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Reciprocality — diffraction as a Fourier transform

Fourier transform
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Reciprocality - overview of this section
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lnking about experimental setups

SXD (ISIS)

POLARIS (ISIS)

l)irect space - symmetries, lattices and unit cells
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ISymmetry operations - rotations “\
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« rotation axis of order n is a line in space about
which an object may be rotated anticlockwise by
360°/n

ISymmetry operations - screw axes and glide planes




ISymmetry operations - screw axes and glide planes




Symmetry operations - compound operations

Symmetry operations — working together
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Iymmetry operations —working together

Irystal lattices




Unit cells
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Unit cells
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Centring Type Symbol | Multiplicity
Primitive - no centring P 1
A-face centred A 2
B-face centred B 2
C-face centred C 2
All-face centred F 4
Body centred 1 2
Rhombohedrally centred R 3




Primitive and centred

Unit cells - seven crystal systems

Crystal System Cl;ay.::mctg:;ﬁc Syngony Unit-Cell Parameters I;::m:;‘:
Triclinic 1x 1-fold -1 azbzc azfzy 6
Monoclinic Ix 2-fold 2im azb#c a=y=90"[p=90° 4
Orthorhombic 3x 2-fold mmm azb#c a=f=y=90" 3
Tetragonal 1x 4-fold 4immm a=b#c; a=f=y=90" 2
Trigonal (see note) | 1x 3-fold fo’;m”’gi a=bw#c; a=p=090% y=120° 2
Hexagonal 1x 6-fold 6/mmm a=b#c; a=p=90% y=120° 2
Cubic 4x 3-fold m-3m a=b=c a=f=y=90°" 1




cells - Bravais lattices

No. Crystal System Lattice Centring Lattice Symbol
1 Triclinic P aP
2 Monoclinic Iid mP
3 " C mC
b -
4 Orthorhombic P oP
\ 5 " c oC
Centring Type Symbal | Multiplicity 6 [ F oF
Primitive - no contring P 1
7 " I ol
A-face centred A 2
B-face centred B 2 8 Tetragonal P i
C-face centred [ 2 ry - 7 a
All-face centred F 4
Body cenwed 1 2 10 Trigonal R hR
Rhombohedrally centred | R 3 11 Hexagonal & Trigonal Fd hP
Coyat Sy | CHrehE | gngomy UsiColl Paramatery | ndependest 12 Cubic P cP
| Triclimic T 1-fold 1 13 " F cF
Moo link: 1w 2-fold Ll
Onhortoesbic 3 2-fold i 14 " i cl
Tetragonal e ato [ T—
Trigonal {sec soec) | 1x 3okt S 1 | ambci s pa s yu 1200
Hexngonal 1x Gfold Bmmen | nsbec asfe0r; pe 100
Cubic aw 3-fold m-3m ambuc awfleyso 1
19

cells - space groups

* http://it.iucr.org/

series consists of the following volumes:

Guided tour

Volume A
Xglume

Volume B
Volume C
Volume D
Volume E

Volume F

Volume G

+ Combining the 14 Bravais lattices with all the consistent
combinations of rotational and translational operations creates the
230 crystallographic space groups

International Tables for Crystallography

ISBN: 978-1-4020-4969-9 doi: 10.1107/97809553602060000001

This is the home page for International Tables, the definitive resource and reference work for crystallography. The

Space-group symmetry
| Contents | Sample pages | Indexes |
Symmetry relations between space groups

| Contents | Sample pages | Indexes |
Reciprocal space

| Contents | Sample pages | Indexes |
Mathematical, physical and chemical tables
| Contents | Sample pages | Indexes |
Physical properties of crystals

| Contents | Sample pages | Indexes |
Subperiodic groups

| Contents | Sample pages | Indexes |
Crystallography of biological macromolecules
| Contents | Sample pages | Indexes |
dDgztf;nition and exchange of crystallographic

| Contents | Sample pages | Indexes |
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- - space groups
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« http://img.chem.ucl.ac.uk/sgp/large/sgp.htm

21

- - monoclinic

-

22

11



Unit cells - orthorhombic and tetragonal
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Unit cells - rhombohedral and hexagonal
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Unit cells - cubic

25
2. Direct space and reciprocal space
27
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Direct space and reciprocal space

L

.‘/

direct space: reciprocal space:
sample data
T =2xzad+ yb+ 2C H = ha* + kb* + ke
T = xd] + yaz + za3 H = ha% + ka% + ka%

28

Direct space and reciprocal space

direct space:

