

Small Angle Scattering (SAS)

- what is SAS & what can it measure?
- how is it measured?
- sample considerations
- data analysis

Reference Texts

- The SANS Toolbox, B. Hammouda, NIST (available as pdf: http://www.ncnr.nist.gov/staff/hammouda/the SANS toolbox.pdf)
- Structure Analysis by SAXS & SANS, L.A. Fegin & D.I. Svergun (1987) (available as pdf:

http://www.embl-hamburg.de/biosaxs/reprints/feigin_svergun_1987.pdf)

- Small Angle X-ray Scattering, eds O. Glatter & O. Kratky (1982) (available as pdf:
 - http://physchem.kfunigraz.ac.at/sm/Software.htm)

What is SAS?

 Coherent, elastic scattering of radiation at small angles – close to the straight-through beam

Incoherent scattering = background

• Typically $0.3 < 2\theta < 5^{\circ}$

or
$$Q < 0.5 \text{ Å}^{-1}$$

$$Q = \frac{4\pi}{\lambda} \sin \theta$$

$$Q = \frac{2\pi}{d}$$

⇒ bigger distance, smaller Q

Size Range Comparisons

Scattering from Large Structures

- Neutron/X-ray wavelength $\lambda \approx$ space between atoms in crystal
 - ⇒ bounce off layers of atoms like light off a mirror
 - ⇒ see diffraction peaks at high angles (correspond to atomic positions)
- BUT for larger objects, sees <u>average</u> structure

- large structures scatter at small angles
- ⇒ for techniques using small angles use material properties rather than atomic properties

SAS Instruments

- Neutrons/X-rays must be parallel to each other; "collimated"
- Slit defines shape of beam (circle, square, slit)
- Distance from sample to detector & wavelength determines size range measured
 - ➤ Tof wide simultaneous Q range, lower flux
 - Reactor smaller Q range, higher flux at short sample-detector distances

Scattering Patterns: From detector to 1D

Real space

q

- eg diblock copolymers
- Circular 1D average
 - take average over ring

data radial average: 1000 detector (b) go ripples due to polymer structure 0.1 0.00 0.05 0.10 0.15 0.20 shadow of beamstop

SAS Measurements

Observed intensity:

$$J(\lambda,\theta) = J_0(\lambda)\Delta\Omega\eta(\lambda)TVI(Q)$$

where:

 $JO(\lambda)$ = flux incident on sample

 $\Delta\Omega$ = angle covered by detector

 η = detector efficiency

T = sample transmission

V = volume of sample in beam

Can measure all of these

⇒ Used to correct data during data reduction

I(Q) = differential cross section

⇒ contains information about sample

Sample Scattering

- Measured intensity due to:
 - Scattering from sample
 - Scattering from container, slits, air etc.
 - Stray X-rays and electronic noise

Need to measure more than just sample scattering...

Extra measurements

Empty cell

Source

Scattering from:

- 1) empty cell
- 2) windows & collimation slits
- 3) air scattering
- Minimize air in beam path
- Carefully choose cell & window materials
- Measure an empty cell

Blocked beam

Source

- 1) Detector dark current
- 2) Stray radiation
- 3) Cosmic radiation
- Measure a blocked beam

Detector efficiency

Why?

Sensitivity of each pixel is slightly different (~ 1%)

Use isotropicscattering material(Plexiglass or water)or "flood" source

Standards - Intensity

- Y-axis in "counts"
 - Need to convert to absolute intensity
- Intensity standards:
 - water
 - glassy carbon
 - direct beam + attenuator (if flux is known)
 - standard polymer sample
- Scattering cross section (intensity) is known
- Measure intensity of standard under same conditions as sample
- Compare measured and known intensities
- Calculate "scale factor" to multiply data

Scattered Intensity

 observed scattered intensity is Fourier Transform of real-space shapes

$$I(Q) = N_p V_p^2 (\rho_p - \rho_s)^2 F(Q) S(Q) + B$$

where: N_p = number of particles

 V_p = volume of particle

 ρ = scattering length density (of particle/solvent)

B = background

F(Q) = form factor

S(Q) = structure factor

Sample considerations... (discussed last week)

Sample thickness

- Affects transmission (total intensity)
- Also affects shape of curve ⇒ hard to analyse
- More problematic for high flux, strongly scattering samples
- Aim for ~70% transmission (X-rays/D₂O solutions, >~50% H₂O solutions)

Concentration

$$I(Q) \propto N_p V_p$$

- Big particles scatter more (can hide small ones)
- Higher concentration = more signal

