And now for something completely different....?

Markus Strobl

Instrumentation Division@ ESS

Vienna

Berlin Helmholtz Zentrum

ESS – future for neutron scattering in Europe

ODIN

Optical and Diffraction Imaging with Neutrons

One out of the two first instruments endorsed by the ESS SAC for a build decision!

Is neutron imaging in fact just another scattering technique?

When do we talk about an image?

When about imaging?

transmission

reflection

Contrast

- Radiation used
- Materials examined
 - Instrumentation

Contrast

Transmission

Microscopic cross section: σ

$$\frac{d\sigma}{d\Omega} = \frac{\text{number of interacting particles / unit time \cdot unit cone } d\Omega}{\text{number of incident particles / unit time x unit area \cdot unit cone } d\Omega} = [area]$$

 $\mathbf{I} = I_0 e^{-\int \Sigma(x) dx}$

Unit of
$$\sigma$$
: 1 barn = 10⁻²⁴ cm²

Macroscopic cross section : Σ (i.e. μ linear attenuation coefficient)

 $\Sigma = N \cdot \sigma$, N = number of nuclei per cm³. Unit of Σ is [cm⁻¹].

X-ray interaction with matter

neutron interaction with matter

Thermal neutrons

Cold neutrons

Determination of the U-235 content (enrichment) in nuclear fuel elements

Contrast

Neutronen (thermisch)

Röntgen (100keV)

Röntgen (250keV)

Contrast

Resolution

No optics

Camera obscura

But spatial resolution! Clearly a condition for imaging!

blur $b = \frac{d}{L/D}$ typical: several 100

L/D=71 L/D=115 L/D=320 L/D>500. Radiographs of a small motor taken at different beam positions with different L/D ratios.

Radiographs of a 3,5" floppy drive in 0 cm, 10 cm and 20 cm distance from a film + Gd sandwich taken at a cold neutron guide with *L/D*=71.

Detection? No optics

${}^{^{3}\text{He} + {}^{1}\text{n} \Rightarrow {}^{3}\text{H} + {}^{1}\text{p} + 0.77 \text{ MeV}} recent developments}$ ${}^{^{6}\text{Li} + {}^{1}\text{n} \Rightarrow {}^{3}\text{H} + {}^{4}\text{He} + 4.79 \text{ MeV}} LiF-ZnS/Ag$

PSI: development of advanced scintillators $\approx 30 \,\mu m$ HZB: adapting X-ray scintillators (GADOX) $\approx 15 \,\mu m$ NIST (UCLAGING RESIDENCE): MCP-detectors $\approx 13 \,\mu m$

 235 U, 239 Pu 1 n \Rightarrow fission products + 80 MeV

Imaging Detectors

Routine resolution today 50 μmBest today<15μm</td>Aiming at1μm

Cartridge type 7.5 × 55mm Swiss Sample size ø12.65mm × 77.7mm Voxel size 13.2µm

Recorded at

ICON
Imaging with Cold Neutrons

Transmission also enables tomography: 3D imaging!

reconstruction

Radon Transform

So now we have it all...

...do we really?

221

Some advantages: High penetration power High sensitivity to Hydrogen Low radiation damage

Enrichmet of fuel element

Neutron imaging

Some advantages: High penetration power High sensitivity to Hydrogen Low radiation damage Isotope sensitive

...also some disadvantages

Low phase space density – slow \bigotimes Low spatial resolution \bigotimes Expensive

Some advantages:

High penetration power

- High sensitivity to Hydrogen
- Low radiation damage
- Isotope sensitive

- Some advantages:
- High penetration power
- High sensitivity to Hydrogen^{M. Schulz et al.}
- Low radiation damage
- Isotope sensitive
- Magnetic moment

N. Kardjilov, I. Manke, M. Strobl, A. Hilger et al. Nat. Phys. 4 (2008)

1 cm

N. Kardjilov, I. Manke, M. Strobl, A. Hilger et al. Nature Phys. 4 (2008)

Polarized neutron imaging

3D vector quantification through polarimetric imaging

EUROPEAN SPALLATION

SOURCE

What about scattering now?

Artifacts!

Thickness of a homogeneous absorber

Contrast

Interaction of neutrons with matter: Scattering & Absorption

Cross sections:

Microscopic cross sections : $\sigma = \sigma_{s} + \sigma_{s}$

 $\frac{d\sigma}{d\Omega} = \frac{\text{number of interacting particles / unit time \cdot unit cone } d\Omega}{\text{number of incident particles / unit time x unit area \cdot unit cone } d\Omega} = [area]$

 $\mathbf{I} = I_0 e^{-\int \Sigma(x) dx}$

Unit of σ : 1 barn = 10⁻²⁴ cm²

Macroscopic cross section: Σ (i.e. μ linear attenuation coefficient)

 $\Sigma = N \cdot \sigma$, N = number of nuclei per cm³. Unit of Σ is [cm⁻¹].

Total neutron cross section

Energy resolved

Examples cryst. inhom. / phase distribution /strain / grain structure

3D-XRD, diffraction imaging

Entire neutron spectrum can be measured in one experiment with event counting detector providing XYT

modulated imaging beam?

Grating Interferometer

F. Pfeiffer et al. Phys. Rev.Lett. 96, 215505 (2006)

EUROPEAN SPALLATION

SOURCE

M. Stroblet al. PRL (2008)

Dark field contrast

A. Hilger et al. JAP (2010)

Dark-field NI

K. M. Podurets et al. Phys. B 1989 M. Strobl et al. APL 2007 Ch. Grünzweig et al. APL 2009

SOURCE Dark field contrast

Courtesy E. Lehmann, PSI

Markus Strobl

Instrumentation Division@ ESS

Neutron imaging applications

Introduction Neutron imaging

Imaging Applications

R&D Biology & Agriculture Geology Archeology Paleontology Art History Material science & Engineering Industry etc.

I. Manke,.., M.Strobl et al., APL(2008)

Reviews on neutron imaging

M. Strobl et al. J. Phys. D (2009) & N.Kardjilov..M.Strobl et al. Materials Today (2011)