P4 sample
\ O\ T=zd] +ya3 + 243

Vi Z af =2r— 2
1'(02X03)
. aa X a1
ok = 2m——0
1- (a2 x ay)
- a1 X dr
a3 = 2w — 1_. 2_.
1- (a2 x a3)

reciprocal space:
data

H = ha* + ka’ + ka*

29
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The utility of reciprocal space - | (Bragg diffraction)

» Reciprocal space allows an alternative expression of the Bragg
equation

nA = 2dsind

* using AE = I_éwt — Ein' into
Ak =G

» More specifically, the diffraction condition can be written in terms
of the three Laue equations

aj - Ak = 2rh
a3 - Ak = 2nk
as - Ak = 27l

30

Reciprocal space and the Laue equations

ai - Ak = 2mh
as - Ak = 2nk
aa - Ak = 27l

+ for a Bragg reflection, Akmust lie on a cone about the direction of
a1

+ for a Bragg reflection, Aﬁmust lie on a cone about the direction of
Gy

 for a Bragg reflection, Aiémust lie on a cone about the direction of
a3

31
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Reciprocal space and diffraction

Ewald sphere

Diffraction patterns in 3D space
-
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Reciprocal space examples- a 2D lattice
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direct space: . reciprocal space:
—oy_ TXE
sample 1 aj - (d3 % a3} data
a3 X @
=2r———— =%
2 ai - (o3 x a3}
@) X gy
=
3 4y - (87 % d3)
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Reciprocal space example - a primitive cubic lattice

» The primitive translation vectors of any simple cubic lattice are:

1=Gx=d3 =4

+ Using the definition of the reciprocal lattice vectors

- g3 X dg
aj =2wr— - —
al-(agxaa)
- dg X a1
aj =2r——————
a1 - (dz x a3)
. ai X dg 2m/a
g = & = =
dj - (a2 % d3)

» The reciprocal lattice vectors are therefore:

- 20 = 2 = 21
—y O3 = —
a a a

(]
=
I
!
8
V]
I
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Reciprocal space example - a face centred cubic lattice

« A face centred cublic lattice with cubic lattice constant a has
primitive lattice vectors given by:
e §+E a"—E+§ "—E—Fg
1 3 2: 2 — 2 21 3 — 3 21
1 4 — ) =
2 ' - '

» The primitive translation vectors in reciprocal space will then be
given by:

- 2 - 3 - — 2 ~ - - - 2 - -~ -~

ai = { (a+b—c), az = il (b+c—a), az = T (c+a—b)

a3 1

* Which is a body centred cubic lattice

Reciprocal space example - a body centred cubic
lattice

+ A body centred cublic lattice with cubic lattice constant a has
primitive lattice vectors given by:
Y Y S A U I AP S S B N S,
a] = §(a+b—c) , dy = 3 (—a+b+c) , O3 = 2 a—b+c)
« The primitive translation vectors in reciprocal space will then be
given by:
- 27].' n F -+ 271’ - ~ - 27r " A
@ ="7(a+b), d="7(b+e), d=""(+a)
+ Which is a face centred cubic lattice

18



Reciprocal space reminder- a 2D hexagonal lattice

V-

3 _ X ag

= (eax a3y

3 ax X dy
=3z

% = (oz = )

3 ay x ag
=2r

WETE (@ =@

38

Part 2 — Theory of diffraction and data analysis

39
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3. Diffraction - in direct and reciprocal space

40

Diffraction in direct space - Bragg’s law

X

» Constructive interference when

nA = 2d &in 8

41
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Diffraction in direct space - Bragg’s law

» Constructive interference when
nA = 2d sin 8

« Destructive, otherwise...

42

Diffraction planes and Miller indices

al3

43

21



Diffraction planes and Miller indices

+ The d-spacing of a set of planes is the
> distance between them

44
Diffraction planes and Miller indices
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Diffraction - an alternative view on Bragg’s law

ki kf
s

Diffraction in reciprocal space-Ewald’s construction

Diffracted beam

—* — —
* — .,

. d*hmd = ki k-f

Incident

beam

Crystal at g?:?;;?o?:;he
the centre Iatiie
of the sphere

® ) °

Reflecting sphere

48
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Diffraction - Ewald’s construction

Consider a wave incident on a crystal.

*The crystal is represented by its reciprocal lattice, with
origin at O.

*Chose a reciprocal lattice point according to the
orientation of the specimen with respect to the incident
beam. (Define that as the origin O.)

Diffracted beam

*The incident wave is represented by a reciprocal vector
Ki.

