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• Overview of source characteristics

• Bragg’s Law

• Elastic scattering: diffractometers

–Continuous sources

–Pulsed sources

• Inelastic scattering: spectrometers

–Continuous sources

–Pulsed sources

• Transmitted beam: imaging

• Fundamental physics

Neutron Instruments I & II
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light neutrons

λ < μm < nm

E > eV > meV

n 1→4 0.9997→1.0001

θc 90° 1°

Φ/ΔΩ
1019 p/cm2/ster/s

(60W lightbulb)

1014 n/cm2/ster/s

(60MW reactor)

P left-right up-down

spin 1 ½

interaction electromagnetic strong force, 

magnetic

charge 0 0

Neutrons vs Light
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2.5m

Neutron Moderators

ILL ISIS

1m
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Source brightnesses
Peak brightness:

ILL ~ 1-10 x ISIS

Time-integrated: 

ILL ~ 100-1000 x ISIS

Lightbulb ~ 100,000 x ILL
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Distribution by Guides
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Neutron transport by total internal reflection

~ 100m at present sources

Distribution by Guides
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Reflecting Surfaces

n=1

n’<1

incident

refracted

reflected

θ critical angle of total 

reflection θc

Nb/ πλθ

2θ1cos θ

2π

bNλ
1n'

n'nn'cos θ

c

2

cc

2

c
for natural Ni, 

θc = λ[Å] 0.1
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Neutron Supermirrors
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Neutron Supermirrors
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Neutron Supermirrors
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Neutron Supermirrors
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An Fe/Si multilayer
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Neutron transport by total internal reflection

~ 100m at present sources

Distribution by Guides
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Focusing

guide ~ 100 

cm2

samples < 1 

cm2
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Bragg’s Law
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Bragg’s Law
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Bragg’s Law
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Bragg’s Law

sin2d
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Bragg’s Law

sin2d

2θ
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Diffraction: Bragg’s Law
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Diffraction: Bragg’s Law
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Diffraction: Bragg’s Law
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Diffractometers
• Measure structure (d-spacings)

• Assume ki=kf

• Measure ki or kf : 

– Bragg diffraction

– Time-of-flight

– Velocity selection

• Samples:

– Crystals

– Powders

– Liquids

– Large molecules or structures

– Surfaces 
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Powder diffractometers

Polycryst

al

sin2d
d

Q
2

• Measure crystal structure

• Large single crystals rarely available
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Time-of-flight method

distance

time

sample

detector

h / mv

3.956 /v
[Å]            [m/ms]
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Time-of-flight method

FIG. 1: Flight-path scheme with new chopper positions on the right and elliptical beam guide system on the left. The focal

points in the ellipsis system are indicate by blue dots. The beam cross section at the pulse chopper is as large as the sample

size (1× 1 cm2). A third neutron guide is used to refocus the transmitted beam for the high pressure instrument.

tates the realization of an evacuated detector vessel,

which is important for background reduction. The re-

designed forward- and back-scattering detectors also

offer a higher coverage of the solid angle by arrang-

ing those 1 m PSDs in a hexagonal like shape. In

order to improve the resolution in forward scattering

only 0.5" PSDs will be used. The access to the sam-

ple position will be possible by horizontally dividing

the cylindrical detector in the top-most position and

sliding both halves sideways. This will also allow for

a crane access.

FIG. 2: The new detector design of POWTEX. A cylindrical

part with a radius of 125 cm is equipped with 2 m, 1" 3He

position-sensitive detectors (Achten, ZAT). In the forward-

and back-scattering area 1 m long PSDs with a width of

0.5" and 1.0" are arranged in a hexagonal like system.

We have simulated typical measurement results of

powder samples produced by POWTEX taking into

account the specific design parameters of POWTEX

(see FIG. 3), in order to assure that POWTEX can

fulfill the requirements of the different communities.

Finally, it is foreseen to locate a new experimental fa-

cility, the high pressure cell from Bayreuth University,

immediately behind POWTEX. Thus the high pres-

sure instrument will profit also from the pulsed beam

and can be operated in parallel. For this purpose the

transmitted neutron beam of POWTEX will be refo-

cused on the very small sample position in the sub-

centimeter regime of this instrument.

