

EUROPEAN SPALLATION SOURCE

# **Neutron Sources**

Oxford School on Neutron Scattering 8<sup>th</sup> September 2015

Ken Andersen

## Summary



- Neutron facilities
  - history, overview & trends
- Reactor-based sources
  - Institut Laue-Langevin
- Short-pulse spallation sources
  - ISIS
- Components of a pulsed spallation neutron source
  - accelerator
  - target
  - moderators
- Neutron source time structure
  - the time of flight method
- Long-pulse neutron sources

### The first neutron source



EUROPEAN SPALLATION SOURCE



James Chadwick: used Polonium as alpha emitter on Beryllium

<sup>4</sup>He + <sup>9</sup>Be  $\rightarrow$  <sup>12</sup>C + neutron



### **Evolution of neutron sources**



EUROPEAN SPALLATION

SOURCE

(Updated from Neutron Scattering, K. Sköld and D. L. Price, eds., Academic Press, 1986)

## **Nuclear Fission**



EUROPEAN SPALLATION SOURCE



two daughter nuclei



## **Evolution of neutron sources**



(Updated from *Neutron Scattering*, K. Sköld and D. L. Price, eds., Academic Press, 1986)

## **Evolution of neutron sources**



(Updated from *Neutron Scattering*, K. Sköld and D. L. Price, eds., Academic Press, 1986)



## **Nuclear Spallation**



## **Evolution of neutron sources**



EUROPEAN SPALLATION SOURCE



(Updated from Neutron Scattering, K. Sköld and D. L. Price, eds., Academic Press, 1986)

## **Evolution of neutron sources**



EUROPEAN SPALLATION SOURCE



(Updated from Neutron Scattering, K. Sköld and D. L. Price, eds., Academic Press, 1986)





|                | light                         | neutrons                      |  |
|----------------|-------------------------------|-------------------------------|--|
| λ              | < µm                          | < nm                          |  |
| E              | > eV                          | > meV                         |  |
| penetration    | ~ µm                          | ~ cm                          |  |
| θ <sub>c</sub> | 90° 1°                        |                               |  |
| R              | 10 <sup>18</sup> p/cm²/ster/s | 10 <sup>14</sup> n/cm²/ster/s |  |
|                | (60W lightbulb)               | (60MW reactor)                |  |
| spin           | 1                             | 1/2                           |  |
| interaction    | electromagnetic               | strong force,                 |  |
|                |                               | magnetic                      |  |
| charge         | 0                             | 0                             |  |

## Why neutrons?



- Thermal neutron have wavelengths similar to inter-atomic distances
- Thermal neutrons have energies comparable to lattice vibrations
- Neutrons are non-destructive
- Neutrons interact weakly
  - they penetrate into the bulk
- Neutrons interact via a simple point-like potential
  - amplitudes are straightforward to interpret
- Neutrons have a magnetic moment
  - great for magnetism
- Neutrons see a completely different contrast to x-rays
  - e.g. hydrogen is very visible

## Why neutrons?







### Main European neutron sources 2017





Pulsed

## Major neutron sources in the world

|               | 2000       | 2010       | 2020       |            |
|---------------|------------|------------|------------|------------|
| ILL (F)       | Fission    |            |            |            |
| HZB (D)       | Fission    |            |            |            |
| LLB (F)       | Fission    |            |            | 6          |
| PSI (CH)      | Spallation |            |            | nti        |
| FRM-II (D)    |            | Fission    |            |            |
| HFIR (USA)    | Fission    |            |            | <u> </u>   |
| NIST (USA)    | Fission    |            |            | S S        |
| JRR-3 (J)     | Fission    |            |            |            |
| PIK (RU)      |            |            | Fission    |            |
| IBR-2/2M (RU) | Fission    |            |            |            |
| ISIS-1 (UK)   | Spallation |            |            | <b>– –</b> |
| ISIS-2 (UK)   |            | Spallation |            |            |
| SNS (USA)     |            | Spallation |            | e d        |
| J-PARC (J)    |            | Spallation |            |            |
| ESS (SE)      |            |            | Spallation |            |









