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Sample preparation
Calculating and optimizing the size and shape of your sample is 
important in neutron scattering

• Need to know roughly how long you need to count for
• Need to minimise multiple scattering
• Need to minimise self attenuation

In order to calculate and correct for these, the sample should 
ideally be a regular shape



Scattering unit
Most commonly this is the sample formula.  
e.g. sample of polythene (monomer is ethylene)

σcoh σinc σabs* Mf

C 5.55 0.001 0.3326 12.011

H 1.7568 80.26 0.0035 1.0079

C2H4 18.1272 321.042 0.6792 28.0536

C2H4

Cross sections found in tables, e.g. V F Sears, Neutron News 3 1992

barns⎫
 

｜
 

｜
 

⎬
 

｜
 

｜
 

⎭

per f.u.

Can also choose atoms, unit cells, etc.  But must be self consistent

* Remember that σabs is wavelength dependent



Number Density of Sample
Number of scattering units in the sample (mass, m) is given by

Ns =
m

Mf
NA

where Mf  is the mass of the formula unit and NA=6.022 x 1023 mol-1 is 
Avogadro’s Number.  Similarly the number density is given by

ns =
⇢

Mf
NA

where    is the density of the sample. ⇢

If we express NA in units of x 1024 mol-1 then we get the number density in 
units of x 1024 cm-3 ≡ (barn.cm)-1 which is useful later on.  i.e.

ns =
⇢

1.661Mf
(with    in g cm-3 and Mf in g)⇢

e.g. Polythene:      = 0.93 g cm-3, Mf = 28.054 g

so: ns = 0.02 (barn.cm)-1 ≡ 2 x 1022 cm-3

⇢



Scattering Length Density
Commonly used in SANS and reflectometry, defined as the total scattering 
length in a given volume (e.g. choose volume of one f.u.)

where the subscript i runs over the number of atoms in the volume of 
interest, Vm .  Since this volume is arbitrary, it makes sense to recast it in terms 
of the mass of a formula unit, Mf of the material divided by the density, 

where    is the density of the sample. ⇢

We can now write the SLD as,

e.g. Polythene:      SLD = 2x1022 x {2 x 6.65x10-13 + 4 x -3.73x10-13}
= -3.24x10-9 cm-2



Transmission of neutrons

dz

Iz

Iz + dIz
A

Assume thin slab of material with molecules 
having an absorption cross-section, σ
ns x A x dz molecules in the slab

so total absorbing area is

and fraction of neutrons absorbed is the total 
absorbing area divided by the total area,  
therefore

�nsAdz

Integrating both sides:

So for thick slab of thickness t, we have Iz = I0 at z = 0 and Iz = I1 at z = t, and

Finally, exponentiating both sides, we find the expression for the neutron 
transmission

Beer-Lambert Law

dIz

Iz
= ��nsdz

ln(Iz) = ��nsz + C

ln(I1)� ln(I0) = (��nst + C)� (��ns0 + C) = �ns�t

T =

I1

I0
= exp(�ns�t)



Optimal size
Experience shows that a good neutron sample is one which scatters around 10% 
of the incoming beam.  Much less than this, the count-rate is too small.  Much 
more, self-attenuation and especially multiple scattering  become problematic

To calculate the thickness of a 10% scattering sample we write

In this case the cross-section we need is the total scattering cross-section, σT

e.g.  Polythene:    σT = 339.167 barns, ns = 0.02 (barn.cm)-1

so:   t10% = 0.1 / (339.167 x 0.02)

= 0.015 cm

T =

I1

I0
= exp(�ns�t) = 0.9 90 % un-scattered

) ns�t = 0.1

So only around 0.1 mm thickness of polythene scatters 10% of the beam
This indicates the strength of the scattering of neutrons from hydrogen



Strong absorbers
There are a few “boagie” materials which prove challenging for neutron 
experiments due to their massive absorption cross-sections

element σabs

Gd 49700 b

B 767 b

Cd 2520 b

Li 70 b

Ir 425 b

Dy 994 b

Sm 5922 b
3He 5333 b

The numbers here are given for “thermal 
neutrons” (λ = 1.8 Å)

In general at low energies, the absorption 
cross-section is linear with wavelength

