flexibility, also to use as basis for modelling
- Localised effects, such as motions of water molecules within structures
- Magnetic structures
- ... which can be obtained using standard approaches in neutron diffraction and spectroscopy

So what is different?

Sample environment

We might want to go to rather high pressures and temperatures, out of the range of the norm

System complexity

Many crustal minerals do not have simple crystal structures (many atoms in the unit cell, low symmetry)

So what is different?

Sample environment

We might want to go to rather high pressures and temperatures, out of the range of the norm

System complexity

Many crustal minerals do not have simple crystal structures (many atoms in the unit cell, low symmetry)

Constituents of granite

So what is different?

Sample environment

We might want to go to rather high pressures and temperatures, out of the range of the norm

System complexity

Many crustal minerals do not have simple crystal structures (many atoms in the unit cell, low symmetry)

Earth temperature/pressure profile

Paris-Edinburgh cell

PE cell with internal microfurnace

Internal heating – plan diagram

Internal heating – exploded view

Assembly

High-pressure diffraction @ ISIS

Assembly

Temperature measurement by radiography

17

Radiography principal

Width of resonance line increases with temperature due to Doppler effect

Width of resonance line can be used to calibrate temperature

Wavelength

Simple detector assembly

Example resonances

Theoretical basis

Theoretical basis

Energy transfer function

$$S(E') = \frac{1}{\Delta\sqrt{\pi}} \exp\left(-(E' - E)^2 / \Delta^2\right)$$

$$\Delta = \sqrt{\frac{4mME_{\rm R}k_{\rm B}T}{(M+m)^2}} -$$

Temperature of absorbing atoms = sample temperature

Example of application

Neutron energy (eV)

Example of diffraction data: Mg_{0.7}Fe_{0.3}O at 621 K and 9.82 GPa

Pressure dependence of Fe/Ti ordering in Fe(Fe_{0.35}Ti_{0.65})O₃

Pressure dependence of Fe/Ti ordering in Fe(Fe_{0.35}Ti_{0.65})O₃

- Increase in T_c cannot be accounted for by conventional strain effects
- Increase in T_c must therefore come from increased internal energy of ordering, i.e. increased cation interaction as structure is squeezed

Influence of pressure on Mg/AI order-disorder in spinel, MgAl₂O₄

- Determine the pressuredependence of the kinetics of orderdisorder in minerals
- Probe the pressure dependence of the equilibrium high-T orderdisorder properties: first neutron measurements of these phenomena at real Earth interior conditions

Diffraction pattern from MgAl₂O₄, at 1600 K and 3.2 GPa

Variation of order as a function of pressure

- Pressure significantly modifies the degree of order
- More disordered with pressure: effect of changing local interactions between AI and Mg neighbours

High-pressure displacive phase transition in cristobalite, SiO₂

- Stable above ca 1.5
 GPa
- Although it is the lowest-symmetry phase, it is derived from cubic β rather than tetragonal α
- Structure identified using simulations

Effects of varying pressure and temperature

Phase diagram

Alpha Seta Monoclinic Beta + monoclinic Alpha + monoclinic

High-temperature displacive phase transition in quartz, SiO₂

Small displacements of atoms that change the symmetry

High-temperature displacive phase transition in cristobalite, SiO₂

What do high-temperature phases look like?

- The challenge is that the local structure is unlikely to be exactly reflected in the average structure
- Local structure can be probed using total scattering – the same approach that is used to study amorphous materials and liquids
- We use the Reverse Monte Carlo method to build large atomic models consistent with the Bragg scattering, total scattering, and pair distribution function data

PDF in quartz

Increasing temperature shows broadening of interatomic correlations

Suggests increase in disorder on heating

Bond lengths

Thermal motion and interatomic distances

Apparent shortening of bond increases with temperature

Reverse Monte Carlo modelling

Generate initial configuration of atoms

Move one randomly-selected atom by a small random vector

Compute new experimental functions and compare with data

Only reject change if comparison is worse and with some probability

Atomic configurations of quartz

Onset of disorder observed on heating

Orientational disorder of SiO₄ tetrahedra in quartz

Rigid unit motions of SiO₄ tetrahedra in quartz

Disorder in ®-cristobalite

Single pancake site or six sites for oxygen atoms?

Orientations of Si–O bonds

Ø,

bonds

orientations of Si-O

defined domains

Phonon dispersion curves

- Dispersion curves have an important role in enabling the construction of accurate models of interatomic forces
- Atomistic simulation plays an important role in mineral sciences because of the access it gives to extreme temperatures and pressures
- New instrumentation at ISIS and ILL will give new capabilities

MERLIN spectrometer at ISIS

calcite, CaCO₃, measured on MERLIN

Calculated and measured of phonon scattering in calcite

Calculated and measured of phonon scattering in calcite

Water in minerals

- Some minerals, such as clays and zeolites, contain significant quantities of water in pores and between atomic layers
- Water is the grease of the Earth it is what enables the convection of minerals in the inner Earth that drives plate tectonics
- Neutrons are particularly good for the study of hydrogen and hence water
- Incoherent scattering is a probe of individual hydrogen atoms and hence dynamics of water molecules

Water in clays

Water molecules and cations are found within the space between tightly-bound oxide layers

00ℓ diffraction from clays

Structure of water within clay interlayer space

(a)

Outlook for neutrons in Earth Sciences

- Instrumentation is excellent
- Range of techniques is unrivalled
- Sensitivity of light elements and hydrogen is not matched by other techniques (such as synchrotron radiation)
- Ability to control sample environment is much easier than with other probes
- Ability to match computer simulation and neutron scattering is excellent

However ...

- The small volumes required for very high pressures and much less problematic for synchrotron radiation sources
- The community of advocates and those with experience is small (sub-critical), and neutron scattering has often suffered through appearing to have a skills barrier
- Much of what is being done is not challenging (typically powder diffraction)

Acknowledgements

Dave Keen, Matt Tucker, Bill Marshall, Toby Perring, Rob Bewley (ISIS)

- Simon Redfern, Howard Stone, Beth Cope (Cambridge)
- Neil Skipper (UCL)