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The structure of the Earth
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Properties under Earth conditions
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Changes in structure

Phase changes, including displacive, cation 

ordering and reconstructive

Changes in properties

Density, elasticity, diffusivity/conductivity, phonon 

frequencies
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What do we want to know?

‣ Same as in many fields …

‣ Structure, in absolute sense and also as function 

of external variables

‣ Lattice dynamics, in part to understand flexibility, 

also to use as basis for modelling

‣ Localised effects, such as motions of water 

molecules within structures

‣ Magnetic structures

‣ … which can be obtained using standard 

approaches in neutron diffraction and 

spectroscopy
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So what is different?

Sample environment

We might want to go to rather high pressures and 

temperatures, out of the range of the norm

System complexity

Many crustal minerals do not have simple crystal 

structures (many atoms in the unit cell, low 

symmetry)
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Constituents of granite
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Quartz

Feldspar

Mica
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Earth temperature/pressure profile
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Paris-Edinburgh cell
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PE cell with internal microfurnace
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Internal heating – plan diagram
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Internal heating – exploded view
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Assembly

14

Anvil

Anvil

Anvil
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Sample
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High-pressure diffraction @ ISIS
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Assembly
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Anvil

Anvil

Anvil

Anvil

PTFE ring
Sample

Pyrophyllite 

gasket

Graphite 
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Thermocouple?
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Temperature measurement by 

radiography
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Radiography principal
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Width of 

resonance line 

can be used to 

calibrate 

temperature

Width of 

resonance line 

increases with 

temperature due 

to Doppler effect
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Simple detector assembly
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Example resonances
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Theoretical basis
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Pulse source

function

Detected signal:

Area density of

absorbing nuclei

Detector efficiency Instrument

resolution function

Energy transfer function

(the Doppler broadening function)
Breit-Wigner lineshape

Transmitted signal:

Total cross-section:
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Theoretical basis
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Pulse source function

Foil thickness x number of atoms

Detector efficiency Resolution function

Energy transfer function

(Doppler broadening function)
Breit-Wigner lineshape

 (E)   BW( E )S( E ,E)d E






T (E) exp  (E) 

I(E)  P( E )( E )R( E )T (E  E )d E






Measured signal

Transmitted signal

Absorption cross section
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Energy transfer function
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S( E ) 
1

 
exp ( E  E)2 /2 

 
4mMERkBT

(M m)2

Temperature of absorbing atoms = 

sample temperature
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Example of application
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18 ± 3 °C

473 ± 6 °C

781 ± 7 °C
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Example of diffraction data: 

Mg0.7Fe0.3O at 621 K and 9.82 GPa
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Pressure dependence of Fe/Ti 

ordering in Fe(Fe0.35Ti0.65)O3
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1 bar Data

Fitted model

Pearl Data

Fitted model
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Pressure dependence of Fe/Ti 

ordering in Fe(Fe0.35Ti0.65)O3
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‣ Increase in Tc cannot be 

accounted for by conventional 

strain effects 

‣ Increase in Tc must therefore 

come from increased internal 

energy of ordering, i.e. increased 

cation interaction as structure is 

squeezed
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Influence of pressure on Mg/Al 

order-disorder in spinel, MgAl2O4
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‣ Determine the pressure-

dependence of the 

kinetics of order-

disorder in minerals

‣ Probe the pressure 

dependence of the 

equilibrium high-T order-

disorder properties: first 

neutron measurements 

of these phenomena at 

real Earth interior 

conditions
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Diffraction pattern from MgAl2O4, at 

1600 K and 3.2 GPa
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Variation of order as a function of 

pressure
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‣ Pressure significantly modifies the degree of order

‣ More disordered with pressure: effect of changing local 

interactions between Al and Mg neighbours
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High-pressure displacive phase 

transition in cristobalite, SiO2

‣ Stable above ca 1.5 

GPa

‣ Although it is the 

lowest-symmetry 

phase, it is derived 

from cubic β rather 

than tetragonal α

‣ Structure identified 

using simulations
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Effects of varying pressure and 

temperature
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Increasing T 

to 400 °C

Increasing P 

to 2 GPa

Decreasing T

Ambient P/T
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Phase diagram
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High-temperature displacive phase 

transition in quartz, SiO2
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High-temperature displacive phase 

transition in cristobalite, SiO2

35
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What do high-temperature phases 

look like?