While POWTEX is under construction at the very mo-

ment, we expect to conduct the first measurements in

the year 2012.

The POWTEX project is funded by the BMBF.

FIG. 3: Simulation of a powder pattern for the ternary ni-

tride RhFe3N (Pm3m) with POWTEX instrumental parame-

ters. Please note that the width of the wavelength band is

limited to ∆ λ = 1.4 Å.

[1] H. Conrad, Th. Brückel, W. Schäfer, J. Voigt J. Appl.
Cryst. 2008, 41, 836–845.

[2] U. Stuhr Nucl. Instrum. Meth. A 2005, 545, 319–329.
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Time-of-flight method



Oxford School of Neutron Scattering, 7/9/2011 Ken Andersen

Crystal Monochromators

Copper 200Graphite 002

d-spacing

Germanium 333 1.089 Å

Copper 200 1.807 Å

Silicon 111 3.135 Å

Graphite 002 3.355 Å
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θA

Monochromator Focusing

θB

A

B

/sin4Q
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Powder Diffraction at a Cts Source

sin2d
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Powder Diffraction at a Cts Source

sin2d
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Powder Diffraction

• Determining the structure

–Rietveld refinement

• Measuring strain

–Engineering applications
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Diffuse Scattering

d
Q

2
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Resolution in diffraction
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Mosaic-crystal Monochromators

fwhm < 10-4°

→

Perfect crystal

<hkl>

cot B

Mosaic crystal

fwhm > 0.1 °

cot

sin2d
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distance

time

L

Time-of-flight Resolution
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To improve resolution, 

•increase the length: long guides

•move to a different moderator
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• Availability of large (~mm3) crystal

• No loss of information from powder average

• Direct and unambiguous structural determination

– Complex structures

Single-Crystal Diffraction
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Cts-Source Single-Crystal Diffractometer
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Laue Diffraction

• White-beam method

• No prior knowledge of ki or kf
(110

)

(310

)

(120

)

λ(110)

λ(120)

λ(310)

Peak position depends 

only on angle of crystal 

plane, 

not on d-spacing

Good for crystal 

orientation, and looking 

for odd reflections
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Laue Diffraction
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Single-Crystal with TOF

• TOF determination of ki, kf

• Large solid-angle coverage

– Lower flux than Laue 

method
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Small-Angle Scattering
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Monochromator 
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Small-Angle Scattering

Probing the longest length 

scales available to neutrons
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Small-angle scattering

• Access to smallest angles: remove direct beam

• Good collimation required
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Small-angle scattering

• Access to smallest angles: remove direct beam

• Good collimation required

Soller collimator

Pin-holes separated by distance

> 0.1°5 cm 5 cm< 30 m
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Continuous-source SANS

Δλ/λ ≈ 10%
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Continuous-source SANS
222
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Direct beam spot ~ 10% of detector size

⇒ Δθ/θ>10%

Δλ/λ ≈ 10%
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Reflectometry

Reflection from surfaces and interfaces

in out

Specular: θin=θout

Off-specular: θin≠θout
L

o
g

Depth profile of the 

scattering-length density
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Specular reflectometry

Monochromatic

λ fixed

θθ
scan through θ

Time-of-flight

scan through λ
θθ

θ fixed
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2 m

Horizontal sample geometry
all samples (including liquids)

Vertical sample geometry
solid samples, e.g. magnetic

straightforward to vary θ

straightforward to build

Specular reflectometry
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Off-specular reflectometry

Measure in-plane 

correlations

Replace single detector 

with position-sensitive 

detector
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Neutron Instruments I: Summary

• Neutron sources
– Very weak: neutrons are precious

– Pulsed and continuous

• Instrument components & concepts
– Time-of-flight method

– Guides

– Monochromators

• Elastic scattering: diffractometers
– Powder diffractometers: single-peak, 

Laue, TOF

– SANS

– Reflectometers: specular & off-specular
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• Overview of source characteristics

