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A. Single-Crystal Diffraction 

 
 

A1. 
2.20 km/sec is conventionally taken as a standard velocity for thermal 

neutrons.  (For example, absorption cross sections are tabulated for this value of 

the velocity.)   

 

(i) Using the de Broglie relation show that the wavelength of neutrons with 

this standard velocity is approximately 1.8Å.   

 

(ii) What is the kinetic energy of these neutrons?  (See values of physical 

constants, p22.) 

 

(iii) What is the energy of an X-ray photon of wavelength   = 1.8Å? 

 

(iv) Calculate the velocity of a neutron which has the same energy as this X-

ray photon. 

 

 

 

A2. 

A beam of 'white' neutrons emerges from a collimator with a divergence of  

0.2 . It is then Bragg reflected by the (111) planes of a monochromator 

consisting of a single-crystal of lead. 

 

 (i) Calculate the angle between the direct beam and the [111] axis of the 

crystal to produce a beam of wavelength  =1.8Å. (Unit cell edge a0 of cubic lead 

is  4.94Å.) 

 

(ii) What is the spread in wavelengths of the reflected beam?    
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Questions A3 and A4 are concerned with the treatment of Bragg scattering 

in reciprocal space.  A3 refers to the scattering of neutrons of a fixed-wavelength, 

and A4 to the scattering of pulsed neutrons covering a wide band of wavelengths. 

 

 

A3. 

 

A single crystal has an orthorhombic unit cell with dimensions 

a  6Å,  b  8Å,  c 10Å.   Plot the reciprocal lattice in the a
*
b
*

 plane adopting a 

scale of 1Å-1 = 20mm. 

 

A horizontal beam of neutrons of wavelength  =1.8Å strikes the crystal.  

The crystal is rotated about its vertical c axis between the settings for the 630 and 

360  reflections.   

 

Draw the Ewald circles for these two reflections.  How many hk0 reflections 

will give rise to Bragg scattering while the crystal is rotated beween 630 and 360 ?   

 

 

 

A4. 

 

Pulsed neutrons with a wavelength range from 1.5Å to 5.0Å undergo Bragg 

scattering from this crystal.  The horizontal neutron beam is parallel to the a axis 

of the crystal and strikes the crystal at right angles to the c axis.  Using the Ewald 

construction find the maximum number of Bragg reflections which can be 

observed simultaneously in the horizontal scattering plane. 

 

A5. 

 

 

The diagram shows the high-temperature cubic unit cell of BaTiO3 

alongside a list of the fractional coordinates of the ions in the unit cell. Show 

that the intensity I(00l) of the neutron beam diffracted from the (00l) planes of 

cubic BaTiO3 is proportional to 

 

[bBa + (-1)
l 
bTi + {1 + 2 x (-1)

l 
bO}]

2
, 
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where bBa, bTi and b0 are the coherent scattering lengths of the nuclei.  

 

On cooling through the ferroelectric transition temperature Tc = 130

C 

the structure of BaTiO3 undergoes a displacive transition in which the Ti
4+

 

and O
2-

 ions move in opposite directions relative to the Ba
2+

 ions. As a first 

approximation the fractional coordinates of the ions in the distorted phase are 

  

    Ba
2+ 

0, 0, 0 

   Ti
4+

  ½, ½, ½+ 

   O
2-  

½, ½, -; ½, 0, ½-; 0, ½, ½-; 

 

 

where  « 1. 

 

The intensity of the (005) neutron diffraction peak from a single crystal 

of BaTiO3 is found to increase by 74% on cooling the crystal through Tc. Use 

this observation to determine .  

 

Explain why it is advantageous to use neutron diffraction, rather than X-

ray diffraction, to determine the ionic displacements.  

 

[Coherent scattering lengths: bBa = 5.25 x 10
-15

 m, bTi = -3.30 x 10
-15

 m, 

bO= 5.81 x 10
-15

 m; atomic numbers: ZBa = 56, ZTi = 22, ZO = 8.]  
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B.   Coherent and Incoherent Scattering 

 
These exercises illustrate how to calculate coherent scattering amplitudes and 

incoherent scattering cross sections for nuclear scattering 

 

Formulae 

A neutron of spin ½ interacts with a nucleus of spin I to form two states in which 

the spins are either parallel or antiparallel.  The combined spin J of these states is 

J = I + ½ and J = I – ½, respectively.  Different scattering lengths (amplitudes) b
+
, 

b
–
 are associated with these states.  The probabilities (statistical weights) w

+
, w

–
 of 

the states are proportional to the number of spin orientations of each state.  This 

number is 2J + 1, so w
+
 2I + 2 and w

–
 2I. By constraining w

+
 + w

–
 = 1, we 

find 
 

 

            
(B1)

 

Suppose that an atom has several isotopes and that the spin of the r
th

 isotope is Ir. 

The coherent scattering length bcoh of the atom is the scattering length averaged 

over all the isotopes and spin states, i.e. 
  

 

 
(B2)

 

where cr is the abundance of isotope r, and  and  are given by (B1) with I 

replaced by Ir.   

 

We define the single-atom coherent scattering cross section by 

 

 

  
(B3) 

The single-atom total scattering cross section is obtained by averaging the 

separate cross sections for each of the individual isotopes r in both possible spin 

states: 

 

 

 

        
(B4)

 

Finally, the single-atom incoherent scattering cross section is the difference 

between the total and coherent cross sections: 
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            (B5) 

Exercises 

 

B1 Table B.1 gives the nuclear spin I of the two most abundant isotopes of 

hydrogen, 
1
H (protium) and 

2
H (deuterium), together with the measured scattering 

lengths of the (neutron + nucleus) systems with combined spins I + ½ and I – ½.  

Calculate  and  for 
1
H and 

2
H. 

 

Table B.1. 

