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Part I – Symmetry, space and reciprocal space
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Reciprocality – diffraction as a Fourier transform
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Reciprocality - overview of this section

neutrons

object

Fourier transform
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GEM (ISIS)

POLARIS (ISIS)

D20 (ILL)

SXD (ISIS)

D10 (ILL)

Thinking about experimental setups
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1. Direct space - symmetries, lattices and unit cells
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Symmetry operations - rotations

• rotation axis of order n is a line in space about 
which an object may be rotated anticlockwise by 
360°/n
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Symmetry operations - screw axes and glide planes
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Symmetry operations - screw axes and glide planes
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Symmetry operations - inversion symmetry
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Symmetry operations - compound operations
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Symmetry operations – working together



7

13

Symmetry operations – working together
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Crystal lattices



8

15

Unit cells
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Unit cells
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Primitive and centred
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Unit cells - seven crystal systems
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Unit cells - Bravais lattices
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Unit cells - space groups

• Combining the 14 Bravais lattices with all the consistent 
combinations of rotational and translational operations creates the 
230 crystallographic space groups

• http://it.iucr.org/
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Unit cells - space groups

• http://img.chem.ucl.ac.uk/sgp/large/sgp.htm
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Unit cells - monoclinic
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Unit cells - orthorhombic and tetragonal
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Unit cells - rhombohedral and hexagonal
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Unit cells - cubic
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2. Direct space and reciprocal space
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Direct space and reciprocal space

direct space:
sample

reciprocal space:
data
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Direct space and reciprocal space

direct space:
sample

reciprocal space:
data
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The utility of reciprocal space - I (Bragg diffraction)

• using                                          , into

• Reciprocal space allows an alternative expression of the Bragg 
equation 

• More specifically, the diffraction condition can be written in terms 
of the three Laue equations 
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Reciprocal space and the Laue equations

• for a Bragg reflection,        must lie on a cone about the direction of

• for a Bragg reflection,        must lie on a cone about the direction of

• for a Bragg reflection,        must lie on a cone about the direction of
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Reciprocal space and diffraction
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Diffraction patterns in 3D space
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Reciprocal space examples- a 2D lattice

direct space:
sample

reciprocal space:
data
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Reciprocal space example - a primitive cubic  lattice

• The primitive translation vectors of any simple cubic lattice are:

• Using the definition of the reciprocal lattice vectors

• The reciprocal lattice vectors are therefore:
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Reciprocal space example - a face centred cubic  lattice

• A face centred cublic lattice with cubic lattice constant a has 
primitive lattice vectors given by:

• The primitive translation vectors in reciprocal space will then be 
given by:

• Which is a body centred cubic lattice
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Reciprocal space example - a body centred cubic  
lattice

• A body centred cublic lattice with cubic lattice constant a has 
primitive lattice vectors given by:

• The primitive translation vectors in reciprocal space will then be 
given by:

• Which is a face centred cubic lattice
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Reciprocal space reminder- a 2D hexagonal lattice
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Part 2 – Theory of diffraction and data analysis
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3. Diffraction - in direct and reciprocal space
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Diffraction in direct space - Bragg’s law

• Constructive interference when
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• Constructive interference when

• Destructive, otherwise...

Diffraction in direct space - Bragg’s law
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Diffraction planes and Miller indices
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• The d-spacing of a set of planes is the 
distance between them

Diffraction planes and Miller indices
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Diffraction planes and Miller indices



23

47

Diffraction - an alternative view on Bragg’s law
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Diffraction in reciprocal space-Ewald’s construction
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Diffraction - Ewald’s construction
Consider a wave incident on a crystal. 

•The crystal is represented by its reciprocal lattice, with 
origin at O.

•Chose a reciprocal lattice point according to the 
orientation of the specimen with respect to the incident 
beam. (Define that as the origin O.)

•The incident wave is represented by a reciprocal vector 
ki. 

•Draw the incident wave vector, ki, ending at O.

•Construct a sphere (circle) with radius 2π/λ (i.e. |k|), 
with its centre at the start of ki that passes through O.

•Draw a vector from the start of ki  to any reciprocal 
lattice point on the edge of the circle. This is kf.

•Wherever a reciprocal lattice point touches the circle, 
Bragg's Law is obeyed and a diffracted beam will occur.

• ki represents the incident beam

• kf represents the diffracted beamthe angle 
between them is 2θ
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Diffraction - Ewald’s construction
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Diffraction - Bragg versus Ewald

Incident beam

Diffracted beam

Straight through 
beam

Crystallographic planes
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Diffraction in 3D - Bragg and Ewald
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4. Diffraction - Ewald spheres and instruments
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• Bragg diffraction occurs when

• There will be intensity at some 2θ angle, and Φ angle in 
reciprocal space

Single crystal diffraction experiments 
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Diffraction - TOF Single crystal Laue diffraction
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Diffraction - Constant wavelength single crystal 
diffraction

D9, D10
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Diffraction - TOF Single crystal diffraction
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Diffraction - TOF Single crystal diffraction
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5. Reciprocal space is more then diffraction...
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Brillouin zones

• A Brillouin Zone is defined as a Wigner-Seitz primitive cell 
in the reciprocal latticeTo find it

• Draw the reciprocal lattice

• Draw vectors to all the nearest reciprocal lattice points

• Draw perpendicular bisectors to each of these

• The Brillouin Zone is related to the diffraction condition

• Vectors from the origin to the perpendicular bisectors 
of any reciprocal lattice point satisfy the Bragg 
condition and are called ‘Bragg planes’

O D

Bragg plane

Reciprocal lattice point, D

Wigner-Seitz cell
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Higher order Brillouin zones - e.g. 2D square lattice
• 1st Brillouin zone

• Form perpendicular bisectors (Bragg planes) to 
nearest reciprocal lattice points. The volume that 
has no Bragg planes between it and the origin 
defines the BZ

• Higher Brillouin zones exist, and are important in the 
theory of electronic levels in a periodic potential

• All Brillouin zones have the same volume

• 2nd Brillouin zone

• Volume of reciprocal space in which a point has 
one Bragg plane between it and the origin

• 3rd Brillouon zone

• Volume of reciprocal space in which a point has 
two Bragg planes between it and the origin

• 4rd Brillouon zone, etc...

