

EUROPEAN SPALLATION SOURCE

Neutron Instruments I & II

Ken Andersen

ESS Instruments Division

Oxford School of Neutron Scattering, 7/9/2011

Neutron Instruments I & II

- Overview of source characteristics
- Bragg's Law
- Elastic scattering: diffractometers
 - -Continuous sources
 - -Pulsed sources
- Inelastic scattering: spectrometers
 - -Continuous sources
 - -Pulsed sources
- Transmitted beam: imaging
- Fundamental physics

Neutrons vs Light

	light	neutrons
λ	< µm	< nm
Е	>eV	> meV
n	1→4	0.9997→1.0001
θ _c	90°	1°
Φ/ΔΩ	10 ¹⁹ p/cm²/ster/s (60W lightbulb)	10 ¹⁴ n/cm²/ster/s (60MW reactor)
Р	left-right	up-down
spin	1	1/2
interaction	electromagnetic	strong force, magnetic
charge	0	0

Oxford School of Neutron Scattering, 7/9/2011

Source brightnesses

Peak brightness: ILL ~ 1-10 x ISIS

EUROPEAN SPALLATION SOURCE

Time-integrated: ILL ~ 100-1000 x ISIS

Lightbulb ~ 100,000 x ILL 💐

ILL & ISIS: cold-source brightness

Distribution by Guides

Neutron transport by total internal reflection ~ 100m at present sources

Reflecting Surfaces

critical angle of total reflection θ_c

$$\left. \begin{array}{l} \cos \theta_{c} = n'/n = n' \\ n' = 1 - \frac{N\lambda^{2}b}{2\pi} \\ \cos \theta_{c} \approx 1 - \theta_{c}^{2}/2 \end{array} \right\} \Rightarrow \theta_{c} = \lambda \sqrt{Nb/\pi} \end{array}$$

for natural Ni, θ_c = λ[Å]×0.1°

Oxford School of Neutron Scattering, 7/9/2011

Oxford School of Neutron Scattering, 7/9/2011

An Fe/Si multilayer

EUROPEAN SPALLATION SOURCE

5nm

Silicon substrate

Layer of element A

Multilayer material

Layer of element B

Oxford School of Neutron Scattering, 7/9/2011

Distribution by Guides

Neutron transport by total internal reflection ~ 100m at present sources

Focusing

samples < 1 cm²

EUROPEAN SPALLATION SOURCE

Bragg's Law

Oxford School of Neutron Scattering, 7/9/2011

EUROPEAN SPALLATION SOURCE

Bragg's Law

Oxford School of Neutron Scattering, 7/9/2011

Bragg's Law

Bragg's Law

 $\lambda = 2d \sin \theta$

Bragg's Law

 $\lambda = 2d \sin \theta$

Diffraction: Bragg's Law

EUROPEAN SPALLATION SOURCE

 $\vec{k}_i = \vec{k}_f + \vec{Q}$

 $\left|\vec{k}_{i}\right| = \left|\vec{k}_{f}\right| = k$ $Q = 2k\sin\theta$ $\lambda = 2d \sin \theta$ $k = \frac{2\pi}{\lambda}$

Diffractometers

- Measure structure (d-spacings)
- Assume $k_i = k_f$

EUROPEAN SPALLATION

- Measure \boldsymbol{k}_i or \boldsymbol{k}_f :
 - Bragg diffraction
 - Time-of-flight
 - Velocity selection
- Samples:
 - Crystals
 - Powders
 - Liquids
 - Large molecules or structures
 - Surfaces

EUROPEAN Powder diffractometers

- Measure crystal structure
- Large single crystals rarely available

Time-of-flight method

Time-of-flight method

EUROPEAN SPALLATION SOURCE

EUROPEAN Crystal Monochromators

Graphite 002

SOURCE

02	
d	
	θ dsinθ

	d-spacing
Germanium 333	1.089 Å
Copper 200	1.807 Å
Silicon 111	3.135 Å
Graphite 002	3.355 Å