 

 

 

   spin  I        
     (fm) 

     
   (fm) 

 
1
H (protium)   

 

 

       ½ 

    

    10.85 

      

 

    –47.5 

 
2
H (deuterium)         1       9.53        0.98 

   1 fm = 10
–15

 m
 

 

You should find that  for 
1
H and 

2
H are quite different. This means that the 

scattering from certain parts of a hydrogen-containing sample can be enhanced 

through selective replacement of the hydrogen atoms by deuterium, a process 

known as isotopic labelling.  

You should also find that  for 
1
H is much larger than that of 

2
H, so that  for 

natural hydrogen is close to that of 
1
H (natural hydrogen is 99.99% 

1
H). Hence, 

neutron scatterers generally try to minimise the amount of hydrogen-containing 

materials (like glue) in the neutron beam during their experiments. If hydrogen is 

present in the sample itself, then the background can be considerably reduced if the 

sample is prepared with deuterium instead of hydrogen. 
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B2 Table B.2 gives the experimental values of the scattering lengths and the 

abundance of the individual isotopes of nickel: 
58

Ni, 
60

Ni, 
61

Ni, 
62

Ni and 
64

Ni. With 

the exception of 
61

Ni, the isotopes have zero spin and so b
+
 is the same as b

–
. 

Calculate the values of  and  for a natural nickel sample containing all five 

isotopes.   

 

Table B.2. 

   

Isotope, r 

 

abundance  cr 

   

spin Ir 
      

  (fm) 

      

   (fm) 

     

     58    68.3% 

 

   0  14.4  14.4 

     60    26.1% 

 

   0    2.8    2.8 

     61      1.1% 

 

3/2    4.6    4.6 

     62      3.6% 

 

   0  –8.7  –8.7 

     64      0.9% 

 

   0  –0.4  –0.4 
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C.   Time-of-Flight Powder Diffraction 

 
 

C1. 

 

(a)  In a time-of-flight powder diffraction experiment the incident beam is  

pulsed , and with each pulse a polychromatic burst of neutrons strikes the sample.  

The different wavelengths   in a pulse are separated by measuring their time-of-

flight t  from source to detector.  Using the table of physical constants show that 

the relation between wavelength and t.o.f. is given by 

 

 t(in  secs)  252.8 ( in Å)  x L(in metres) 

 

where  L   is the total flight path. 

 

 

(b) A powder diffractometer, with  L100m  and scattering angle  

2  170  , was used to obtain the t.o.f. diffraction pattern of perovskite, CaTiO3.  

Calculate the values of t  for the three Bragg reflections with the longest times of 

flight.  (CaTiO3 crystallises in a primitive cubic lattice with a unit cell of edge a0  

= 3.84Å.) 

 

 

 (c)  For a sample with a cubic unit cell, show that the time-of-flight t of each 

Bragg peak in the t.o.f. powder diffraction pattern is related to its indices hkl  by: 

 

t  h
2
 k

2
 l
2 

1 2
 .                                           (C1) 

 

 

C2. 

 

Silicon crystallises in the face-centred-cubic structure of diamond with the lattice 

points at: 

 

0, 0, 0; ½, ½, 0; ½, 0, ½; 0, ½, ½  

 

In this structure there is a primitive basis of two identical atoms at 0,0,0 and 

¼,¼,¼ which is associated with each lattice point of the unit cell. 

 

 

(a)  Show that the indices hkl of the Bragg reflections for the face-centred 

cubic (f.c.c.) lattice are all odd or all even. 
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(b) Show that reflections with an odd value of h  k  l  2, such as 222 and 

442, are forbidden. 

 

(c) From eqn. (C1) the Bragg reflections in the t.o.f. powder pattern are 

separated according to their values of  h
2
 k

2
 l
2 .  In Table C.1 all the possible 

values of h
2
 k

2
 l
2  are listed in the order of decreasing time-of-flight for the 

range  

1 h
2
 k

2
 l
2  52. 

(This is the range covered in Figure C.1 below.) 

 

 

 

Table C.1.  Sums of three squared integers. 

 

    

  h
2
+k

2
+l

2 

 

 

  h
2
+k

2
+l

2 

 

 

  h
2
+k

2
+l

2 

 

 

  h
2
+k

2
+l

2 

 

 

  h
2
+k

2
+l

2 

 

          1           11*           21           33           43* 

          2           12*           22           34           44* 

          3*           13           24*           35*           45 

          4*           14           25           36*           46 

          5           16*           26           37           48* 

          6           17           27*           38           49 

          8*           18           29           40*           50 

          9           19*           30           41           51* 

        10           20*           32*           42           52* 

 

 

The values of h
2
k

2
 l
2
 in which the integers are all odd or all even are 

marked with asterisks.  

 

(i)    What are the indices hkl corresponding to these asterisks? 

 

(ii)   Which of the f.c.c. reflections are forbidden? 

 

(iii)  Which of the allowed f.c.c. reflections overlap with one another? 

 

 

(d) Figure C.1 shows the diffraction pattern of powdered silicon, taken with 

a time-of-flight diffractometer installed at the pulsed neutron source of the electron 

linear accelerator at the Harwell Laboratory.  The scattering angle was 2  167  

and the path length L14m.  To avoid frame overlap the Bragg peak with the 

longest flight time was cut out of the spectrum.   
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Figure C1.  Time-of-flight diffraction pattern of powdered silicon.  The observed 

spectrum has been normalised to a vanadium spectrum: vanadium is an incoherent 

scatterer whose spectrum gives the wavelength dependence of the incident neutron 

flux.   

 

 

 

The values of t for the twelve numbered Bragg peaks in Figure C.1 were 

measured (to a precision of less than 1sec) giving the results in Table C.2.  

