

Engineering

Using diffraction to measure strain

Michael Preuss University of Manchester

Oxford School on Neutron Scattering

1

Introduction

- The University of Manchester
- What are residual stresses
- The principle of measuring strain
- Intragranular strain development
- Neutron and Synchrotron X-ray diffraction
 - Properties
 - Facilities
- Case Studies / Questions
- From Engineering to Physical Metallurgy Understanding plasticity
- Conclusions

Introduction

- The University of Manchester
- Residual stresses in materials
- Principles of measuring residual stresses by diffraction
- Neutron and Synchrotron X-ray diffraction
 - Properties
 - Facilities
- Case Studies / Questions
- From Engineering to Physical Metallurgy Understanding plasticity
- Conclusions

- Stresses that exist in a body without applying any external load
- Stresses are caused by a misfit
 - result of uneven deformation and/or
 - thermal expansion/shrinkage at different times

MANCHESTER

Oxford School on Neutron Scattering

Examples of Residual Stresses

Structure Due to Solar Heating

Oxford School on Neutron Scattering

Residual Stresses

- The University of Manchester
- Internal stresses
- Caused by misfit
 - Type I

Type II

Effect of elastic strain on diffraction signal

 $\lambda = 2d\sin\theta$

- Diffraction measures <u>elastic lattice strain</u> as peak shifts
- Uses the poly-crystalline lattice planes as internal <u>strain</u> gauges

General Overview: Diffraction methods available

MANCHESTER General Overview: Basic Principles

The University of Manchester

Measured strains have to be converted into stresses! (Hooke's law) $\mathcal{E} = \frac{a - a_0}{a_0} = \frac{d - d_0}{d_0}$ a_0

The 9 components of a stress tensor:

The stress acts in the x-direction

$$\boldsymbol{\sigma}_{ij} = \begin{pmatrix} \boldsymbol{\sigma}_{xx} & \boldsymbol{\tau}_{xy} & \boldsymbol{\tau}_{xz} \\ \boldsymbol{\tau}_{yx} & \boldsymbol{\sigma}_{yy} & \boldsymbol{\tau}_{yz} \\ \boldsymbol{\tau}_{zx} & \boldsymbol{\tau}_{zy} & \boldsymbol{\sigma}_{zz} \end{pmatrix}$$
Tensor Equation: $\boldsymbol{\sigma}_{ij} = \boldsymbol{C}_{ijkl}\boldsymbol{\varepsilon}_{kl}$

Matrix Equation:
$$\boldsymbol{\sigma}_p = \boldsymbol{C}_{pq} \boldsymbol{\varepsilon}_q$$

MANCHESTER General Overview: Basic Principles

Measured strains have to be converted into stresses! (Hooke's law) $\mathcal{E} = \frac{a - a_0}{a_0} = \frac{d - d_0}{d_0}$

e.g. isotropic triaxial along principal directions:

The University of Manchester

$$\varepsilon_{11} = \frac{1}{E} \left[\sigma_{11} - \upsilon (\sigma_{22} + \sigma_{33}) \right]$$
$$\varepsilon_{22} = \frac{1}{E} \left[\sigma_{22} - \upsilon (\sigma_{33} + \sigma_{11}) \right]$$
$$\varepsilon_{33} = \frac{1}{E} \left[\sigma_{33} - \upsilon (\sigma_{11} + \sigma_{22}) \right]$$

To calculate a stress direction:

$$\sigma_{11} = \frac{E}{(1+\nu)(1-2\nu)} [(1-\nu)\varepsilon_{11} + \nu(\varepsilon_{22} + \varepsilon_{33})]$$

(Attention: not always this simple!)

Oxford School on Neutron Scattering

Response of diffraction planes during mechanical loading

- Measuring individual reflections
 - In-situ Loading

Austenitic Stainless Steel

Which reflection should be used?

 When using single reflections particular peaks are least prone to intergranular strain development

The University of Manchester

- Requires use of diffraction elastic constants to convert strain to stress
- TOF instruments offer possibility to measure lattice parameter rather than dspacing
 - Young modulus and Poisson number can be used to convert strain to stress

d₀ variation

Example of d₀ variation across a tubular Nickel weld

The Vegard Law Example: Nb in Zr

Oxford School on Neutron Scattering

MANCHESTER

General Overview: Diffracting Gauge Volume

Volume element of the material in which the recorded scattering takes place

- Results in averaged d-spacing (powder diffraction many grains)
- Defines the minimum spatial resolution of the method (around 1mm³ minimum gauge volume when using neutron diffraction)
- and type of residual stress resolved (macro-stress or type-I usually. Type-II for two phase materials).
- Use the largest possible gauge volume for your specific issue in order to minimise counting time

Near surface measurements

Neither peak shift (strain) nor measurement location is correct near a surface!

- Partial filling of sampling gauge gives a peak shift need to correct peak shift
- Translator records centre of gauge which is rarely the centre of gravity of diffracting region
- need to correct gauge position

MANCHESTER

Why do we like neutrons ?

- Part of the nucleus
- Same mass as protons
- Interesting wavelength/mass relationship:

$$\lambda = \frac{h}{p} = \frac{h}{mv} - \text{Mass * Velocity}$$

- "Thermal" neutrons: wavelength similar to those of X-rays 0.5-5Å similar to atomic spacing in solids
- Allows cubic gauge volumes!
- Relatively divergent beam !!