�abs(�) =
���=1.8

abs

1.8

Sometimes the high absorption can be 
avoided by choice of isotope - e.g. 160Gd 
and 11B have low absorption

Many of these elements are used in 
neutron detectors



Strong absorbers

For absorbing samples the 10% rule is generally not used

e.g Mn metal:   σT = 2.15 b, ns = 0.08 (barn.cm)-1, σabs = 13.3 b  
                   so:    t10% = 6 mm

Suppose we’re doing an experiment on IN6 with a wavelength of 5.1 Å  
             σabs(5.1Å) = 5.1 * 13.3 / 1.8 = 37.7 barns

so the fraction of neutrons absorbed in a 10% scattering sample is 
             1 - exp(-nsσt) = 1 - exp(-1.8) = 0.84

i.e. 84% of the incoming & scattered neutrons are absorbed 

So in this case we need a compromise solution

Big absorbers are very useful in neutron shielding design

e.g. How much Cd is needed to absorb 99.9% of thermal neutrons?
ns = 0.046 (barn.cm)-1, σabs = 2520 b
t = - ln(T) / nsσabs = - ln(0.001) / 115.9 = 0.6 mm



Optimised sample size
Assuming uniform sample shape (e.g. slab for SANS or cylinder for diffraction ) 
then we can make the rough approximation that the neutrons all traverse a 
similar path through the sample
Then we can write the fraction of neutrons scattered as

⌃ = T (1� exp[�ns�T t])
= exp[�ns�abst]� exp[�ns(�abs + �T )t]

To maximise this, we differentiate and set to zero to find

d⌃

dt
= ns(�abs + �T ) exp[�ns(�abs + �T )t]� ns�abs exp[�ns�abst] = 0

) exp[�ns�T t] =

�abs

�abs + �T

) t =

ln(�abs + �T )� ln(�abs)

ns�T



Optimised sample size
So taking the previous example of Mn metal at 5.1 Å, the optimum thickness is

t =
ln(37.7 + 2.15)� ln(37.7)

0.08 ⇤ 2.15
' 3.2 mm

At this thickness the fraction of scattered 
neutrons is around 2%

This occurs at a sample transmission of 38 %

More difficult to optimise sample size for 
broad wavelength bands - choose lowest 
useful wavelength in band and optimise there  

Scattering from Mn metal as a 
function of thickness at  λ = 5.1 Å



Sample shape - slab
In order to calculate the attenuation of neutrons through a sample as a function of 
scattering angle we need to know the shape of the sample, and average over all 
possible paths through the sample.  
e.g. (infinite) slab shaped sample

Neutron scattered from layer 
thickness dx at depth x

Incoming flux φ attenuated along 
L1

γincoming beam, φ 
L1

L2

dx

t

2θ

The outgoing beam is attenuated along L2

L2 =
t� x

sin(� � 2✓)

L1 =
x

sin �

(assuming diffraction condition ki = kf)

x

� = �0 exp(�ns�t)

= �0 exp

✓
�ns�x

sin �

◆
T2 = exp

✓
�ns�

t� x

sin(� � 2✓)

◆



Sample shape - slab
Outgoing number of neutrons is proportional to cross-section into solid angle ΔΩ, 
flux, ns, thickness of slab Δt and is attenuated along L2

�N = �ns�t

✓
d�

d⌦

◆
T2�⌦

= �0ns exp

✓
�ns�x

sin �

◆
dx

sin �

✓
d�

d⌦

◆
exp

✓
� ns�(t� x)

sin(� � 2✓)

◆
�⌦

So total neutrons scattered is found by integrating above wrt. x between x=0 and x=t

N = �0ns

✓
d�

d⌦

◆
�⌦

1

sin �ns�(cosec� � cosec(� � 2✓))

⇢
exp

✓
� ns�t

sin(� � 2✓)

◆
� exp

✓
�ns�t

sin �

◆�

In order to get the attenuation factor we need to know the number of counts in the 
limit of zero absorption, N0 and divide
Finally we get

T =

1

ns�t(cosec� � cosec(� � 2✓))

⇢
exp

✓
� ns�t

sin(� � 2✓)

◆
� exp

✓
�ns�t

sin �

◆�

This is one of the very few solvable cases for transmission as a function of 2θ
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σ