Barre de sécurité







EUROPEAN SPALLATION SOURCE

### **ILL Reactor Neutron Source**



- Highly-enriched uranium
- Compact design for high brightness
- Heavy-water cooling
- Single control rod
- 57MW thermal power
- Cold, thermal, hot sources



EUROPEAN SPALLATION

SOURCE

**E55** 

EUROPEAN SPALLATION

SOURCE

- Highly-enriched uranium
- Compact design for high brightness
- Heavy-water cooling
- Single control rod
- 57MW thermal power
- Cold, thermal, hot sources

|                          | cold                  | thermal                    | hot      |
|--------------------------|-----------------------|----------------------------|----------|
| moderator                | liquid D <sub>2</sub> | Liquid<br>D <sub>2</sub> O | graphite |
| moderator<br>temperature | 20K                   | 300K                       | 2000K    |
| neutron<br>wavelength    | 3→20Å                 | 1→3Å                       | 0.3→1Å   |





EUROPEAN

SPALLATION

SOURCE

ンジ







#### EUROPEAN SPALLATION SOURCE

## **ILL Moderator Brightnesses**



## **Spallation vs Fission**



Fission

200 MeV/fission 2.35 – 1 = 1.35 neutrons freed => 150 MeV/neutron



two daughter nuclei

## Spallation vs Fission

g



EUROPEAN SPALLATION SOURCE

#### Fission

200 MeV/fission 2.35 – 1 = 1.35 neutrons freed => 150 MeV/neutron



two daughter nuclei



#### <u>1 GeV proton in:</u>

250 MeV becomes mass (endothermic reaction)30 neutrons freed

=> 25 MeV/neutron

## Spallation vs Fission

q



EUROPEAN SPALLATION SOURCE

#### Fission

200 MeV/fission 2.35 – 1 = 1.35 neutrons freed => 150 MeV/neutron



two daughter nuclei



#### <u>1 GeV proton in:</u>

250 MeV becomes mass (endothermic reaction)
30 neutrons freed
> 25 MeV/neutron

6x more neutrons per unit heat

## **Spallation Sources**



- Spallation: 10x higher neutron brightness per unit heat
  - about 6x more neutrons per unit heat
  - about  $\frac{1}{2}$  the production volume
- 1 MW spallation source = 10 MW reactor
  - e.g. 800 MeV at 1.25 mA (PSI)
  - e.g. 3 GeV at 0.4 mA (J-PARC)
- Peak brightness >> time-average brightness

## **Spallation Sources**

- Spallation: 10x higher neutron brightness per unit heat
  - about 6x more neutrons per unit heat
  - about ½ the production volume
- 1 MW spallation source = 10 MW reactor
  - e.g. 800 MeV at 1.25 mA (PSI)
  - e.g. 3 GeV at 0.4 mA (J-PARC)
- Peak brightness >> time-average brightness





100

## **De Broglie Relations**



EUROPEAN SPALLATION SOURCE

| Particle              | Wave                      |
|-----------------------|---------------------------|
| p = mv                | $p = \hbar k = h/\lambda$ |
| $E = \frac{1}{2}mv^2$ | $E = \hbar \omega = hf$   |
|                       |                           |

$$\hbar = h/2\pi$$
  
 $h = 6.6 \times 10^{-34} \,\text{J} \cdot \text{s}$   
 $m_n = 1.67 \times 10^{-27} \,\text{kg}$ 

 $\lambda = h / mv$   $\lambda[\text{Å}] = 3.956 / v[\text{m/ms}]$  $t[\text{ms}] = L[\text{m}] \times \lambda[\text{Å}] / 3.956$ 