BUT

- Consider detector limits!
 - Don't burn out your detector...
- High concentration can complicate analysis
 - especially for charged particles (see later)
- Minimum concentration for neutrons/lab X-ray source: ~10mg/ml
 - watch out for highly coloured solutions eg nanoparticles

Neutrons/X-rays & "Contrast"

- Neutrons more penetrating than X-rays (interact less with matter)
- Interaction of neutrons with nuclei depends on isotope
- Interaction of X-rays just depends on number of electrons
- b = scattering length (units Å or cm, normally)
- Scattered intensity measured depends on which isotopes are in sample for neutrons, only on elements for X-rays

Scattering from Large Structures

Consider H₂O: vo

volume of one molecule = 30Å²

⇒ for distances > ~5 molecules, see only average density

$$Q = 2\pi/d$$

so can use material properties for Q < ~0.6 Å⁻¹

Scattering Length Density

- scattering from an object/material depends on how many electrons or nuclei there are in a unit volume
- use scattering length density, Nb, to calculate scattering from molecules:

$$Nb = \frac{N_A \cdot \rho}{MW} \sum_{i} b_i$$

$$= N \sum_{i} b_i$$
Units of Nb: cm⁻²

where: b_i = scattering length for element, cm (for X-rays b = $2.81 \times 10^{-13} \times \text{no. of e}^{-1}$ in atom) ρ = density of compound, g cm⁻³ N_A = Avogadro's number, mol⁻¹ MW = molecular weight, g mol⁻¹ N_A = number density of atoms in material, cm⁻³

NB/ if feeling lazy see: www.ncnr.nist.gov/resources/sldcalc.html

Important Scattering Length Densities

$$H_2O$$
 $b_H = -3.742 \times 10^{-13} \text{ cm}$ D_2O $b_D = b_O = 5.805 \times 10^{-13} \text{ cm}$ $b_O = 6.805 \times 10^{-13} \text{ cm}$ $p_{D^2O} = 1.0 \text{ g cm}^{-3}$ $p_{D^2O} = 1.0 \text{ g cm}^{-3}$

$$D_2O$$
 $b_D = 6.674 \times 10^{-13}$ cm
 $b_O = 5.805 \times 10^{-13}$ cm
 $MW_{D^2O} = 2D + O = 18$ g mol⁻¹
 $\rho_{D^2O} = 1.1$ g cm⁻³

$$Nb = N \sum_{i} b_{i}$$

These have similar number densities of atoms ie number of atoms in 1 cm³:

$$N_{H^2O} = 6.022 \times 10^{23} \text{ atoms mol}^{-1} \times 1.0 \text{ g cm}^{-3}$$
18 g mol $^{-1}$

$$N_{H^2O}$$
 =3.35×10²² atoms cm⁻³

$$N_{D^2O}$$
 =3.31×10²² atoms cm⁻³

BUT very different scattering length densities!

$$Nb_{H2O} = (2b_H + b_O) \times N_{H2O}$$

 $Nb_{H2O} = -0.562 \times 10^{10} \text{ cm}^{-2}$

$$Nb_{D2O} = (2b_D + b_O) \times N_{D2O}$$

= 6.34 ×10¹⁰ cm⁻²

Contrast & Contrast Matching

- Both tubes contain pyrex fibers + borosilicate beads + solvent.
- (A) solvent refractive index matched to pyrex fibres
- (B) solvent index different from both beads & fibers scattering from fibers dominates

Similarly, there must be a difference between object and surrounding to measure scattering

$$I(Q) \propto (\rho_p - \rho_s)^2$$

Babinet's Principle

These two structures give the same scattering

$$I(Q) \propto (\rho_p - \rho_s)^2$$

- Contrast is relative
- Loss of phase information i.e.: is $\rho_1 > \rho_2$?
- Very important in multi-phase systems
 - Solve by use of multiple contrasts using SANS! (for X-rays = anomalous scattering)

Scattering ∝ "Contrast"

- objects and solvent have different scattering length densities (SLD)
- in water for neutrons can manipulate solvent ρ by using mixture of H₂O and D₂O
- When solvent and object have same SLD they are said to be "contrast matched"

Example: silica spheres in water

30% D₂O in H₂O

59% D₂O in H₂O

 $95\% D_2O in H_2O$

Predicting Contrast Match Point

70

80

90

100

 By calculating the SLD can predict %D₂O where the scattering signal will be zero

BUT if have exchangeable hydrogens in the structure the SLD will vary with %D₂O

water

protein

30

40

%D2O

lipid

DNA

scattering length density

Neutron "Contrast" Series

 intensity of scattering depends on difference between particle and solution.