σ

σ

σ

σ

Sample shape - slab
Transmission plotted for 
slab normal to incident 
beam (e.g. SANS)

Thickness of sample = 1 cm

Slab geometries for samples 
are also commonly used in 
Neutron spin-echo 
experiments

Beyond 90°  - in reflection 
geometry - another (similar) 
expression exists

C G Windsor, Pulsed Neutron Scattering, Taylor and Francis (1981)



Sample shape - cylinder
With the advent of large detector arrays which commonly surround the sample 
(in the equatorial plane) cylindrical sample geometries have become more 
common.  Sometimes an annular cylinder is used to fill beam, but minimise 
absorption
In these cases there is no analytical expression for the transmission as a function 
of angle - it must be calculated numerically (i.e. lookup tables or Monte-Carlo 
algorithms are commonly used)

In the case of a solid cylinder or sphere with                a good approximation 
(better than 0.5% accuracy) is given by the expression 

ns�  1

T = exp

�
�(a1 + b1 sin

2 ✓)ns�R� (a2 + b2 sin

2 ✓)(ns�R)

2
 

where R is the radius of the cylinder/sphere, and the coefficients, a1, b1, a2 and b2 
have the values

a1 b1 a2 b2

cylinder 1.7133 -0.0368 -0.0927 -0.3750

sphere 1.5108 -0.0315 -0.0951 -0.2898

A W Hewat, Acta. Cryst. A 35 (1975) 248



θ

σ σ

σ σ

σ

Sample shape - cylinder
Much flatter transmission as 
a function of angle - so 
friendly for wide-angle 
instruments

Generally transmission is 
assumed to be constant as a 
function of angle in these 
cases

Radius = 1 cm



Sample Holders
Choice of material for sample container / holder is crucial - and depends 
strongly on type of neutron experiment.  Should be made as thin as 
possible to reduce mass in beam (typically 0.1 mm - 1 mm thickness)

Material Comment
Powder diff. vanadium no Bragg peaks, large σinc 

some absorption

Inelastic scattering Al / Cu low-ish scattering cross-
sections, low incoherent 
scattering (Cu for low T)Polarized neutrons Al / Cu

Liquids / glasses vanadium / TiZr no Bragg peaks TiZr is a 
“null-matrix”

SANS Quartz very low small angle 
scattering

Single crystals Small pin (Al) sample holds own shape



Data Normalisation
The total number of neutrons counted during a measurement will also depend 
on uninteresting factors, such as:

• the counting time
• the solid angle coverage of the detectors
• the efficiency of the detectors

To correct for counting time we can either:
1) Divide the measured counts by the counts measured in an incident beam 
monitor
2) Divide the measured counts by the counting time

It’s generally better to use a monitor since the flux may not be constant over 
time (e.g. ISIS)

Monitor counters are generally low efficiency (1 in 104) detectors made from:
 - Low pressure 3He
 - 235U foils (fission chambers)
 - Low density scintillator materials 



Data Normalisation
The solid angle and detector efficiency can be corrected by dividing the measured 
counts by a measurement of vanadium

abund. % σcoh σinc σabs

50V 0.25 7.3 0.5 60
51V 99.75 0.0203 5.07 4.9

Due to the tiny coherent cross-section, and the abundance of the 51V isotope V is 
approximated to be a purely incoherent scatterer

Therefore a vanadium count in a particular detector is proportional to the 
efficiency and solid angle coverage of that detector



Data Normalisation
The solid angle and detector efficiency can be corrected by dividing the measured 
counts by a measurement of vanadium

Measurement of silica glass



Data Normalisation
On a neutron time of flight diffractometer, the 
vanadium measurement additionally gives the flux 
profile as a function of wavelength.  So division of 
the data by a vanadium measurement corrects 
also for the incident flux profile.
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¾Fig. 2.27 Time-of-flight spectra

for a) vanadium,

b) polycrystalline silicon and

c) vitreous germania. Also shown

are the normalised spectra for

d) polycrystalline silicon and

e) vitreous germania.

the data by some kind of smoothing process).

In practice the differential cross-section for
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(A fully corrected dataset will also have been

corrected for such effects as attenuation,

multiple scattering and detector dead-time.