 

Index all these peaks and determine the linear size a0 of the unit cell of 

silicon. 
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Table C.2 

    

  peak number 

 

  

time of flight  secs  

  

           1            13 503 

           2            11 515 

           3              9 549 

           4              8 760 

           5              7 796 

           6              7 351 

           7              6 753 

           8              6 455 

           9              6 038 

         10 

         11 

         12 

             5 823 

             5 513 

             5 348 

 

 

C3. 

 

In a time-of-flight neutron powder diffractometer, a sharp pulse of neutrons 

with a range of wavelengths is fired at the sample. The diffracted signal is 

measured at a fixed scattering angle 2, and the diffraction pattern comes 

from measurements of the time taken for the neutrons in a single pulse to 

travel the distance l from the source to the detector. Using the de Brogue 

relationship, together with the Bragg relationship, show that the time t taken 

by the neutrons to travel the distance l is related to the size of the d-spacing 

of a given reflection by 

 

where m is the mass of the neutron. 

 

No quantities are known exactly. For an uncertainty of  on the Bragg 

angle, error analysis gives the corresponding uncertainty on d: 

 

 

Show by differentiation of the Bragg law that for a given uncertainty this 

leads to a maximum resolution of 

 

sin2ml

ht
d 










d
d




cot
d

d
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In order to optimize the resolution of a time-of-flight powder diffractometer, 

the scattering angle 2 is chosen to be as close to 180 as possible. In this 

case a significant source of uncertainty is in the distance travelled by the 

neutron beam. Show that the uncertainty in the flight path l of l leads to a 

resolution limit of 

 

 

If the uncertainty in the value of l comes from the width of the neutron 

moderator of 2 cm, calculate the flight paths necessary to achieve (a) a 

moderate resolution of d/d=10
-3

, and (b) a high resolution d/d=2x10
-4

. 

Comment on your answers, and check out the real situation at the ISIS 

spallation neutron source by looking at the instruments POLARIS and HRPD 

from http://www.isis.rl .ac.uk. 

  

l

l

d

d 
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    D.  Magnetic Neutron Scattering  

 
D1. Derive the expression for the convolution of two Gaussians. 

 

 

Figure D1:  The cubic perovskite structure of KNiF3 

 

 

D2. KNiF3 has a cubic perovskite structure, shown in Figure D1. It 

becomes antiferromagnetic below a Néel temperature of  TN = 275 K.  In this 

magnetic structure, the magnetic moments lie along the edges of the cube.  

Each moment is antiferromagnetically coupled to its nearest neighbour. 

 

 Start by assuming that the material has a single magnetic domain and 

that the magnetic moments point along c. 

 

2.1 Draw the magnetic unit cell in real space. 

 

2.2 Draw the nuclear reciprocal lattice plane spanned by [110],[001] from  

–2 ≤ h,k,l ≤ 2 

 

2.3 Superimpose on this the magnetic reciprocal lattice.  Index the 

magnetic points with the magnetic reciprocal lattice units. 

 

2.4 Write the magnetic structure factor for the magnetic peaks.  Will all 

the peaks have the same intensity?  If not, why not?  What implication does 

this have for the symmetry of the magnetic lattice? 

 

Ni

F

K

a
b

c
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D3.   KNiF3 is said to be an excellent example of a Heisenberg 

antiferromagnet.  This means that it will have almost no anisotropy and the 

spin waves between the Brillouin zone centres will resemble something like 

in figure D2. 

 

Assume that the spin waves can be described using a classical picture 

(i.e. magnetic moments precessing on cones).  Identify the Brillouin zone 

centres along the [001] and [110] axes.  Will spin waves be measurable along 

these directions?  If yes, how will the intensities compare? 

  

 

 

Figure D2: Schematic showing a spin wave dispersion from a 

Heisenberg antiferromagnet. 

 

 

D4.   Now assume that the sample has many domains.  What will happen to 

the intensities of the Bragg peaks and the inelastic scattering? 
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           E.  Incoherent Inelastic  Scattering 

         (with a Pulsed Neutron Spectrometer) 

 
 

IRIS is an "inverted-geometry" spectrometer, which is installed at the pulsed 

neutron source  ISIS.  A white beam of neutrons strikes the sample, and is 

scattered to the pyrolytic-graphite analyser.  The  002  planes of the analyser 

Bragg reflect  the neutrons to the detector.  The distance  from the moderator to 

the sample is 36.54 m, and the distance  sample-to-analyser-to-detector is 1.47 m.  

(See Figure E1.) 

 
Figure E1.  Geometry of the IRIS spectrometer. 

 

 

The IRIS spectrum shown in Figure E 2 is for a sample of ammonia 

intercalated between the layers of oriented graphite.  The central peak 

corresponds to elastic scattering by the sample , and the two outer peaks arise 

from inelastic scattering due to the  tunnelling of hydrogen atoms between 

adjacent potential  wells of the ammonia molecule. 

 



 

                                                   15 

 
Figure E.2.  Time-of-flight spectrum of ammonia intercalated in graphite, 

measured on IRIS 

 
E1.  

(i)  What is the energy selected by the crystal analyser ?   

 

(ii)  The c-spacing of pyrolytic graphite is 6.70Å.  What is the Bragg angle 

      A of the analyser?   

 

(iii)  What is the advantage of using such a high take-off angle (2A) for the 

        analyser? 

 

 

E2.  
Identify the peaks in the spectrum which are associated with  energy gain 

and with energy loss.  What is the magnitude of the energy transfer for these    

peaks ? 

 

 

E3.  
(i)  Why are the intensities of the energy-gain and energy-loss peaks 

      different ?   