MANCHESTER

Neutron Properties

- Neutrons are scattered by atomic nuclei (electrons and X-rays which are scattered by the electron cloud).
 - Since the scattering is nuclear process, scattering amplitude varies greatly for different isotopes of same element and in a unpredictable manner from element to element. X-ray and electron scattering increase monotonically with atomic number

Neutron Properties

- Random Scattering length
- Penetration depth independent of energy/wavelength
 - Electrically neutral
- Great penetration

MANCHESTER

The University of Manchester

Low flux/intensity

MANCHESTER

The University of Manchester

Research Reactors

Fission in Reactor Core

MANCHESTER

The University of Manchestei

- Moderated neutrons
- Monochromators in guide
- "Constant Wavelength"
- Many Facilities in Europe:
 - ILL, SINQ, FRM-2 (G), Petten (NL), ...
 - Generally low flux except ILL and FRM-2

Time of flight method

- The University of Manchester
- Sharp pulse leaves source
- High energy neutrons (short λ) travel faster and arrive first, low energy (long λ) last $\lambda = ht/ml$ where I is the path length and t time of flight
- a single stationary detector records whole diffraction spectrum as a function of time of flight
- neutrons travel at ~100m/s (speed of sound)
 λ = 2d sin θ with θ fixed, i.e. λ proportional to d

In-situ loading experiments

Oxford School on Neutron Scattering

The University of Manchester

What do we know ?

- Deformation of metallic materials happens along most densely packed plane in most densely packed direction
 - For example: in fcc it is the (111) plane and the <110> direction
- Relatively good understanding what happen when a single crystal is deformed

MANCHESTER

 How does deformation work in a polycrystalline aggregate

Oxford School on Neutron Scattering

Deformation heterogeneity

 Polycrystalline deformation is heterogeneous

MANCHESTER

The University of Manchester

- Single crystal elastic and plastic anisotropy
- Grain incompatibility during deformation results in intergranular stresses

27

Why do we care ?

- Deformation mechanisms play a crucial role when material is processed as it affects the microstructure and hence performance of the material that is generated
 - exactly the same alloy can have a strength of 300 or 1000 MPa just by changing the microstructure

Why do we care ?

- Understanding deformation mechanisms is crucial in order to develop a more physical understanding of how materials perform
- Such knowledge is required to predict accurately the life of engineering components
- Particularly important for safety critical components Oxford School on Neutron Scattering

Experimental Methodologies

 Use of neutron diffraction and high energy synchrotron x-ray diffraction characterising residual stresses, intergranular strains and longitudinal
 phase transformation

Case Study – Ni base Superalloy

Case Study – Ni base Superalloy

 Use of neutron diffraction and high energy synchrotron x-ray diffraction

MANCHESTER

The University of Manchester

Case Study – hcp metal

Oxford School on Neutron Scattering

The University of Manchestei

Effect of Sn on twinning in Zr alloys

- Twin nucleation criteria unknown
- Role of alloying elements on twinning
 Unown
 500

Role of Sn on intergranular strain development

Lattice strain recorded in the loading direction

The University of Manchester

The University of Manchestei

Critical stress and strain for twinning

(0002) Integrated intensity recorded in loading direction vs. strain (0002) Integrated intensity recorded in loading direction vs. stress

Modelling deformation

Micromechanics

MANCHESTER

The University of Manchester

- Dislocations, particles, grain boundaries (grain size), interstitial atoms
- Continuum mechanics:
 - Stresses and strains
 - Intergranular stresses
- Polycrystal plasticity
 - Mean field methods, i.e. every grain has the same matrix
 - Finite element methods
 - Each grain has a characteristic neighbourhood
 - Predict maximum and minimum stresses?
 Oxford School on Neutron Scattering

EPSC Modelling

- The elasto-plastic self-consistent model (EPSC), is based on the Eshelby-Hill formulation.
- An elliptical inclusion in an infinite medium.
- The surrounding medium is the average of all orientations.
- The inclusion has uniform stress and anisotropic properties i.e. different orientations have different elastic moduli and plastic deformation is only allowed on specified slip planes.
- The model is capable of simulating multiple thermo-mechanical processes.

- CPFEM
- CPFEM is more computer intensive than EPSC modelling, however, it enables the simulation of specified grain structures.

Plasticity Modelling (CPFEM)

Oxford School on Neutron Scattering

Solid state joining of compressor, turbine discs and shafts

10th Oxford School on Neutron Scattering

Case Study: Inertia Friction Welding

10th Oxford School on Neutron Scattering

How would you measure such a sample ? 143mm diameter test inertia friction welds

Oxford School on Neutron Scattering

MANCHESTER Hoop stresses in IFW' d nickel-base superalloy All stress units are in MPa (a) -Z 009 800 -1 ĝ R (mm) 500 0 200 800 400 ନ୍ଦୁ 600 200 2. 5 0 5 0 2 2 3 4 3 4 5 0 z (mm) As-welded Conventional Modified **PWHT PWHT**

The University of Manchester

Residual stress measurements were used to develop a new PWHT

Oxford School on Neutron Scattering

Railway Rails

- Slices were cut from the rail to measure the horizontal and vertical stresses.
 Longitudinal stresses were lost
- Measurements were carried out by using neutron and synchrotron x-ray diffraction

Neutrons:

MANCHESTER

The University of Manchester

- Non-destructive, full stress analysis because of cubic Gauge Volume (think three directions)
- Good penetration depth due to neutrality
- Big bulky sample with low stress gradients
- Reasonable spatial resolution independent of atomic number
- Steels, aluminium, nickel, copper zinc or related
- Sample in harsh environment: furnace, cryo. etc.
- Phase analysis with Rietveld analysis

Not-so good: near surface or thin materials, titanium, boron cadmium, fast, high-spatial resolution, high instrumental resolution, hydrogenous materials