$$I \propto (Nb_{particle} - Nb_{solution})^2$$

- measure scattering at a series of solution contrasts
- extrapolate scattering to Q = 0 and measure I_0

Contrast Match Point

• Plot as $\sqrt{I_0}$ vs $[D_2O]$

- Place where line cuts zero is where the solution has the same scattering length density as the particle
 - ⇒ contrast matched
- Can use this to find the density of the particle

Neutron "Contrast" for Complex Objects

 contrast matching allows us to "remove" scattering from parts of an object

"shell-contrast"

⇒ see only core

"core-contrast"

⇒ see only shell

Solvent matching for COC2-actin assembly

- cardiac myosin binding protein C (COC2) has extended modular structure
- Mixing C0C2 with G- actin solutions results in a dramatic increase in scattering signal due to formation of a large, rod-shaped assembly

Whitten, Jeffries, Harris, Trewhella (2008) *Proc Natl Acad Sci USA 105*, 18360-18365

Scattered Intensity

For concentrated solutions:

$$I(Q)=N_{p}V_{p}^{2}(\rho_{p}-\rho_{s})^{2}F(Q)S(Q)+B$$

where: N_p = number of particles

 V_p = volume of particle

 ρ = scattering length density (of particle/solvent)

B = background

F(Q) = form factor

S(Q) = structure factor

Form Factor = scattering from within same particle

⇒ depends on particle shape

Structure Factor = scattering from different particles

⇒ depends on interactions between particles

Solution of particles

Form factor of the particle

Structure factor of the particle

c = concentration

SAS Data Analysis

- Simple but not very accurate:
 - Porod slopes
 - Guinier analysis
- More helpful, but more complex:
 - fitting models to data
- Most complex (need more data):
 - fitting protein structures using crystal structures
 - monte carlo/simulated annealing methods

Scattering from Independent Particles

- Scattered intensity per unit volume of sample
 - arises from spatial distribution of regions with different scattering length density

$$I(q) = d\sigma/d\Omega = 1/V | \int V \uparrow m \rho(\mathbf{r}) e^{\uparrow} i \mathbf{q} \cdot \mathbf{r} d\mathbf{r} | \mathcal{T} 2$$

For identical particles:

$$I(q)=N/V(\rho \downarrow p-\rho \downarrow s)$$
 12 $V \downarrow p$ 12 $\langle 1/V \downarrow p \mid \int particle \uparrow \equiv e \uparrow i \mathbf{q} \cdot \mathbf{r} d\mathbf{r} \mid \mathbf{1} \rangle$

Dilute Randomly Ordered Uniform Particles

scattering from independent particles:

$$I(q)=N/V(\rho \downarrow p-\rho \downarrow s)$$
 12 $V \downarrow p$ 12 (1/ $V \downarrow p$ |\int particle \cap \boxed{\text{\text{\$\psi}}} e \cap i \bold r dr |\bold 12 \rangle

- Assume: i) system is isotropic, then $\langle e \hat{1} iqr \rangle = \sin(qr)/qr$
 - ii) no long range order, so no correlations

$$I(q) = I \downarrow e(q) (\rho \downarrow p - \rho \downarrow s) \uparrow 2 V \downarrow p \uparrow \int 0 \uparrow \infty / (r) \sin(qr) / (qr) 4\pi r \uparrow 2 dr$$

 $\gamma(r)$ = correlation function within particle

 $P(r)=4\pi r^2\gamma(r)$ is the probability of finding two points in the particle separated by r

Porod's Law

Start with form factor:

$$F(q) = \frac{1}{V_p} \int_0^\infty \gamma(r) \frac{\sin(qr)}{qr} 4\pi r^2 dr$$

 Now consider radial pair correlation function for sphere, with sharp edges, radius R:

$$\gamma(r) = 1 - \frac{3}{4} \left(\frac{r}{R}\right) + \frac{1}{16} \left(\frac{r}{R}\right)^{3}$$

$$F(qR) = \frac{1}{V_p} \int_0^\infty \left[1 - \frac{3}{4} \left(\frac{r}{R}\right) + \frac{1}{16} \left(\frac{r}{R}\right)^{3}\right] \frac{\sin(qr)}{qr} 4\pi r^2 dr$$

• Integrate by parts three times:

$$F(qR) \approx \frac{3}{2R^3} \frac{S_p}{V_p} \frac{1}{q^4}$$

At high scattering angles, for any system with sharp, smooth surfaces: $I(Q) \propto \frac{1}{a^4}$