 

(ii)  What does this difference tell us about the temperature of the sample ? 
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F.  Coherent Inelastic  Scattering 

(with a Three-Axis Spectrometer) 

 
 

One of the most important instruments used in neutron scattering is the 

three-axis spectrometer.  A schematic drawing of the machine is shown in Figure 

F1.  By employing a monochromatic neutron beam of a definite wave-vector  ki   

(of magnitude  ki  2 /  i   with   i   the incident wavelength) , which is incident 

on a single crystal in a known orientation, and by measuring the final wave-vector 

k f  after scattering by the sample, we can examine excitations such as phonons (in 

which the atoms are excited by thermal vibrations) or magnons (in which the spin 

system of the atom is excited).   

 
  

 
 

Figure F1.  Three-axis spectrometer. 

 

 

 

The three-axis instrument appears to be complicated, but it is conceptually 

simple and every movement may be mapped by considering the so-called 

scattering triangle (Figure F.2).  In practice, what is difficult about a three-axis 

machine is that there are many different ways of performing an experiment, and  

choosing the appropriate configuration is often the key to performing a  successful  

experiment.  This is  in  contrast to a powder diffraction experiment, where one 

simply puts the sample in the beam and records the diffraction  pattern. (See 

Section C). 
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Figure F2.  Scattering triangle representing the momentum Q  transferred to the 

sample when the wavevector of the neutron changes from ki  to k f .    is the 

scattering angle. 

 

 

 

In the following we shall consider how one actually measures a phonon 

excitation, using various diagrams in reciprocal space to represent the process. 

We use formulae which apply to all scattering processes (both neutrons and X-

rays).   

 

Momentum conservation gives 

 

    Q ki k f                   (F1) 

 

where  Q   is the scattering vector.  If     is the angle  between  ki   and  k f , we 

have 

    Q
2
 ki

2
 k f

2
2kik f cos .        (F2) 

 

Energy conservation gives 

 

     E  Ei Ef ,        (F3) 

 

where Ei   is the energy of the incident neutron, E f  is its energy after scattering, 

and  E  is the energy transferred to the scattering system.  E   may be positive 

(neutrons lose energy) or negative (neutrons gain energy).  If  k  ( 2 /   )  is the 

wave-number of a neutron, its energy  E   is related to  k   by 

 

    E 
81.8


2  2.072k

2
              (F4) 

 

where  E   is in  meV,     is in Å  and  k   is in Å-1  .   
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For the following exercises, imagine that you wish to investigate the low-

energy spectra of silver chloride, AgCl, which is a cubic crystal with a face-

centred cubic unit cell.  You have been allocated time on a three-axis 

spectrometer, which works with incident neutrons of energy from 3 to 14 meV.   

 

Figure F3 shows the (110) plane of reciprocal space .  The cubic lattice 

parameter a0  of AgCl is 5.56Å.  One reciprocal lattice unit (rlu) is equal to  

2 a0   or 1.13Å-1.  The vector from the origin to any point hkl of the reciprocal 

lattice is of length  2 dhkl , where dhkl is the spacing of the  hkl planes in the 

direct lattice.   

 

 
 

Figure F3.  (110) plane in reciprocal space of cubic crystal. 
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F1 

 

Which are the allowed points (giving non-zero Bragg reflections) of the 

reciprocal lattice in Figure F.3 ?  Mark them with a closed circle—they are the so-

called zone-centres of the Brillouin zone.  Mark the disallowed points with open 

points—these are the zone-boundaries of the Brillouin zone.  (Note that the 

reciprocal lattice of a face-centred cubic crystal is a body-centred cubic lattice.) 

 

 

F2 

 

Ei  ranges from 3 to 14meV.  Calculate the maximum and minimum values 

of the wavelength  i  and the wave number ki  of the incident beam.   

 

 

F3. 

 

We shall begin our experiment using the maximum value of ki  and orienting 

our crystal to find the 220  Bragg reflection.  The scattering we observe is elastic 

scattering, which is much stronger than the inelastic scattering. 

 

(i)  What is the magnitude of Q220   2 d220 ?   

 

Draw Q , ki  and k f  for the  220  reflection. 

 

(ii)  What is the angle    between  ki   and  k f  ? 

 

(iii)  What is the relation between the Bragg angle B at the sample and  ? 

 

 

F4. 

 

We can now start our inelastic experiment.  Consider the dispersion curves 

for AgCl shown in Figure F.4  Let us suppose that we wish to measure the phonon 

with a reduced wave vector of 0.4 propagating in the [001] direction and and that 

the phonon is transverse acoustic.  (A shorthand notation for this is TA[001].)  

Using the conversion tables on p.2 we see that the energy of this phonon is about 

3meV.   

 

In Figure F3 draw the wave-vector q  of this phonon away from the 220  

zone-centre.  (By zone-centre we mean  q  0  .) 
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Figure F4.  Phonon dispersion curves of cubic AgCl. 

 

 

               We will perform our experiment by using the maximum value of ki . 

 

 

F5. 

 

Work out the possible values of k f  and  . (There are two solutions 

depending on whether E , which is the phonon energy, is chosen to be positive or 

negative.) 

 

 

F6. 

 

It turns out that better resolution occurs for energy loss than for energy gain.  

Draw the configuration of ki  and  k f  in Figure F3 for energy loss. 

 

Another factor influencing the intensity which we observe in our experiment 

is the so-called Bose factor  n(E) . This gives the population of phonon states at 

any given energy and temperature: 

 

   n(E)
1

exp E kBT  1
  . 

 

The intensity for neutron energy loss is proportional to  [1 n(E)] , whereas for 

neutron energy gain  it is proportional to  n(E)   . 
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F7. 

 

(i)  Calculate the Bose factors for the energy gain and energy loss 

     configurations in our example assuming that the sample is at a 

     temperature of: (a) 300 K, (b) 0 K.   

 

(ii)  Given the intensity relationships above, which way would we do the 

       experiment with the sample at (a) room temperature, (b) liquid-helium 

      temperature ? 

 

F8. 

 

Is it possible to measure the TA[001] phonon around the 440 reciprocal-

lattice point ?  