## The Time-of-Flight (TOF) Method







#### 800 MeV proton synchrotron

To MeV H linac

RFQ

# ISIS, UK (160kW)

Extracted proton beam

Extracted proton beam

Target station

Target station 2



Science & Technology Facilities Council



## SNS, Oak Ridge, USA (1MW)





## J-PARC, Tokai, Japan (500kW)





## J-PARC, Tokai, Japan (500kW)




# ESS, Lund, Sweden (5MW in 2025)





# **Short-Pulse Spallation Sources**

- Accelerator
  - H<sup>-</sup> ion source
  - Linear accelerator ("linac")
  - Stripper to convert  $H^-$  to  $H^+$
  - Synchrotron
- Target
- Reflector
- Moderators

EUROPEAN SPALLATION

SOURCE

#### Linear accelerator: LINAC





#### Linear accelerator: LINAC





#### SNS ion source: H<sup>-</sup>





# **Different types of Linac**



EUROPEAN SPALLATION

SOURCE

# Synchrotron



- Synchronise:
  - B-field: bend
  - E-field: accelerate
  - E & B field: focus
  - magnets to each other
- Injection
  - stripper foil
- Extraction
  - kicker magnet



# Synchrotron



- Synchronise:
  - B-field: bend
  - E-field: accelerate
  - E & B field: focus
  - magnets to each other
- Injection
  - stripper foil
- Extraction
  - kicker magnet



# Synchrotron



- $\Delta t_{linac} \approx 1 \text{ ms}$
- $E_{ring} \approx 1 \text{ GeV}$ -  $v \approx 3 \times 10^8 \text{ m/s}$
- L<sub>ring</sub> ≈ 200 m
- $\Delta t_{ring} \approx 1 \ \mu s$



#### ISIS target 1: solid tungsten







#### EUROPEAN SPALLATION SOURCE

#### **SNS Target Configuration**



# SNS target: liquid mercury





#### ESS target







# **ISIS TS2 Target**







- Target produces neutrons in > MeV range
- Moderators contain H to thermalise neutrons
  - largest scattering cross-section (80b)
  - lower mass: same as neutron
  - on average, ½ energy lost per collision
  - 100 MeV -> 10 meV requires about 25 collisions
- Moderators embedded in reflector, usually D<sub>2</sub>O-cooled Be
  - minimal absorption
  - large scattering cross-section (8b)
  - little thermalisation





# **EUROPEAN** $\Rightarrow$ **SPALLATION Target-Reflector-Moderator Neutronics** SOURCE 10cm above/below Target Be protons in 53

# **EUROPEAN** $\Rightarrow$ SPALLATION **Target-Reflector-Moderator Neutronics** SOURCE 10cm above/below Target Be protons in 54

# **EUROPEAN** $\Rightarrow$ SPALLATION **Target-Reflector-Moderator Neutronics** SOURCE 10cm above/below Target Be protons in

### **Target-Reflector-Moderator Neutronics**



**EUROPEAN** 

SPALLATION

SOURCE

255



#### **Target-Reflector-Moderator Neutronics**





#### **Target-Reflector-Moderator Neutronics**









# Time-of-flight (TOF) resolution





# Time-of-flight (TOF) resolution







#### Moderator Decoupling and Poisoning





#### **Moderator Decoupling and Poisoning**



#### **SNS** moderators







# ISIS TS2 Target





#### Moderator Temperature



EUROPEAN SPALLATION SOURCE

ISIS-TS1 moderators at 160kW



# **E35**

EUROPEAN SPALLATION

SOURCE

### **Beyond Short-Pulse Limits**



17 x

SNS instantaneous power on target: 17kJ in 1µs:

Reaches limits of spallation source technology: shock waves in target, space charge density in accelerator ring, ...



# **Beyond Short-Pulse Limits**



EUROPEAN SPALLATION SOURCE



17 x

SNS instantaneous power on target: 17kJ in 1µs:

ESS instantaneous power on target: 125MW 360kJ in 2.86ms



#### Long-pulse performance





# Adapting the pulse width





#### Summary



- Neutron facilities
  - overview & trends
- Reactor-based sources
  - Institut Laue-Langevin
- Fission vs Spallation
  - ISIS
- Components of a pulsed spallation neutron source
  - accelerator
  - target
  - moderators
- Neutron source time structure
  - the time of flight method
- Long-pulse neutron sources

# Thank You!