1st Brillouin zone - primitive cubic lattice

• The primitive translation vectors of any simple cubic lattice are:

• The reciprocal lattice vectors are therefore:

• The boundaries of the 1st Brillouin zone are 
the planes normal to the six reciprocal lattice 
vectors: 

• The length of each side is 2π/a
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Reciprocal space example - a FCC lattice

• A face centred cublic lattice with cubic lattice constant a has 
primitive lattice vectors given by:

• The primitive translation vectors in reciprocal space form a body 
centred cubic lattice

• The 1st Brillouin zone of the FCC cubic lattice has 14 sides
• The volume of this cell in reciprocal space is 4(2π/a)3
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Reciprocal space example - a BCC cubic  lattice

• A body centred cublic lattice with cubic lattice constant a has 
primitive lattice vectors given by:

• The primitive translation vectors in reciprocal space forms a face 
centred cubic lattice

• The 1st Brillouin zone has 12 sides (rhombic 
dodecahedron)The volume of this cell in reciprocal space is 
2(2π/a)3
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6. Diffraction and experiments
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Diffraction - powders are lots of single cystals

• Powders can be considered as a collection of randomly oriented 
crystallites
• ΔG occurs on a cone 
• Consider Ewald circle rotated about 

• For single crystals, Bragg peaks occur as spots in reciprocal 
space.
• Peaks occur at reciprocal space vectors that correspond to 

reciprocal lattice vector
• i.e. 
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Powder Diffraction

Powders 
•Data are typically taken as a slice 
through the scattering cones
•Intensity peaks occur when 
Bragg’s law is satisfied
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Powder Diffraction - time of flight

• Calculate the relative uncertainty in the d-spacing:

• high d-spacing resolution may be achieved by 
• (a) using a long flight path, L, which also increases the TOF, t
• (b) by positioning the detectors at high scattering angle, 2θ.



34

69

• TOF Data Collection

Powder Diffraction - time of flight
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Powder Diffraction - Rietveld refinement

• In 1969 Rietveld wrote a revolutionary paper in which he discarded the 
conventional approach of analysing a powder diffraction pattern in terms of 
diffraction peaks, and instead analysed the whole pattern simultaneously in which 
many relevant factors were taken into account regardless of whether they 
involved the atomic structure of the specimen.

• This helped to overcome one of the principal problems in powder diffraction 
(overlapping peaks). 
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Powder Diffraction - Rietveld refinement
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Powder Diffraction - Rietveld refinement

• "The method of using the total integrated intensities of the separate groups of 
overlapping peaks in the least-squares refinement of structures, leads to the loss 
of all the information contained in the often detailed profile of these composite 
peaks. By the use of these profile intensities instead of the integrated quantities 
in the refinement procedure, however, this difficulty is overcome and it allows the 
extraction of the maximum amount of information contained in the powder 
diagram." H. M. Rietveld

• Minimise the difference 
between the calculated 
pattern and the data

• Do not try to extract 
intensities of overlapping 
peaks
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• Gaussian
• Lorentzian
• Pearson VII 

• Lorentzian raised to a 
power of m

• pseudo-voight 
• G convoluted with L

• split functions
• non-analytical functions

• analytical functions

Powder Diffraction - peak profiles
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(a) Instrumental Contributions 
•the source of radiation (neutrons) has a 
finite physical size (i.e. is not a perfectly 
sharp spot or line)
•the radiation is not perfectly 
monochromatic, but rather consists of a 
small range, δλ, of wavelengths around the 
mean, λ
•the active diffracting volume within the 
sample is finite and therefore diffraction 
occurs away from the true centre of the 
diffractometer
•axial divergence of the incident/diffracted 
beams
•the configuration of defining slits used in 
the diffractometerany misalignment of the 
diffractometer

Powder Diffraction - peak profiles
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(b) Sample Contributions
•crystallite/diffracting domain size
•crystal lattice distortion (micro-strain) due to 
dislocations and concentration gradients
•structural “errors" such as stacking faults, twin 
faults
•concentration gradients in non-stoichiometric 
compounds

Powder Diffraction - peak profiles
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Powder Diffraction - whole pattern quantitative 
analysis

• Example - 9 mixtures of rutile and anatase
• (data from lab XRD)
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• laboratory data set of the mineral 
anglesite, PbSO4, collected with Cu 
Kα1 radiation in Bragg-Brentano 
geometry

• f (2θ) = Z for 2θ = 0°

• same material collected on a 
constant wavelength medium-
resolution powder diffractometer 
(D1A at the ILL, Grenoble) with a 
neutron wavelength equal to 
1.909 Å

• b values are a property of the 
nucleus and do not vary in the 
systematic way 

Powder Diffraction - X-rays and neutrons
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