 

 

To map out the dispersion curves in Figure F.4, we would do energy scans, 

say from 2 to 8 meV, at a series of  q   values between [220] and [221].  A single 

peak would appear on each scan, giving the phonon energy for that reduced wave-

vector. 

 

F9. 
 

Suppose an experiment is performed to measure the phonon dispersion 

curves of potassium on a triple-axis spectrometer, when the energy of the 

beam scattered into the analyser is held fixed at 3.5 THz. For a measurement 

of the LA mode at Q = [2.5, 0, 0], what will be the energy of the incident 

beam for an experiment in which the neutron beam loses energy in the 

creation of a phonon. The phonon dispersion curves of potassium are given in 

Fig. F.9, and the lattice parameter of potassium is 5.23Å. 

 
 

Figure F9. Acoustic mode 

dispersion curves for 

potassium (bcc) measured by 

inelastic neutron scattering. 

The right-hand plot shows the 

relevant portion of reciprocal 

space. (Data taken from 

Cowley et al. Phys. Rev. 15, 

487, 1966.) 
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G.  Disordered Materials Diffraction 

 

G1. 

The interatomic potential, the pair distribution function, the 

coordination number, and the structure factor. (N.B. To do this exercise 

it is helpful to have access to a computer spreadsheet.) 

Typically atomic overlap is prevented by strong repulsive forces that come 

into play as soon as two atoms approach one another below some 

characteristic separation distance  (which is usually expressed in units of Å 

= 10
-10

m). At greater distances the atoms are normally attracted to one 

another by weak van der Waals (dispersion) forces, the magnitude of which 

is governed by an interaction parameter , which can be expressed in units of 

kJ per gm mole. 

These facts can be conveniently (but only approximately) expressed by the 

model Lennard-Jones potential energy for two atoms separated by a distance 

r: 

      (G1.1) 

The radial distribution function (RDF), normally written g(r) and also called 

the pair distribution function (PDF), describes the relative density of atoms 

(compared to the bulk density) of atoms a distance r from an atom at the 

origin. 

G1.1 The pair potential. 

a) With  = 0.6kJ/mole and  = 3.0Å, sketch this function approximately in 

the distance range 0 – 10Å. 

b) What do the values of  and  signify? 

c) Mark on your graph the repulsive core and dispersive regions. 

G1.2 Low density limit.  

According to the theory of liquids (see for example Theory of Simple 

Liquids, J P Hansen and I R McDonald, 2nd Edition, Academic Press, 1986), 

in the limit of very low density (e.g. like the density of the air in the 

atmosphere), the PDF between atom pairs is given by the exact expression: 

        (G1.2) 

where kB is Boltzmann‟s constant.  In the units of kJ per mole kB = 0.008314 

kJ/mole/K. 
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a) Sketch this function for the Lennard-Jones potential used in G1.1 a) at 

(say) T = 300K. g(r) is the primary function which is being measured in a 

diffraction experiment. 

b) From your sketch, describe briefly the main differences between U(r) and 

g(r). 

c) Describe qualitatively what would happen to glow(r) for example if you 

increased  by a factor of 2, or increased  by 20%? 

Note that in the limit of zero density glow(r) does not go to zero. 

G1.3  High densities.  

Of course real materials occur with much higher densities than those of low 

density gases. This gives rise to an additional contribution to g(r) from three-

body and higher order correlations. In general these are difficult or 

impossible to calculate analytically, so that resort has to be made to computer 

simulation to estimate the effect of many body correlations. 

Figure G1.1 shows a simulated g(r) for our “Lennard-Jonesium” of G1.1, at 

two densities, (a) r = 0.02 and (b) r = 0.035 atoms/Å
3
 respectively. 

 

Figure G1.1 

a) Comparing these with your “zero density” sketch of g(r) from G1.2, 

describe the main effects of many-body correlations on g(r). In particular:- 

i) How does the position of the first peak move with the change in density? 

ii) How do the positions of the second and subsequent peaks move with 

change in density? 

iii) Is the amount of peak movement what you expect based on the density 

change? 

b) Why do you think many-body correlations have the effect they do? 

G1.4 Coordination numbers  

These are defined as the integral of g(r) in three dimensions over a specified 

radius range:- 
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      (G1.3) 

The “running" coordination number at radius r is defined as N(0, r) , which is 

sometimes written simply as N(r) . Figure G1.2 shows the running 

coordination numbers for the RDFs of Figure G1.1 

 

Figure G1.2 

a) Using the grid provided estimate approximately the coordination number 

up to the first minimum in g(r) for each of the cases shown in Figure G1.1 

This is what is frequently quoted as the “coordination number” of the atom at 

each density. Do these numbers scale with the density? 

b) If instead we had used the same distance range for both densities would 

the coordination numbers scale with density? 

G1.5 The structure factor.  

The diffraction experiment does not measure g(r), but its Fourier transform, 

the structure factor, H(Q), where 

      (G1.4) 

where Q, the wavevector transfer in the diffraction experiment, is given by, 

Q= 4π sin θ/λ , with 2 the detector scattering angle, and  the radiation 

wavelength. 

The structure factors corresponding to the two densities of Lennard-Jonesium 

in G1.3 are shown in Figure G1.3. 
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a) Describe the effect of changing the density on the structure factor. How 

does this compare with effect of changing the density on the radial 

distribution function? 

b) What is the (approximate) relationship between the position of the first 

peak in g(r) and the first (primary) peak in H(Q)? 

c) What would happen to the position of the first peak in H(Q) if we 

increased the value of  ? 

d) Given that the radial distribution function remains finite at all densities, 

using Eq. G1.4 what is the structure factor of an infinitely dilute gas? 

 

G 2.  

Two component systems: use of isotope substitution and the case of 

molten ZnCl2. 

