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Introduction

= What are residual stresses

= The principle of measuring strain

= Intragranular strain development

= Neutron and Synchrotron X-ray diffraction
Properties
Facilities

= Case Studies / Questions

- From Engineering to Physical Metallurgy —
Understanding plasticity

= Conclusions
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L oone Introduction

= « Residual stresses in materials
= Principles of measuring residual stresses by
diffraction

= Neutron and Synchrotron X-ray diffraction
Properties
Facilities

- Case Studies / Questions

- From Engineering to Physical Metallurgy —
Understanding plasticity

= Conclusions
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What are residual stresses?

» Stresses that exist in a body without
applying any external load

» Stresses are caused by a misfit
- result of uneven deformation and/or

- thermal expansion/shrinkage at different
times

hgh pe ed ed surfoce

-
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Examples of Residual Stresses
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Residual Stresses

- Internal stresses
- Caused by misfit
Type I Bent bar:
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diffraction signal

A =2dsinB

- Diffraction measures elastic lattice strain

as peak shifts

- Uses the poly-crystalline lattice planes
as internal strain gauges

Oxford School on Neutron Scattering
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Set up of Engineering Instrument
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General Overview:
Diffraction methods available
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General Overview: Basic Principles

- Measured strains have to be converted into
’
stresses! (Hooke' s law) a—a, d-—d,
E = —
dy d,
The 9 components of a stress tensor:
The stress acts in the x-direction
)
) T, T
T 1w Xy = T
NEMEGRRY 3 xy on the planc with a normal in the : direction
/ (This convention maybe vice versa in some books.)
L e
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e
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- Measured strains have to be converted into

stresses! (Hooke's law) L_a—a, _d—d,
d d,

l_0 -v(0,, +O )]
e.g. isotropic triaxial b1 = O 7V 0 T05;
along principal 1
directions: €n = I O, V(03 +0u)]

1

€33 = E[033 ”U(011+022)]
To calculate a stress direction:
E
O, = [(1-v)e,, +V(e,, +&;55)]

1+v)1-2v)

(Attention: not always this simple!)

Oxford School on Neutron Scattering
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Response of diffraction planes

during mechanical loading

» Measuring individual reflections
In-situ Loading Austenitic Stainless Steel
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Which reflection should be used ?

« When using single reflections particular
peaks are least prone to intergranular
strain development

- Requires use of diffraction elastic constants to
convert strain to stress
« TOF instruments offer possibility to
measure lattice parameter rather than d-
spacing
- Young modulus and Poisson number can be
used to convert strain to stress

Oxford School on Neutron Scattering 13



Yy
er

The Universit
of Manchest

d, variation

Accurate strain analysis relies on _a—a, d-d,
accurate determination of d, &= a.  d
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General Overview:

Diffracting Gauge Volume

Volume element of the material in which the recorded
scattering takes place

= Results in averaged d-spacing (powder diffraction -
many grains)

= Defines the minimum spatial resolution of the
method (around 1mm?3 minimum gauge volume
when using neutron diffraction)

= and type of residual stress resolved (macro-stress
or type-l usually. Type-ll for two phase materials).

= Use the largest possible gauge volume for your
specific issue in order to minimise counting time

Oxford School on Neutron Scattering 15
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Near surface measurements

Neither peak shift (strain) nor measurement location is
correct near a surface!

Partial filling of sampling gauge gives a peak shift - need
to correct peak shift

- Translator records centre of gauge which is rarely the

centre of gravity of diffracting region
need to correct gauge position

Oxford School on Neutron Scattering 23
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Why do we like neutrons ?

- Part of the nucleus
- Same mass as protons

- Interesting wavelength/mass

relationship: ___Planck

o h

p mv —— Mass * Velocity

- “Thermal” neutrons: wavelength
similar to those of X-rays 0.5-5A
similar to atomic spacing in solids

- Allows cubic gauge volumes!
- Relatively divergent beam !

Oxford School on Neutron Scattering 17



Neutron Properties

= Neutrons are scattered by atomic nuclei (electrons and

X-rays which are scattered by the electron cloud).

= Since the scattering is nuclear process, scattering
amplitude varies greatly for different isotopes of same
element and in a unpredictable manner from element
to element. X-ray and electron scattering increase

monotonically with atomic number

Oxford School on Neutron Scattering
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Neutron Properties

- Random Scattering length

- Penetration depth independent of energy/wavelength
- Electrically neutral

- Great penetration

- Low flux/intensity
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B Neutron Scattering
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Research Reactors

- Fission in Reactor Core
e Moderated neutrons
e Monochromators in guide

- “Constant Wavelength”

- Many Facilities in Europe:
ILL, SINQ, FRM-2 (G), Petten (NL), ...
Generally low flux except ILL and FRM-2

Oxford School on Neutron Scattering
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Time of flight method

= Sharp pulse leaves source

- High energy neutrons (short A) travel faster and
arrive first, low energy (long A) last A = ht/ml
where | is the path length and t time of flight

= a single stationary detector records whole
diffraction spectrum as a function of time of flight

= neutrons travel at ~100m/s (speed of sound)
A = 2d sin 6 with 6 fixed, i.e. A proportional to d

Oxford School on Neutron Scattering 22
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Spallation Sources:
Measurement of Strain

Strain: ¢ =4"% _M=h 1=l Cubic gauge
%o Ay £ volume |
A
Time-of-Flight:
N —"
2mlL sm@\ v

3
ENGIN-X at ISIS

\

Fixed

Oxford School on Neutron Scattering 37



ity

The Universit
of Manchester

MANCHESTER
1824

In-situ loading experiments
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What do we know ?