A discussion of these corrections is beyond

the scope of this article.) Figure 2.27

illustrates the effect of flux normalisation for

pulsed diffraction data. The vanadium time-

of-flight spectrum is closely related to the

flux distribution � �) O  arising from the

moderator. The upturn in � �) O  at low

times is due to high energy epithermal

neutrons whilst the broad peak at

intermediate times is the peak of a

Maxwellian distribution whose position

depends on the moderator temperature.

The spectra measured on a reactor

diffractometer do not need to be normalised

to a flux distribution, but a vanadium

standard may still be used in an experiment

in order to achieve an absolute normalisation

of the differential cross-section.

One of the most important concerns for a

diffraction experiment on a disordered

material is the Q-range. Theoretically the

Fourier transformation of Equation 2.28

extends from Q = 0 to infinity, but this is not

possible in reality. By the use of low scattering

angles, 2θ, the data should be measured

down to as low a Q-value as possible, so that

they may be extrapolated reasonably down to
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Absolute Normalisation
Since the spin incoherent cross-section of vanadium is well known, division of the 
data by vanadium can also be used to set the neutron data on an absolute scale
of barns / ster. / scattering unit

For vanadium, σinc = 5.07
Therefore,

The number of counts from the vanadium per second per solid angle is then
(after transmission correction)

So dividing the sample counts by the vanadium counts we get

and therefore

✓
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Case Study: IN4 (ILL)Background measurements

1) Reactor off background
The reactor off background is presented as a function of scattering angle in figure 1

 Figure 1:  Rector off background for the top (blue), middle (red) and bottom(green) 
rows of detectors in the wide angle bank.

It is interesting to note that the top row of detectors is significantly noisier than the bottom  
and middle rows.  The mean value of the reactor off background is found to be:

 0.066 counts min-1 detector-1  (in 2005: 0.0834 counts min-1 detector-1)

although it is clear from the picture that there are several much noisier detectors, with the 
median value much lower than the mean (0.044 counts min-1 detector-1).  

2) Reactor on, OT closed
This background was measured in the two extreme flight-chamber positions FCP 140 and 
FCP 370.  Since the OT was closed, we expect this background to be sourced by neutrons 
in the reactor hall.  Measurements of neutron background in the casemate (see appendix 
A) show that with the OT closed, the neutron background in the IN4 casemate is very low, 
with no discernible fast neutron contribution coming from the H1/H2 guide.  By contrast, 
the neutron flux outside the IN4 detector tank - in the experimental zone is considerably 
higher (appendix B).  It is therefore likely that this contribution to the measured background 

IN4 background! Ross Stewart, Sept 2007
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Case Study: IN4 (ILL)
2) Reactor on: beam shutter closed

top row

FCP140:
0.86 n min-1 det-1
1.82 n min-1 det-1
in 2005

FCP370:
0.85 n min-1 det-1

Figure 2:  The bottom, middle and top rows of detectors in the wide angle bank on IN4 for 
FCP140 (blue) and FCP370 (red).  It is interesting to note that the large peak in the top 
row of detectors doesnʼt move as a function of flight-chamber position - suggesting that a 
fault in the detector shielding is to blame or this peak.

The mean count rate over the top, middle and bottom rows of detectors is

 0.68 counts min-1 detector-1   (in 2005: 1.69 counts min-1 detector-1)

It seems that the “reactor on” background contribution has diminished by a factor of 2-3 
since the 2005 measurements.   Perhaps the change of H1/H2 has resulted in a lower 
ambient background around the IN4 detectors.  

The above measurements were performed with the IN20 spectrometer in operation.  In or-
der to check the influence of the opening of the OS-IN20 we performed the same meas-
urements with the IN20 beam closed.   This resulted in a reduction of the mean back-
ground from 0.68 to 0.64 counts min-1 detector-1 (6% reduction).  Thus, while the IN20 
beam does influence the measured background on IN4, it is not a significant factor. 