36

‣ The challenge is that the local structure is 

unlikely to be exactly reflected in the average 

structure

‣ Local structure can be probed using total 

scattering – the same approach that is used to 

study amorphous materials and liquids

‣ We use the Reverse Monte Carlo method to 

build large atomic models consistent with the 

Bragg scattering, total scattering, and pair 

distribution function data
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PDF in quartz
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Increasing 

temperature shows 

broadening of 

interatomic 

correlations

Suggests increase in 

disorder on heating
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Bond lengths
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Thermal motion and interatomic 

distances

39

Apparent shortening of bond 

increases with temperature
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Reverse Monte Carlo modelling

40

Generate initial configuration of atoms

Move one randomly-selected atom by 

a small random vector

Compute new experimental functions 

and compare with data

Only reject change if comparison is 

worse and with some probability

➥

➥

➥

➥
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Atomic configurations of quartz
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20 K,  793 K,  1073 K, 

Onset of disorder observed on heating
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Orientational disorder of SiO4

tetrahedra in quartz
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Distribution of SiO4

orientations

Heating
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Rigid unit motions of SiO4

tetrahedra in quartz
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RUM component

Tetrahedral distortions

Total atomic displacements
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Disorder in -cristobalite

44

Single pancake site or six sites for 

oxygen atoms?
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Orientations of Si–O bonds
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‣ No obvious special 

orientations of Si–O 

bonds

‣ Suggesting no well-

defined domains
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Phonon dispersion curves
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‣ Dispersion curves have an important role in 

enabling the construction of accurate models of 

interatomic forces

‣ Atomistic simulation plays an important role in 

mineral sciences because of the access it gives 

to extreme temperatures and pressures

‣ New instrumentation at ISIS and ILL will give 

new capabilities
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MERLIN spectrometer at ISIS
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Phonon dispersion curves in 

calcite, CaCO3, measured on 

MERLIN
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Calculated and measured of 

phonon scattering in calcite
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Experiment Simulation
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Calculated and measured of 

phonon scattering in calcite
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Experiment Simulation
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Water in minerals
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‣ Some minerals, such as clays and zeolites, 

contain significant quantities of water in pores 

and between atomic layers

‣ Water is the grease of the Earth – it is what 

enables the convection of minerals in the inner 

Earth that drives plate tectonics

‣ Neutrons are particularly good for the study of 

hydrogen and hence water

‣ Incoherent scattering is a probe of individual 

hydrogen atoms and hence dynamics of water 

molecules
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Water in clays
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Water molecules and cations are found within the 

space between tightly-bound oxide layers
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00l diffraction from clays
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Structure of water within clay 

interlayer space
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Surface conditions

Depth of 10 km

Hydrogen

Other atoms
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Outlook for neutrons in Earth 

Sciences

55

‣ Instrumentation is excellent

‣ Range of techniques is unrivalled

‣ Sensitivity of light elements and hydrogen is not 

matched by other techniques (such as 

synchrotron radiation)

‣ Ability to control sample environment is much 

easier than with other probes

‣ Ability to match computer simulation and 

neutron scattering is excellent
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However …

‣ The small volumes required for very high 

pressures and much less problematic for 

synchrotron radiation sources

‣ The community of advocates and those with 

experience is small (sub-critical), and neutron 

scattering has often suffered through appearing 

to have a skills barrier

‣ Much of what is being done is not challenging 

(typically powder diffraction)
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