• Bragg’s Law

• Elastic scattering: diffractometers

–Continuous sources

–Pulsed sources

• Inelastic scattering: spectrometers

–Continuous sources

–Pulsed sources

• Transmitted beam: imaging

• Fundamental physics

Neutron Instruments I & II
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Neutron Spectroscopy

• Excitations: vibrations and other movements

• Structural knowledge is prerequisite
– Measure diffraction first

• ki ≠ kf

• Measure ki and kf : 
– Bragg diffraction

– Time-of-flight

– Resonant absorption

– Larmor precession

• Methods
– Fix ki and scan kf – “direct geometry”

– Fix kf and scan ki – “indirect geometry”

• Energy scales: < μeV →  > eV
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Scattering triangle

Energy transferMomentum transfer
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Chopper Spectrometers
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Chopper Spectrometers

distance

time

chopper

detector

sample

0

Direct geometry: 

fix ki by chopper phasing

scan through kf by time-of-flight

Pulsed Source
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Chopper Spectrometers

distance

time

chopper  2

detector

sample

0

Continuous Source

chopper  1
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Crystal-Monochromator Chop. Spec.

distance

time

chopper

detector

sample

0

Continuous Source

monochromator
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Choppers

Disk 

choppers
Fermi 

choppers f < 300 

Hz

Δt > 10μs

f < 600 

Hz

Δt > 1μs
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Chopper Spectrometers

• General-purpose spectrometers

–Energy ranges from 1 meV to 1 eV covered

• Huge position-sensitive detector arrays

–Single crystals



Oxford School of Neutron Scattering, 7/9/2011 Ken Andersen

Detectors

3He gas tubes
n + 3He 3H + 1H + 0.764 MeV

>1mm resolution

High efficiency

Low gamma-sensitivity
3He supply problem

Scintillators
n + 6Li 4He + 3H + 4.79 MeV

<1mm resolution

Medium efficiency

Some gamma-sensitivity

Magnetic-field sensitivity
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distance

time

detector

sample

0

Indirect geometry: 

fix kf

scan through ki by time-of-flight

analyser

Alternative to direct geometry
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eV spectroscopy

238U

Use resonant absorption to define kf. TOF 

defines ki. 

1) Measure with absorber in and out. 

Count neutrons. Take difference

2) Measure with absorber in. 

Count gammas. 
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Chemical spectroscopy

TOSCA@ISIS

Density-of-

states 

measurements
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High Resolution 1: Backscattering

cot

sin2

d

d

d

0
sin

cos
cot

2

Use single crystals in as close to 

backscattering as possible to define kf. 

Scan through ki with as good energy 

resolution. 
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Pulsed-Source Backscattering

detectors

analyser crystals

exact backscattering near-backscattering

High ki resolution: 

long instrument on sharp moderator
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Backscattering
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Continuous-Source Backscattering
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Continuous-Source Backscattering

Fix kf by backscattering analysers

Scan ki by Doppler-shifting backscattering monochromator

Energy resolution < 1μeV

Energy range ~ ± 15 μeV
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High Resolution 2: Neutron Spin 

Echo

B0 B1

L0 L1

Pz

-flipper

High energy resolution < 1 μeV

Larmor precessions encode energy transfer
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Triple-axis Spectrometers

• Only at continuous 

sources

• Very flexible

• Measures a single 

point in -E space at a 

time

• Scans:

– Constant  : Scan E at 

constant ki or kf

– Constant E: Scan     in 

any direction

Q


Q


Q
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Top view

sample

31 channels

75º angular range

kf = 3 Å-1 kf = 1.5 Å-1

Side view

TAS with Multiplexing

IN20 flat-cone multi-analyser
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Imaging: Neutron Radiography

Neutro

ns
X-

rays
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Fundamental Physics
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Neutron Instruments 2: Summary

• Instruments for measuring excitations

• Energy scales : < μeV →  > eV

• Instrument components & concepts
– Direct and indirect geometry

– Choppers

– Detectors

• Inelastic scattering: spectrometers
– Chopper spectrometers

– eV spectroscopy

– Chemical spectroscopy

– Backscattering

– Spin-echo

– Triple-axis spectrometers

• Imaging & Fundamental physics