Copper 200

Monochromator Focusing

Powder Diffraction at a Cts Source

 $\lambda = 2d \sin \theta$

Oxford School of Neutron Scattering, 7/9/2011

Powder Diffraction at a Cts Source

Oxford School of Neutron Scattering, 7/9/2011

222

113

Powder Diffraction

- Determining the structure – Rietveld refinement
- Measuring strain

 Engineering applications

Diffuse Scattering

 2π

d

Oxford School of Neutron Scattering, 7/9/2011
EUROPEAN Resolution in diffraction

$$\blacksquare d \stackrel{\overline{2}}{=} = \left(\frac{\partial d}{\partial \lambda} \Delta \lambda\right)^2 + \left(\frac{\partial d}{\partial \theta} \Delta \theta\right)^2$$

Mosaic-crystal Monochromators

SOURCE

EUROPEAN Time-of-flight Resolution

distance

SOURCE

At

To improve resolution, •increase the length: long guides •move to a different moderator

time

655

SPALLATION SOURCE SINGLE-Crystal Diffraction

- Availability of large (~mm³) crystal
- No loss of information from powder average
- Direct and unambiguous structural determination

 Complex structures

Laue Diffraction

- White-beam method
- No prior knowledge of k_i or k_f

Peak position depends only on angle of crystal plane,

not on d-spacing

Good for crystal orientation, and looking for odd reflections

Laue Diffraction

EUROPEAN SPALLATION SOURCE

EUROPEAN Single-Crystal with TOF

TOF determination of k_i , k_f

SOURCE

- Large solid-angle coverage
 - Lower flux than Laue method

EUROPEAN Small-Angle Scattering SOURCE

Nanomaterials

Macromolecules Filter materials

Semiconductors Protein conformation Drug-targeting

Oxford School of Neutron Scattering, 7/9/2011

EUROPEAN Small-angle scattering

- Access to smallest angles: remove direct beam
- Good collimation required

EUROPEAN Small-angle scattering

- Access to smallest angles: remove direct beam
- Good collimation required

Soller collimator

Pin-holes separated by distance

EUROPEAN SOURCE Continuous-source SANS

$$\left(\frac{\Delta d}{d}\right)^2 = \left(\frac{\Delta \lambda}{\lambda}\right)^2 + \left(\frac{\Delta \theta}{\theta}\right)^2$$

Direct beam spot ~ 10% of detector size $\Rightarrow \Delta \theta / \theta > 10\%$

$$\Delta\lambda/\lambda pprox 10\%$$

Oxford School of Neutron Scattering, 7/9/2011

Reflectometry

Reflection from surfaces and interfaces

EUROPEAN Specular reflectometry

SOUDCE

Horizontal sample geometry all samples (including liquids)

Vertical sample geometry

solid samples, e.g. magnetic straightforward to vary θ straightforward to build

Oxford School of Neutron Scattering, 7/9/2011

Neutron Instruments I: Summary

- Neutron sources
 - Very weak: neutrons are precious
 - Pulsed and continuous
- Instrument components & concepts
 - Time-of-flight method
 - Guides
 - Monochromators
- Elastic scattering: diffractometers
 - Powder diffractometers: single-peak, Laue, TOF
 - SANS
 - Reflectometers: specular & off-specular

Neutron Instruments I & II

- Overview of source characteristics
- Bragg's Law
- Elastic scattering: diffractometers
 - -Continuous sources
 - -Pulsed sources
- Inelastic scattering: spectrometers
 - -Continuous sources
 - -Pulsed sources
- Transmitted beam: imaging
- Fundamental physics

Neutron Spectroscopy

- Excitations: vibrations and other movements
- Structural knowledge is prerequisite – Measure diffraction first
- $k_i \neq k_f$
- Measure $k_{\rm i}$ and $k_{\rm f}$:
 - Bragg diffraction
 - Time-of-flight
 - Resonant absorption
 - Larmor precession
- Methods
 - Fix k_i and scan k_f "direct geometry"
 - Fix k_f and scan k_i "indirect geometry"
- Energy scales: < µeV → > eV