The diffraction pattern from a system containing 2 atomic components can be 

written as 

 (G2.1) 

where  cα is the atomic fraction and bα is the neutron scattering length of 

component α, Hαβ(Q) is the partial structure factor (psf), analogous to (1.4) 

above, for the pair of atoms α,β, defined by: 

     (G2.2) 

and gαβ(r) is the site-site radial distribution function of β atoms about α. The 

brackets around the scattering lengths indicate that the scattering lengths 

have to be averaged over the spin and isotope states of each atomic 

component. The coordination number of β atoms about atom α can be 

defined in an analogous manner to Eq. G1.3 

     (G2.3) 
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A general rule is that if there are N distinct atomic components in a system, 

then there are N(N +1)/2 site-site radial distribution functions and partial 

structure factors to be determined. By “distinct atomic components” we do 

not necessarily mean atom types. For example a methyl hydrogen atom on an 

alcohol molecule is distinct from the point of view of the structure to a 

hydroxyl hydrogen atom, even though they are the same atom type. 

G2.1 A classic example of the application of the isotope substitution method 

to a two-component liquid is the molten ZnCl2 experiment of Biggin and 

Enderby (J. Phys. C: Solid State Phys., 14, 3129-3136 (1981)). 

a) What are the atomic fractions of Zn and Cl in ZnCl2 salt? 

b) Hence, based on Eq. G2.1, write down a formula for the diffraction pattern 

of ZnCl2 in terms of the Zn-Zn, Zn-Cl and Cl-Cl partial structure factors. 

c) Given that two isotopes of chlorine are available, 
35

Cl and 
37

Cl, with 

markedly different scattering lengths (11.65fm and 3.08fm respectively) 

briefly explain how you might extract the three partial structure factors for 

ZnCl2 experimentally. 

d) Are there any other experimental techniques that could be used to do this? 

G2.2  Figure G2.1 shows the actual diffraction data of Biggin and Enderby, 

while Table GI below lists the neutron weights outside each partial structure 

factor for each of the Biggin and Enderby samples: 

 

Table GI 
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Figure G2.1 Diffraction data (points) for molten zinc chloride using different 

mixtures of chlorine isotopes. The line is a modern fit to these data using an 

EPSR (empirical potential structure refinement) computer simulation. 

a) On the basis of the numbers in this table describe any problems that might 

arise in attempting to invert the diffraction data to partial structure factors. 

Look also at the diffraction data themselves, in Figure G2.1. 

b) Given those reservations, what might happen when we try to convert the 

extracted partial structure factors to radial distribution functions using the 

inverse Fourier transform: 

     (G2.4) 

c) Describe another method that might be used to separate out the site-site 

radial distribution functions from the measured diffraction data. 

G2.3 Figure G2.2 shows a computer simulation of the radial distribution 

functions and running coordination numbers of molten zinc chloride, ZnCl2, 

as derived from the Biggin and Enderby diffraction data. 



 

                                                   28 

 

Figure G2.2  Radial distribution functions (lines, left-hand scale) and 

running coordination numbers (point, right-hand scale) for molten zinc 

chloride. 

 

a) Using the grid, or other method, estimate approximately the coordination 

number of Cl around Zn. What would be the corresponding coordination 

number of Zn around Cl? 

b) Given this number, and the position of the Zn-Zn and Cl-Cl first peaks, 

what can you say about the local structure in molten ZnCl2? 

c) For the region beyond the first peaks, what do you notice about the three 

site-site rdfs for molten ZnCl2? Use this to speculate on what might be 

happening to the ordering of the Zn and Cl atoms. 
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H: Polarized Neutrons 

 

 
 

H1. a) In the instrument in Fig. H1, what is the beam polarization if the 

there are 51402 counts/second with the flipper off and 1903 counts per 

second with the flipper on?  Provide also a calculation of the error bar 

in the beam polarization value. 

 

b) What would be the main sources of systematic error in this 

measurement? 

Figure H1 
 

 

H2. a) Fig. H2 shows a configuration for a Dabbs-foil (current sheet) 

flipper, designed for neutrons of wavelength 2Å.  By checking the rate 

of the field rotation, state whether you believe that this is a good design 

for a -flipper. 

 

b) Suggest ways in which the design may be improved. 

 

 

 

 

  
Figure H2 
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BG BG 
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H3. a)   Assuming that a polarizing filter has an absorption cross-section 

consisting of a spin-dependent part and a spin-independent part of the 

form 
     0 P      

show that the neutron polarization and transmission through the filter 

are given by 

    tanh( )pP Nt  and exp( )cosh( )o pT Nt Nt   . 

 

Hint: the number of neutrons transmitted through the filter will be 

proportional to exp(-Nt) where N is the number density of scatterers 

in the filter, and t is the thickness 

 

b)   Given that the nuclear spin of a 
3
He nucleus is I = ½,  show that the 

polarization of the 
3
He nuclei is given by: 

      
0

p

HeP



  , 

and hence find expressions for the polarization and transmission of a 
3
He spin-filter. 

Hint:  equate the expressions ( )(1 )a NE P      and 0 P     . 

 

 

H4. Show that the polarizing efficiency of a crystal monochromator is given 

by 

    



Pf 
2FN (Q)FM (Q)

F
N

2(Q) F
M

2 (Q) 
, 

where the symbols have their usual meanings. 

 

 

 

H5. Why is it not necessary to analyse the neutron spin when scattering from 

a ferromagnet saturated in a direction perpendicular to Q? 

 

 

 

H6. a) Verify the following relations (so-called Pauli spin relations): 

    

,

,

,

x x

y y

z z

i i

 

 

 

     

      

      

 

where x, y and z are the Pauli spin matrices and the spin-up and spin 

down neutron eigenstates are given by
1

0

 
   

 
 and 

0

1
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b) Hence show that the spin flip scattering is sensitive only to those 

components of the magnetisation M perpendicular to the neutron 

polarization vector (along z). 

