Reactor & Spallation Neutron Sources

Ken Andersen ESS Instruments Division

Oxford School of Neutron Scattering Oxford, 2011-09-06

EUROPEAN SPALLATION SOURCE

Time evolution: Major neutron sources

	2000	2010	2020	
ILL				
BENSC (D)				
SINQ (CH)				
FRM-II (D)				
HFIR (USA)				
NIST (USA)				
JRR-3 (J)				
ISIS-1 (UK)				
ISIS-2 (UK)				
SNS (USA)				
J-PARC (J)				
ESS (S)				

EUROPEAN SPALLATION

- About 10 major neutron facilities worldwide
- Fission (continuous)
- Spallation (pulsed)
- User facilities
- Number 1 is Institut Laue-Langevin (ILL) in Grenoble, France
 - 40 instruments
 - 700 experiments a year
 - Mainly condensed-matter physics, but increasingly also chemistry and biophysics

EUROPEAN SPALLATION

- Highly-enriched uranium
- Compact design for high brightness
- Heavy-water cooling
- Single control rod
- 57MW thermal power

	cold	thermal	hot	H5 H4
moderator	liquid D ₂	Liquid D ₂ O	graphite	H6 V5 IH3
moderator temperature	20K	300K	2000K	
neutron wavelength	3→20Å	1→3Å	0.3→1Å	
sample lengthscale	1Å→100 nm	0.3→5Å	0.1→2Å	
sample timescale	1kHz→1 THz	0.1→10 THz	1→100 THz	

Neutron Moderators at the ILL

(Updated from Neutron Scattering, K. Skold and D. L. Price: eds., Academic Press, 1986)

Spallation Sources

- Spallation: 10x more neutrons per heat than fission
- 5MW spallation source = 50MW reactor
 - Confusion: Heat input or output
 - accelerators 10-20% effective
- Pulsed nature gives information which allows lower time-integrated flux
- P = IxV = 0.2-1MW
 - efficient spallation requires proton E > 0.5 GeV
 - => I = 0.2-1mA

Spallation Sources

- Continuous spallation source: SINQ at PSI in Switzerland
- Short-pulse spallation sources: ISIS, SNS, J-PARC
 - H- Ion source
 - Linear accelerator (normal- or super-conducting)
 - Stripper converts H- to H+
 - Synchrotron
- Target
- Reflector
- Moderators

drift tube

Synchrotron

- Synchronise:
 - B-field: bend
 - E-field: accelerate
 - E & B field: focus
 - Magnets to each other
- Injection
 - Stripper foil
- Extraction
 - Kicker magnet

SNS, Oak Ridge, Tennessee, USA (500kW in 2010, 1MW in 2012)

J-PARC, Tokai, Japan (100kW in 2010, 1MW in 2015)

J-PARC, Tokai, Japan (100kW in 2010, 1MW in 2014)

ISIS target 1: solid tungsten

SNS target: liquid mercury

J-PARC target

Target-Reflector-Moderator Neutronics

- Target produces neutron in MeV range
- Moderators contain H to thermalise neutrons
 - Largest scattering cross-section (80b)
 - Lowest mass
- Moderators embedded in reflector, usually D₂O-cooled Be
 - Minimal absorption
 - Large scattering cross-section (8b)
 - Little thermalisation

Target-reflector-moderator neutronics

- Proton pulse > 1 μ s
- Neutrons moderated by H
 - Several cm depth of H required to thermalise
 - 4Å neutron speed: 1cm / 10μ s
 - Additional time-broadening: coupling between moderators and reflector
- Decoupling: Cd between moderator and reflector
 - Transparent above 0.3 eV
- Poisoning: Gd inside moderator

Pulsed-Source Moderators

The future: Long-pulse spallation sources

Long pulses: use only linac

ESS Target Station

ESS Target Station

Thank you !

EUROPEAN SPALLATION SOURCE

Ken Andersen ESS Instruments Division

Oxford School of Neutron Scattering Oxford, 2011-09-06