Scattering triangle

Conservation of energy & momentum Initial: E_i , h_k^i Final: E_f , h_f^k

$$E_{i} = E_{f} + h\omega$$

r r r
$$k_{i} = k_{f} + Q$$

Momentum transfer $Q = k_i - k_f$ $\Rightarrow Q^2 = k_i^2 + k_f^2 - 2k_i k_f \cos 2\theta$ Energy transfer $h\omega = \frac{h^2}{2m_n} (k_i^2 - k_f^2)$

Accessible kinematic range given by scattering triangle

Oxford School of Neutron Scattering, 7/9/2011

Chopper Spectrometers

Oxford School of Neutron Scattering, 7/9/2011

Chopper Spectrometers

Oxford School of Neutron Scattering, 7/9/2011

Oxford School of Neutron Scattering, 7/9/2011

Chopper Spectrometers

- General-purpose spectrometers
 - -Energy ranges from 1 meV to 1 eV covered
- Huge position-sensitive detector arrays

Detectors

³He gas tubes n + ³He → ³H + ¹H + 0.764 MeV >1mm resolution High efficiency Low gamma-sensitivity ³He supply problem

Scintillators

n + ⁶Li → ⁴He + ³H + 4.79 MeV <1mm resolution Medium efficiency Some gamma-sensitivity Magnetic-field sensitivity

Direct-geometry kinematics

EUROPEAN

eV spectroscopy

Use resonant absorption to define k_f . TOF defines k_i .

- 1) Measure with absorber in and out. Count neutrons. Take difference
- 2) Measure with absorber in. Count gammas.

EUROPEAN SPALLATION SOURCE

Chemical spectroscopy

TOSCA@ISIS

High Resolution 1: Backscattering

$$\lambda = 2d \sin \theta$$
$$\Rightarrow \frac{\Delta \lambda}{\lambda} = \frac{\Delta d}{d} + \cot \theta \Delta \theta$$

SOURCE

$$\theta \to \frac{\pi}{2}$$
$$\cot \theta = \frac{\cos \theta}{\sin \theta} \to 0$$

Use single crystals in as close to backscattering as possible to define k_f . Scan through k_i with as good energy resolution.
Pulsed-Source Backscattering

SOURCE

EUROPEAN

analyser crystals

High k_i resolution: long instrument on sharp moderator

detectors

EUROPEAN SPALLATION SOURCE

Backscattering

Oxford School of Neutron Scattering, 7/9/2011

Oxford School of Neutron Scattering, 7/9/2011

Continuous-Source Backscattering

Fix k_f by backscattering analysers Scan k_i by Doppler-shifting backscattering monochromator

Energy resolution < 1µeV Energy range ~ ± 15 µeV

SOURCE

Triple-axis Spectrometers

- Only at continuous sources
- Very flexible

EUROPEAN SPALLATION SOURCE

- Measures a single point in -E space at a time
- Scans: Q
 - $\begin{array}{ll} \mbox{ Constant } : \mbox{ Scan \underline{E} at } \\ \mbox{ constant \mathbf{k}_i or \mathbf{k}_f \underline{Q} } \end{array}$
 - Constant E: Scan in any direction

TAS with Multiplexing

IN20 flat-cone multi-analyser

Oxford School of Neutron Scattering, 7/9/2011

Imaging: Neutron Radiography

SPALLATION SOURCE

ONEVIRA@P9

Oxford School of Neutron Scattering, 7/9/2011

EUROPEAN SPALLATION SOURCE

Fundamental Physics

Oxford School of Neutron Scattering, 7/9/2011

Neutron Instruments 2: Summary

- Instruments for measuring excitations
- Energy scales : $< \mu eV \rightarrow > eV$
- Instrument components & concepts
 - Direct and indirect geometry
 - Choppers

SOURCE

- Detectors
- Inelastic scattering: spectrometers
 - Chopper spectrometers
 - eV spectroscopy
 - Chemical spectroscopy
 - Backscattering
 - Spin-echo
 - Triple-axis spectrometers
- Imaging & Fundamental physics