Porod Scattering

- Slope at high q the same
- But point where slope changes depends on particle dimensions

^{10%} red / 90% blue in each square

Fractal Systems

Fractals are systems that are self-similar as you change scale

Diffusion-limited aggregation in 3 dimensions (Paul Bourke, http://local.wasp.uwa.edu.au/~pbourke/fractals/dla3d/)

- For a Mass Fractal the number of particles within a sphere radius
 R is proportional to R^D where D = fractal dimension
- Thus:

 $4\pi R^2 \gamma(R) dR$ = number of particles between distance R and R+dR = $cR^{D-1} dR$

Fractal Systems Continued...

So for a Mass Fractal:

$$F(Q) = \int dR \, e^{iQR} \gamma(R) = \frac{2\pi}{Q} \int dR \, . \, Rsin(QR) . \left(\frac{c}{4\pi}\right) R^{D-3}$$

$$= \frac{c}{2} \frac{1}{Q^D} \int dx . \, x^{D-2} . \, sinx = \frac{constant}{Q^D}$$

Paul Bourke

For a fractal surface can show that $F(Q) = \frac{constant}{Q^{6-D}}$ (this reduces to the Porod Law for smooth surfaces of dimension 2)

First stages of Koch (triangle) surface (Robert Dickau)

The SANS Toolbox. Boualem Hammouda, NIST

Porod Slopes & Structures

NB/ SAXS data, seldom measure such a wide Q range in SANS

Form Factors

• Form factors are the sum of scattering from every point inside a particle $\sum \sum_{sin(Or_{tr})}$

$$F(Q) = \sum_{I} \sum_{J} \left\langle \frac{\sin(Qr_{IJ})}{Qr_{IJ}} \right\rangle_{orientations}$$

Simplify to the integral

Scattering pattern calculated from the Fourier transform of the

- real-space density distribution
- Pattern for most shapes must be solved analytically
- Some simple shapes can be solved directly

Simple Analysis - Guinier Approximation

Assume particle is a sphere in dilute solution

$$F(Q) = \left[\frac{3(\sin(QR_p) - QR_p \cos(QR_p))}{(QR_p)^3} \right]^2$$

Measure scattering at very low angles so

$$R \downarrow_{\mathcal{Q}} Q \lesssim 1$$

Use mathematical expansion of F(Q)

$$F(Q) = 1 - \left(\frac{Q^2 R_g^2}{3}\right) + O()^5 \dots$$

• Write in logarithmic form ⇒

Guinier Plots

at low concentrations <u>and</u> small values of Q, can write intensity as:

$$I(Q) = I(0) \exp\left(\frac{-R_g^2 Q^2}{3}\right)$$

- so plot of ln(I) against Q² will have slope = $\frac{-R_g^2}{3}$
- only valid for $R_g Q \le 1$

Radius of Gyration – depends on particle shape

• Sphere
$$R_g^2 = \frac{3}{5}R^2$$

What do we mean by "R_g"?

Radius of gyration:

R_g² is the average squared distance of the scatterers from the centre of the object

$$R_g^2 = (1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 3^2)/6 = 20/6$$

 $R_g = \sqrt{3.333} = 1.82$

Radius of Gyration – depends on particle shape

- Sphere $R_g^2 = \frac{3}{5}R^2$
- Ellipse $R_g^2 = \frac{a^2 + b^2}{4}$
- Cylinder $R_g^2 = \frac{R^2}{2} + \frac{h}{12}$

Guinier Plot Example

Polymerised surfactant micelles

Large Scale Structures, ISIS Annual Report, 1999-2000 http://www.isis.rl.ac.uk/isis2000/science/laraescale.htm

Q (Å-1)	Q ² (Å ⁻²)	Intensity	In(intensity)
	×10 ⁻³	(cm ⁻¹)	
0.032	1.03	0.127	-2.064
0.050	2.51	0.113	-2.183
0.070	4.87	0.106	-2.245
0.081	6.56	0.096	-2.341
0.095	9.03	0.087	-2.441
0.104	10.81	0.080	-2.528
0.115	13.23	0.073	-2.618
0.123	15.13	0.063	-2.769
0.129	16.64	0.062	-2.789