- Deformation of metallic materials
happens along most densely packed
plane in most densely packed direction

- For example: in fcc it is the (111) plane
and the <110> direction

» Relatively good understanding what
happen when a single crystal is
deformed

Oxford School on Neutron Scattering
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What we struggle with

- How does deformation work in a
polycrystalline aggregate

111

001 101

B phase IPF colour key

Oxford School on Neutron Scattering
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Deformation heterogeneity

- Polycrystalline deformation is
heterogeneous

- Single crystal elastic and plastic
anisotropy

- Grain incompatibility during
deformation results in intergranular
stresses

Oxford School on Neutron Scattering
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Why do we care ?

« Deformation mechanisms play a crucial
role when material is processed as it
affects the microstructure and hence
performance of the material that is
generated

- exactly the same alloy can have a strength
of 300 or 1000 MPa just by changing the
microstructure

Oxford School on Neutron Scattering 28
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Why do we care ?
» Understanding

deformation mechanisms
is crucial in order to
develop a more physical
understanding of how
materials perform

« Such knowledge is
required to predict
accurately the life of
engineering components g

. Particularly important for ™
safety critical components

Oxford School on Neutron Scattering
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Experimental Methodologies

« Use of neutron diffraction and high energy
synchrotron x-ray diffraction characterising
residual stresses, intergranular strainggand
phase transformation longitudinal

direction

incident
beam

Detector
loading direction

Detector
transverse direction

transverse

compression sample

direction
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Case Study — Ni base Superalloy

» Use of neutron diffraction and high
energy synchrotron x-ray diffraction
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Case Study — Ni base Superalloy

» Use of neutron diffraction and high
energy synchrotron x-ray diffraction
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Case Study — hcp metal
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Z transverse strain
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Effect of Sn on twinning in Zr

alloys
» Twin nucleation criteria unknown
- Role of alloying elements on twinning
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Role of Sn on intergranular strain
development
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Modelling deformation

- Micromechanics

Dislocations, particles, grain boundaries (grain size),
Interstitial atoms

= Continuum mechanics:
Stresses and strains
Intergranular stresses

Yy

of Manchester

Universit

The

= Polycrystal plasticity
Mean field methods, i.e. every grain has the same
matrix
Finite element methods

» Each grain has a characteristic neighbourhood
* Predict maximum and minimum stresses ?

Oxford School on Neutron Scattering 37
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EPSC Modelling

- The elasto-plastic self-consistent
model (EPSC), is based on the
Eshelby-Hill formulation.

- An elliptical inclusion in an infinite

medium. : :

« The surrounding medium is the lclision
average of all orientations. l

- The inclusion has uniform stress and
anisotropic properties i.e. different
orientations have different elastic e
moduli and plastic deformation is |nf|n|_te

medium

only allowed on specified slip planes.

- The model is capable of simulating
multiple thermo-mechanical
processes.

Oxford School on Neutron Scattering
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CPFEM

-« CPFEM is more computer intensive than EPSC modelling,
however, it enables the simulation of specified grain structures.

,,
""""

Oxford School on Neutron Scattering 39
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Plasticity Modelling (CPFEM)
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Case Study: Inertia Friction Welding

Flywheel Flywheel Flywheel
comp;'ess\'or disks hot interface weld line
/ /
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Solid state joining of compressor, turbine discs and shafts
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How would you measure such a sample ?
143mm diameter test inertia friction welds

S

<
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AXIAL (z)
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Hoop stresses in IFW’ d nickel-base
superalloy

All(b§tress units are |n(cMPa

il
]

£ mm
o

As-welded Convéntional Modified
PWHT PWHT

Residual stress measurements were used to develop a
new PWHT

Oxford School on Neutron Scattering
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Railway Rails
g—-

-
e Slices were cut ' - /

from the rail to ~— |

measure the
horizontal and
vertical stresses.
Longitudinal
stresses were |ost

Stress (MPa)

e Measurements were
carried out by using
neutron and
synchrotron x-ray
diffraction

Oxford School on Neutron Scattering
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Attempted General Guidelines:

Neutrons

Neutrons:

e Non-destructive, full stress analysis because of cubic
Gauge Volume (think three directions)

e Good penetration depth due to neutrality

e Big bulky sample with low stress gradients

e Reasonable spatial resolution independent of atomic
number

e Steels, aluminium, nickel, copper zinc or related

e Sample in harsh environment: furnace, cryo. etc.

e Phase analysis with Rietveld analysis

Not-so good: near surface or thin materials, titanium, boron
cadmium, fast, high-spatial resolution, high instrumental
resolution, hydrogenous materials

Oxford School on Neutron Scattering 46