«Draw the incident wave vector, ki, ending at O.

d‘hkld. = h - k-f
Incident «Construct a sphere (circle) with radius 21/A (i.e. [K]),

(] with its centre at the start of ki that passes through O.
Qrigin of the

reciprocal *Draw a vector from the start of ki to any reciprocal
lattice point on the edge of the circle. This is k.

beam

Crystal at
the centre
of the sphere

“Reflecting sphere *Wherever a reciprocal lattice point touches the circle,
Bragg's Law is obeyed and a diffracted beam will occur.

« kirepresents the incident beam

« ksrepresents the diffracted beamthe angle
between them is 26

49

Diffraction - Ewald’s construction

Diffracted beam

Incident

beam

50
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Diffraction - Bragg versus Ewald

Diffracted beam

Incident beam ‘.24
| Straight through

gl S beam
Crystallographic planes

Diffraction in 3D - Bragg and Ewald

oo
hot i -i )
n1l - . -

52
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4. Diffraction - Ewald spheres and instruments

53

Single crystal diffraction experiments

+ Bragg diffraction occurs when Ak —= @&

» There will be intensity at some 26 angle, and ® angle in
reciprocal space

Ewald sphere

26



Diffraction - TOF Single crystal Laue diffraction

Goniométer angles e \ 37° detector
w/Only on SXD ¢ -

55

Diffraction - Constant wavelength single crystal
diffraction
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Diffraction - TOF Single crystal diffraction

am

min

57

Diffraction - TOF Single crystal diffraction

58
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5. Reciprocal space is more then diffraction...

59

Brillouin zones

Bragg plane

o 355 ey D

Reciprocal lattice point, D
" ./ — k 2

[ ] * A Brillouin Zone is defined as a Wigner-Seitz primitive cell
| : in the reciprocal latticeTo find it

» Draw the reciprocal lattice
. . » Draw vectors to all the nearest reciprocal lattice points
Wigner-Seitz cell » Draw perpendicular bisectors to each of these
* The Brillouin Zone is related to the diffraction condition

» Vectors from the origin to the perpendicular bisectors
of any reciprocal lattice point satisfy the Bragg
condition and are called ‘Bragg planes’

60
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Higher order Brillouin zones - e.g. 2D square lattice

« 1st Brillouin zone

» Form perpendicular bisectors (Bragg planes) to
nearest reciprocal lattice points. The volume that
has no Bragg planes between it and the origin
defines the BZ

* 2nd Brillouin zone
» Volume of reciprocal space in which a point has
one Bragg plane between it and the origin
« 3rd Brillouon zone

» Volume of reciprocal space in which a point has
two Bragg planes between it and the origin

¢ 4rd Brillouon zone, efc...

« Higher Brillouin zones exist, and are important in the
theory of electronic levels in a periodic potential

« All Brillouin zones have the same volume

61

1st Brillouin zone - primitive cubic lattice

» The primitive translation vectors of any simple cubic lattice are:

@1 =4z =a3 =G

» The reciprocal lattice vectors are therefore:

— 2r 2t 2
1 = -, Qg = —, Q3 = —-
a a a

* The boundaries of the 1st Brillouin zone are
the planes normal to the six reciprocal lattice
vectors:

- — — 2m/a
%* bl %
+al, £a3, taj

* The length of each side is 2m/a

30



Reciprocal space example - a FCC lattice

« A face centred cublic lattice with cubic lattice constant a has
primitive lattice vectors given by:
s ar. ¢ - arfe . . a .. a
ai =3 (a.+b) » @ =5 (b+c) y 43 = §(a+c)

» The primitive translation vectors in reciprocal space form a body
centred cubic lattice

— 2 " - ~ - 2 - ~ " - . ~
a’{=?7r( +b—c), a;:%(b+c—a), a§=—(c+a—

* The 1st Brillouin zone of the FCC cubic lattice has 14 sides

« The volume of this cell in reciprocal space is 4(2m/a)®

Reciprocal space example - a BCC cubic lattice

+ A body centred cublic lattice with cubic lattice constant a has
primitive lattice vectors given by:

@ = %(a+a—a), a;=“§(—a+3+e), =3 a—b+&)

» The primitive translation vectors in reciprocal space forms a face
centred cubic lattice

-

2r . - = 2m i - 2m ., .
a{=?7r a+b), a;=£(b+c), a§=—7r(c+a.)

* The 1st Brillouin zone has 12 sides (rhombic
dodecahedron)The volume of this cell in reciprocal space is
2(2m/a)?

31



6. Diffraction and experiments

65

Diffraction - powders are lots of single cystals

For single crystals, Bragg peaks occur as spots in reciprocgjalmm
space.