In order to check the stability of the ambient reactor on background, we performed two 
measurements of the mean background level as a function of time.  These measurements 
are presented in figure 3.  They show that the mean background level fluctuates strongly 
as a function of time by around ± 10%   It should be noted here that the timings of these 
fluctuations did not correspond to the IN20 beam being opened and closed.
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Background from “Neutron gas” 
in experimental hall



Case Study: IN4 (ILL)
3) Reactor on: shutter open, nothing in beam

Figure 7:  The reactor-off (blue), OT closed (cyan), OS closed (green) and beam-on back-
ground (red) for 2θ > 20° at λ = 1.1 Å. 

 Figure 8:  The reactor-off (blue), OT closed (cyan), OS closed (green) and beam-on back-
ground (red) for 2θ > 20° at λ = 2.2 Å. 
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Scattering from 
windows, beam dumps 
and fast neutrons 
(thermalised in 
shielding).  Can be time 
dependent on tof 
instruments



Case Study: IN4 (ILL)
4) Reactor on: shutter open, cryostat in beam

Figure 13:  Beam-on background at λ = 2.2 Å with empty cryostat in (red) and out (blue) of 
the beam. Note the broad and irregular shaped contribution around the elastic line  

Figure 14: TOF data showing background contributions from the cryostat tails around the 
elastic line.  
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Scattering from 
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can (red).  Will be 
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instruments



Background subtraction

Sample

Sample chamber

Detector

beam in
Measured counts from the sample is the sum 
of three terms

Nmeas = Nsam + Nbg_A + Nbg_B

Nsam =  neutrons scattered from sample - attenuated
Nbg_A =  background neutrons - attenuated
Nbg_B =  background neutrons - unattenuated

Need to be able to separate the attenuated and unattenuated backgrounds
for an accurate background subtraction



Background subtraction

Sample Holder

Sample chamber

Detector

beam in
If we measure an empty sample holder we are 
measuring 

Nempty = (Nbg_A / T) + Nbg_B

where the bg_A term is now no longer attenuated, so must 
be divided by the sample transmission factor



Background subtraction

Cd

Sample chamber

Detector

beam in
If we measure a completely absorbing sample 
(such as cadmium) we are measuring 

NCd = Nbg_B



Background subtraction
Taking these together we have

NCd = Nbg_B

Nmeas = Nsam + Nbg_A + Nbg_B

Nempty = (Nbg_A / T) + Nbg_B

Combining these we get for the counts from the sample

Nsam = (Nmeas -NCd) - T(Nempty - NCd)
But to correct for sample attenutation, we need to divide by the 
transmission factor, therefore

Nsam_corr = (Nmeas -NCd)/T - (Nempty - NCd)

Things to note

• If the sample transmission is close to 1, then cadmium measurement not required
• NCd is often close to zero (e.g. SANS) -but still checked
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Counting time
We need then to do 4 measurements to produce a corrected data set.  (not 
counting experimental verification of the sample transmission)

- sample
- vanadium
- empty cell
- cadmium (or equivalent)

So the question now is how do we divide our time between these measurements?

This is an eternal question.... and opinion is divided.

The error bars in the measurements are given by Poisson Statistics

and therefore the fractional error is

so in order to improve the fractional error by a factor of x, we need to count a 
factor of x2 more neutrons

�(N) =
p

N

�(N)
N

=
1p
N



Counting time
e.g.  After 20 minutes we’ve counted 1000 in a detector.  What’s the fractional error 
bar?

How long do we need to count to get the error bar below 1%?

the count rate is 50 counts per minute, so we need to count for 200 minutes.
NB In order to improve the error bars from around 3% to 1% we need to count 
10x longer !

�(N)
N

=
1p

1000
= 0.032

1p
N1%

= 0.01

) N1% = 10000

Neutron fluxes are low, so it’s important not to over-count our measurements.  
However - if we decide we need a certain level of error bar, we have to be prepared 
to “sit it out”



Counting time
The last question is - how much time do we have to “waste” measuring Nempty, NCd 
and Nv ?

Often Nv is already done by the instrument scientist (assuming sample size and 
shape doesn’t alter very much)

If the backgrounds are close to zero - we don’t need to count them at all
If they are large - they should be counted carefully.

The general “rule of thumb” is that the times spent on measuring sample and 
background runs should be in proportion to their count rates

for the Cadmium run, the count time is modified by the transmission  

tCd

tmeas
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✓
1� T

T

◆
NCd

Nmeas

tmeas

tempty
' Nmeas
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