 

H7. Using the Moon, Riste and Koehler expressions, together with the 

definition of the Fourier component of the magnetisation perpendicular 

to Q, M, show that the magnetic scattering is entirely spin-flip if the 

neutron polarization is parallel to Q. 

 

 

H8. What is the advantage of the X-Y-Z difference method of magnetic 

scattering separation over the method of measuring with the neutron 

polarization P || Q? 
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I.  High resolution spectroscopy 

(TOF, backscattering and Spin-Echo) 

 

The aim of this section is to get a feeling for the energy resolution of different 

spectrometer types: time-of-flight (TOF), backscattering (BS) and spin echo (NSE) 

spectrometers.  

 

All the following calculations assume a neutron wavelength of λ=6.3 Å.  

Planck‟s constant is h=6.6225 10
-34

 Js, sometimes usefully expressed as  

h = 4.136 µeV ns. Neutron mass mn=1.675 10
-27

 kg. 

 

I1. 

Calculate the neutron speed vn  in [m/s] and the neutron energy in µeV.  

vn=________ m/s; En= ________µeV.  

  

I2. - Time-of-flight spectroscopy 

 

 

 

 

Figure I1  Time-of-flight spectrometer with two choppers CH1 and CH2 separated by a 

distance L 

 

All contributions to the energy resolution in time-of-flight can be formulated as time 

uncertainty Δt/t. We consider only the primary spectrometer (before sample) and aim 

for an energy resolution better than 1µeV.  

a) Show first that ΔE/E = 2Δt/t  (express E as fct. of v and assume Δd =0):  

 

E =____________________________and with Δd = 0:  

 

ΔE = _____________________________, which results in ΔE/E =_____________.  

  

Several contributions add to the neutron flight time uncertainty Δt. To simplify, let‟s 

consider a chopper spectrometer with flight path L between two choppers as sketched in 

the Figure. I1. and let‟s first look at neutrons flying parallel to z.  

 

  

  

CH1 CH2 
α 

w
id

th
 w

 

total flight path length L 

 

z 
l 

la 

α 
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b) Calculate the flight time along path L = 100 m:   T0 ~ ___________ s.  

If we want to get an energy resolution of 1µeV, this corresponds to  

ΔE/E ~ _____________for 6.3Å neutrons.  

This can give us an idea for the maximum allowed flight time difference along L: ΔE/E0 

* T0/2 ~ _____________________________µsec 

c) Path difference in neutron guide 

For the reflected neutrons estimate the max. flight path differences in a super-mirror 

guide with m=2 coating and width w. The critical angle α (maximal reflection angle = 

half divergence) in such a guide is α ~ 0.1° m λ = __________°.  

Estimate the flight path difference with respect to neutrons which fly parallel. One way 

is to show that ΔL/L = (1/cos α) - 1 and thus: 

ΔL/L = ______________ = Δt/t  and therefore: 

ΔE/E ~ ______________.    

We prove this by referring to Fig. I.1: 

l = ____________;  

la = ___________;  

la / l = ____________________________ independent of w; if n is the number of 

reflections, then we can write the full path difference as: 

ΔL = n*(la-l) = _________________________________ and thus ΔL/L = (1/cos α)-1.  

 

d) Chopper Opening Time 

Another contribution is the chopper opening time which leads to a spread in neutron 

velocity and thus to flight time differences dt. In order to reach similar  

Δt/t = Δv/v as above one needs fast rotating choppers delivering short pulses.  

If CH1 releases at t = 0 an arbitrarily sharp pulse of a white beam, then the CH2 delay T 

selects a neutron velocity v0 and the CH2 opening time determines Δv/v.  

We want again 1µeV energy resolution therefore we need 

Δv/v0=Δt/T=______________.  

The chopper opening time must then be  

ΔtCH2 < 1/2*(1µeV/E0)*/v0 = _____________ [s/m] * L [s].   

 

Mechanically, the chopper opening time is defined as: ΔtCH2 = β / 360 / f, where β is the 

chopper window angular opening and β/360 is the duty cycle (which equals the fraction 
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of neutrons transmitted by the chopper). We see that this condition can be achieved by 

increasing the flight path (or by decreasing vn), by increasing the chopper frequency or 

by narrowing the chopper window (intensity loss).  

 

Choosing a duty cycle of 0.01 one needs a very long flight path between CH1 and CH2 

of L=100m and a high chopper frequency of ________Hz  = __________ rpm to reach 

1µeV energy resolution. 

 

This condition becomes more restrictive if we consider the finite opening time of the 

first chopper as well.  Finally, we mention that all the contributions in the primary and 

secondary spectrometer have to be added in quadrature: 

 Δt/t = sqrt[(Δt1/t1)
2
+(Δt2/t2)

2
+.......]  

Additional choppers are usually needed to avoid frame overlap and harmonics, which 

reduces the intensity further. To achieve a 1µeV energy resolution by TOF is 

technically demanding (choppers), expensive (guides) and low in flux. Thus TOF-

chopper-instruments have typically energy resolutions > 10 µeV. ex.: IN5 at 6.3Å has 

roughly 40 µeV energy resolution.  

Increasing λ helps but reduces the maximum Q. Calculate the elastic Q for 3Å, 6Å and 

15Å neutrons, assuming a maximum scattering angle of 140°:  

Q = _______________ = ______ Å
-1

,
 
_______ Å

-1 
and ________. Å

-1
 

 

 

I2. - Backscattering spectroscopy 

Reactor backscattering spectrometers are based on perfect crystal optics. High energy 

resolution is achieved by choosing Bragg angles Θ as close as possible to 90°. Two 

major terms determine then the energy resolution: the spread in lattice spacing Δd/d  of 

the monochromator and the angular deviation ε from backscattering direction (the latter 

includes the beam divergence α if considered as ε = α/2). 