» Peaks occur at reciprocal space vectors that correspond to
reciprocal lattice vector

- ie. k=AG

Powders can be considered as a collection of randomly oriented
crystallites

» AG occurs on a cone

« Consider Ewald circle rotated about K

32



Powder Diffraction

P

Powders

*Data are typically taken as a slice
= through the scattering cones

*Intensity peaks occur when
Bragg's law is satisfied

nA = 2d sin 8

20

67

Powder Diffraction - time of flight

» Calculate the relative uncertainty in the d-spacing:
(8d/d)? = (6t/t)® + (6L/L)? + (cotd 56)2

90° detectors

backscattering
detectors low angle (28-32°)

detectors

guide tube
, beam
© stop
1m 2m
sample sample
position position

+ high d-spacing resolution may be achieved by
* (a) using a long flight path, L, which also increases the TOF, t
+ (b) by positioning the detectors at high scattering angle, 26.

68
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Powder Diffraction - time of flight

* TOF Data Collection

15000

10000}

5000F

Normalised Intensity (arbitrary units)

Mwmwwwwmwwmmw«wwwmWaw'w,{u'

1.0 1.5 2.0

2.5
d-spacing ()
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Powder Diffraction - Rietveld refinement

* In 1969 Rietveld wrote a revolutionary paper in which he discarded the
conventional approach of analysing a powder diffraction pattern in terms of
diffraction peaks, and instead analysed the whole pattern simultaneously in which
many relevant factors were taken into account regardless of whether they
involved the atomic structure of the specimen.

» This helped to overcome one of the principal problems in powder diffraction
(overlapping peaks).

1200f

i
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-

Y ;:: i b i 1
A ML LR
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30 50 70 90
20 (degrees)
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Powder Diffraction - Rietveld refinement

(N

Dr. Rietveld at the neutron powder diffractometer at the High Flux Reactor of the Energy Reseach
Foundation ECN in Petten, The Netherlands. (1987) '

7

Powder Diffraction - Rietveld refinement

diagram." H. M. Rietveld

Intensity y,

225 23.0 23.5 24.0
26 (degrees)

"The method of using the total integrated intensities of the separate groups of
overlapping peaks in the least-squares refinement of structures, leads to the loss
of all the information contained in the often detailed profile of these composite
peaks. By the use of these profile intensities instead of the integrated quantities
in the refinement procedure, however, this difficulty is overcome and it allows the
extraction of the maximum amount of information contained in the powder

* Minimise the difference
between the calculated
pattern and the data

* Do not try to extract
intensities of overlapping
peaks

72
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Powder Diffraction - peak profiles

N
Frg= E bnexp {27i(hz + ky + 12)} exp {—W,, }

n=1
Tnaz o< Flg
+ Gaussian
2?”1 » Lorentzian
[ e ave + Pearson VI
. » Lorentzian raised to a
z power of m
= LHS : RHS
EWHM | 05 * L + pseudo-voight
; « G convoluted with L
+ split functions
* non-analytical functions

+ analytical functions

73

Powder Diffraction - peak profiles

(a) Instrumental Contributions

the source of radiation (neutrons) has a
finite physical size (i.e. is not a perfectly
sharp spot or line)

the radiation is not perfectly
monochromatic, but rather consists of a

20,
L small range, dA, of wavelengths around the
[Jocok area mean, A
. «the active diffracting volume within the
z | sample is finite and therefore diffraction
= LHS : RHS
= — R occurs away from the true centre of the

diffractometer

«axial divergence of the incident/diffracted
beams

the configuration of defining slits used in
the diffractometerany misalignment of the
diffractometer

74




Powder Diffraction - peak profiles

(b) Sample Contributions
«crystallite/diffracting domain size

«crystal lattice distortion (micro-strain) due to
dislocations and concentration gradients

Intensity

estructural “errors" such as stacking faults, twin
faults

econcentration gradients in non-stoichiometric
compounds

75
Powder Diffraction - whole pattern quantitative
analysis
400 » Example - 9 mixtures of rutile and anatase
350 + (data from lab XRD)
300 aon | i ’
£ 250 e
é‘ 200 o r
100 ga‘” I .
50 E ool
g 30 40[ I ) A . _ “I ]
N i e e e %
e R £ “I ]
g
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Powder Diffraction - X-rays and neutrons

* laboratory data set of the mineral
anglesite, PbSOs, collected with Cu
Ka1t radiation in Bragg-Brentano
geometry

- f(20)=Zfor26=0°

| |
H ‘/ ‘ ‘ | 13 1.909 A
H__J{:-. H |. I" U‘W | u._hi_ﬁ'.‘J_','.'L_.-'._a.J

+ same material collected on a
constant wavelength medium-
resolution powder diffractometer
(D1A at the ILL, Grenoble) with a
neutron wavelength equal to

» b values are a property of the
nucleus and do not vary in the
0 e systematic way

2
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