Slope =
$$\frac{-R_g^2}{3}$$
 = -45.1 Å

so:
$$R_g = 11.6 \text{ Å}$$

Check validity: $R_g \times Q_{max} = 11.6 \times 0.095 = 1.1$ OK

More Complex: Fitting Scattering

 observed scattered intensity is Fourier Transform of real-space shapes

$$I(Q)=N_{p}V_{p}^{2}(\rho_{p}-\rho_{s})^{2}F(Q)S(Q)+B$$

where: N_p = number of particles

 V_p = volume of particle

 ρ = scattering length density (of particle/solvent)

B = background

F(Q) = form factor

S(Q) = structure factor

Form Factor = scattering from within same particle

⇒ depends on particle shape

Structure Factor = scattering from different particles

⇒ depends on interactions between particles

Form Factors

- depend on shape of particle
- for dilute solutions S(Q) = 1 and so $I(Q) \propto F(Q)$
- General form of F(Q):

Intensity (cm⁻

$$F(q) = \frac{1}{V_p} \int_0^\infty \gamma(r) \frac{\sin(qr)}{qr} 4\pi r^2 dr$$

where r = shape parameter eg radius of gyration

Polydispersity

- "smears out" sharp features in pattern
- "smearing" can also be due to poor Q resolution or beam shape (correct for this during data reduction)

Au Nanorods

Fitted to charged cylinders

- Radius 80Å
- Length 190Å
- Polydispersity 0.29

Structure Factors

- for dilute solutions S(Q) = 1
- particle interactions will affect the way they are distributed in space ⇒ changes scattering
- for charged spheres:

Average distance between nearest neighbours relatively constant

= "correlation distance"

Position of first maximum related to correlation distance

Concentration effects

1.0 0.1 $\phi = .52$ 0.01 1.0 0.1 $\phi = .49$ 0.01 Structure Factor $\phi = .34$ 1.0 $\phi = .28$ 0.1 1.0 0.5 $\phi = .13$ 0.2 1.0 2. 5. 10.0 QR

Figure 1: Cross-section for several different volume fractions of PS spheres in glycerol vs. QR.

Figure 2: Measured and model structure factors, S(Q), (circles and dashed lines, respectively) vs. QR for PS spheres in glycerol.

Small Angle X-ray Scattering Study of a Hard-Sphere Suspension: Concentrated Polystyrene Latex Spheres in Glycerol

L. B. Lurio¹, D. Lumma¹, A. R. Sandy¹, M. A. Borthwick¹, P. Falus¹, S. G. J. Mochrie¹, J. F. Pelletier², M. Sutton², Lynne Regan³, A. Malik⁴ and G. B. Stephenson⁴

Combining F(Q) & S(Q)

- In most cases when fitting will need to include both form and structure factor
- Can tell by taking concentration series
 - if shape of scattering doesn't change when sample is diluted then S(Q) = 1

- Polymer-lipid discs
- Normalised for concentration

Combining F(Q) & S(Q)

 Use computer programs to combine form factor and structure factor:

- Fit using ellipse + structure factor for charged objects which repel each other ⇒ many parameters!
- Use three contrasts to help pin down shape and size accurately

Fourier Inversion Techniques

- Scattering from dilute, uniform, independent particles
- Assuming i) system is isotropic, then $\langle e \uparrow iQr \rangle = \sin(Qr)/Qr$
 - ii) no long range order, so no correlations between two widely separated particles

$$I(Q) = I \downarrow e(Q) (\rho \downarrow p - \rho \downarrow s) \uparrow 2 V \downarrow p \uparrow \int 0 \uparrow \infty / (r) \sin(Qr) / (Qr) 4\pi r \uparrow 2 dr$$

 $\gamma(r)$ = correlation function

 $P(r)=4\pi r^2\gamma(r)$ is the probability of finding two points in the particle separated by r

• If can measure I(Q) over big enough range can take inverse Fourier transform to find P(r): $2/\pi \int \int \frac{QI(Q)\sin(Qr) dQ}{Q}$

$$P(r)=4\pi r 2\gamma(r) =$$

P(r) for Simple Shapes

 Note: P(r) can be ambiguous if have polydisperse samples

Lamellar:

Core-Shell Sphere:

Effects of Sample Alignment

- Scattering no longer circular
- Form areas of high intensity perpendicular to direction of alignment

Isotropic vs Nonisotropic Structures

Edler, Reynolds, Brown, Slawecki, White, J. Chem. Soc., Faraday Trans. 1998, 94(9) 1287

Free SANS Fitting Software

DANSE SANSView software

- Designed for fitting neutron data but can also be used (with care) for X-ray data
- Includes reflectivity analysis
- Available from: http://danse.chem.utk.edu/sansview.html

OR library of other available software at:

http://www.small-angle.ac.uk/small-angle/Software.html