Write down the Bragg equation (neglecting higher orders): ___________________ or 

equivalently using k=2π/λ and τ = 2π/d (reciprocal lattice vector of the Bragg 

reflection): _________________.  

Deduce the wavelength resolution Δλ/λ by differentiating the Bragg equation: 

Δλ =________________ + _________________ and thus  

Δλ/λ = ____________ +_____________ , or equivalently: 

Δk=________________ + _________________________ and thus  

Δk/k= _____________ + _____________.  
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The energy resolution is given by two terms. The first one, Δd/d =Δτ/τ , can be 

calculated by dynamical scattering theory as Δτ/τ = h
2
/m 4 Fτ Nc, where Fτ is the 

structure factor of the reflection used and Nc the number density of atoms in the unit 

cell. The second one, the angular deviation, can for Θ ≈ 90° be expanded  in powers of 

Θ and contributes approximately as Δλ/λ ~ ΔΘ
2
/4 (ΔΘ in radians).  

Calculate now the contribution to the energy resolution of both terms for a perfect 

crystal Si(111) monochromator (6.271Å, but approximate by 6.3Å as above). 

 

With Fτ=(111) and Nc for Si(111) the extinction contribution for Si(111) in backscattering 

is Δd/d=1.86 10
-5 

and thus ΔE/E=______________
 
and ΔE=_______µeV.  

 

Estimate the energy resolution contribution due to deviation from backscattering: 

1)  given by a sample diameter of 4 cm in 2 m distance from the analyser.  

ΔE/E=_____________, ΔE=_______µeV   

2) given by this sample at 1m distance:  

ΔE/E=_____________, ΔE=_______µeV 

3) given by a detector being placed near backscattering, a sample - analyser distance of 

1m and the distance sample center - detector center = 10cm below the scattering plane; 

the  focus of the analyser sphere is placed in the middle between sample and detector:  

ΔE/E= ____________. ΔE=_______µeV 

These examples show that for small enough deviations from BS energy resolutions of < 

1µeV are easily achievable. Comparing this to TOF contributions above, it becomes 

clear that for a spallation source backscattering instrument, which combines TOF in the 

primary spectrometer with near-BS in the secondary spectrometer, it is very difficult to 

achieve sub-µeV resolution. The SNS BS (BASIS) instrument with 80m flight path has 

for example an energy resolution for Si(111) of 2.5 µeV. 

I3. - Neutron spin-echo spectroscopy 

In neutron spin echo one uses the neutron spin which undergoes precessions in a 

magnetic field B. The precession angle φ after a path length L depends on the field 

integral, given by φ =γ*B*L/vn (γ = gyromagnetic ratio of the neutron, vn=neutron 

speed). For a polychromatic beam the precession angles of the neutron spins will be 

very different depending on the neutron speed and thus a previously polarized beam 

becomes depolarized. The trick is then to send the neutrons after the sample through a 

field with opposite sign and with the same field integral. Therefore, for elastic 

scattering, the precessions are “turned backwards”, again depending on the neutron 

velocity, and the full polarization is recovered. This allows the use of a wide 
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wavelength band (range of incident neutron speeds) and therefore a high intensity 

which is „decoupled‟ from the energy resolution.  

In order to estimate a typically achievable energy resolution, we can calculate the 

longest time which is easily accessible in NSE.  

The NSE time is given by: tNSE= ħγ BL / (mn vn
3
)  thus it is proportional to the largest 

achievable field integral B*L, which we take as 0.25 [T*m].  

 Calculate the longest NSE time tNSE for λ=6.3Å neutrons (use vn calculated above), 

knowing that γ = 1.832 10
8
 [T

-1
 s

-1
] , ħ= 1.054*10

-34 
J s; and mn= 1.675*10

-27
 kg:  

tNSE = __________ ns.  

Convert this time into an energy by multiplying its reciprocal value with  

h=4.136 µeV ns; we get: ENSE= ________ µeV. 

For comparing measurements in time and in energy one often refers to Fourier-

transformation which relates e.g. the characteristic relaxation time τ of an exponential 

relaxation in time to the width of a Lorentzian function in energy by τ = 1/ω. In spite of 

the fact that the relaxation time is usually smaller than the longest NSE time, converting 

the corresponding energy resolution by this relation gives:   

E τ = ____________ µeV . 

 Because of τ < tNSE and also because energy spectrometers can usually resolve better 

than the HWHM, the comparable resolution energy lies somewhere in between the two 

values calculated. 

Note that the longest NSE time depends on wavelength λ as tNSE _____.  Thus the 

resolution improves fast for increasing λ, but like calculated for the other spectrometers 

above, the maximum Q is reduced. 
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 Values  of  Physical  Constants : 

 

 

      SI units 

  

speed of light c 2.998 108 m s-1 

charge of electron e 1.602x10-19 C 

Boltzmann's constant  kB  1.38 10-23  J K-1 

Planck's constant h 6.626 10-34  J s 

Avogadro's  number NA 6.02 1023  mol-1 

mass of electron me 9.109x10-31 kg 

mass of proton mp 1.673x10-27 kg 

Bohr magneton B   

                       e / 2me  
9.274x10-24 J/T 

nuclear magneton  N   

                      e / 2mp  
5.051x10-27 J/T 

 

 
                                            Properties of the neutron: 

 

 

         mass mn      1.675x10-27 kg 

         charge       0 

         spin      1/2 

         magnetic moment        -1.1913 N  

 

  

 

 Relations  between  Units 

 

    1 eV           1.602x10-19  J   

 

     2.418x1014 Hz     8.065x103 cm-1     11 600 K 

 

1Å  82meV  660cm
1

;  

1meV 1.5THz 12K . 

 

 

 


