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Scope of the lectures
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- Diffraction techniques (X-rays, neutrons) are used to investigate crystalline solids, 
engineering materials, liquids, thin films, … 

- Whatever the technique used (conventional powder or single crystal diffraction, small 
angle scattering, reflectometry, …) all of these refer to the coherent elastic scattering 
of a X-ray or neutron beam 

- This lecture will focus on crystallography, i.e. the study of crystalline solids, which are 
described by infinite translational symmetry 

- The scattered X-ray or neutron beams contain information which allow to reveal the 
3-dimensional arrangement of atoms (and magnetic moments     Magnetism lecture 
by Prof. Wildes)  
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Outline
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・Crystallography 
Direct lattice, symmetry operations,  
reciprocal lattice, Miller indices, ... 

・Interaction neutron-sample 
scattering by a potential, scattering length, form 
factor, structure factor, Debye Waller factor, …  

・Diffraction condition 
Bragg’s law, Laue condition

Today Tomorrow

・Symmetry in reciprocal space 
Friedel law, Laue groups, forbidden reflections,  
Ewald construction 

・Basic diffractometer 
monochromators, collimators, detectors, …  

・Diffraction techniques  
powder diffraction, single crystal diffraction, Laue 
diffraction, … 

・Examples
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Motivation
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When waves (water, light, neutrons, electrons, …) pass through two slits whose distance 
is in the order of the wavelength, the scattered waves will interfere.  
The interference scheme gives information about the distance of the slits. 

Particles like neutrons can be associated 
with a de Broglie wavelength which is 1.8 Å 
for thermal neutrons.

Interatomic distances in solids are in the 
order of a few Ångstroms. 

Neutrons are ideal to reveal the atomic arrangement in crystalline solids!  
How to describe a crystalline material?
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Direct lattice
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An ideal crystal is an infinite sequence of identical structure units in 3D space. 

periodic structure

crystal = lattice + basis

infinite lattice of 
equivalent points

structure unit on 
each point

NaCl structure:

lattice vectors
OK

not OK
centered cell
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Direct lattice

6

An ideal crystal is an infinite sequence of identical structure units in 3D space. 

periodic structure

crystal = lattice + basis

infinite lattice of 
equivalent points

structure unit on 
each point

NaCl structure:

lattice vectors
OK

not OK
centered cell

Wigner-Seitz cell
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Direct lattice
Crystal systems
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Crystal system Laue class

triclinic a≠b≠c, 𝞪≠𝞫≠𝜸

monoclinic a≠b≠c, 𝞪=𝜸=90°, 𝞫≠90°

orthorhombic a≠b≠c, 𝞪=𝞫=𝜸=90°

tetragonal a=b≠c, 𝞪=𝞫=𝜸=90°

trigonal a=b=c, 𝞪=𝞫=𝜸≠90°

hexagonal a=b≠c, 𝞪=𝞫=90°, 𝜸=120°

cubic a=b=c, 𝞪=𝞫=𝜸=90°
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Direct lattice
Centering translations     14 Bravais lattices
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Centering type Symbol Translations

primitive P

one-face centered A 
B 
C

x, y+1/2, z+1/2 
x+1/2, y, z+1/2 
x+1/2, y+1/2, z

body centered I x+1/2, y+1/2, z+1/2

face centered F x, y+1/2, z+1/2 
x+1/2, y, z+1/2 
x+1/2, y+1/2, z

rhombohedrally 
centered

R x+2/3, y+1/3, z+1/3 
x+1/3, y+2/3, z+2/3

triclinic monoclinic

ortho- 
rhombic

tetra- 
gonal

hexa- 
gonal

tri- 
gonal

cubic
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Direct lattice
Symmetry operations
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Rotations (order n: 2𝜋/n) Mirror planes (m) Inversion (  )1̄

Roto-inversion (  )n̄ Screw axes (rot + trans) Glide planes (mirror + trans)
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Direct lattice
Why no 5-fold rotation?
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2-fold 3-fold 4-fold 6-fold

5-fold

no gapless filling
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Direct lattice
Why no 5-fold rotation?
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5-fold rotation not compatible with translation symmetry:

AE = n ·BD

AE = 2r · sin(2') = 4r sin' cos'

BD = 2r sin'

4r sin' cos' = n · 2r sin' ) cos' =

n
2

Points generated by a rotation axis form a lattice plane. 
Lattice plane needs to fullfil translation symmetry:

n = �2,�1, 0, 1, 2 ) ' = 180�, 120�, 90�, 60�, 0�

Only 1-, 2-, 3-, 4- and 6-fold rotation compatible with translation symmetry
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Direct lattice
Symmetry operations
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0

@
x

0

y

0

z

0

1

A =

0

@
R11 R12 R13

R21 R22 R23

R31 R32 R33

1

A ·

0

@
x

y

z

1

A+

0

@
t1

t2

t3

1

A

Seitz notation: (R|t)

Symmetry contained in the coordination triplet: 
e.g. 21 screw axis along c: -x, -y, z+1/2

Mathematical description:
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Direct lattice
Space groups
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http://it.iucr.org/

Combining the 14 Bravais lattices with 
all symmetry operations leads to 230 
space groups.
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Direct lattice
Space groups

14

space group symbol

crystal class

symmetry operations
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Direct lattice
Space groups
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space group symbol

crystal class

symmetry operations
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Direct lattice
Space groups
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space group symbol

crystal class

symmetry operations
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Direct lattice
Space groups
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multiplicity

Wyckoff letter

site symmetry

extinction rules



14th Oxford School on Neutron Scattering | Navid Qureshi | ILL | Neutron diffraction

Direct lattice
Space groups
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multiplicity

Wyckoff letter

site symmetry

extinction rules
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Direct lattice
Space groups
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Wyckoff letter

site symmetry

extinction rules

multiplicity
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Direct lattice
Space groups
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Wyckoff letter

site symmetry

extinction rules

multiplicity
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Reciprocal lattice
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The reciprocal lattice of a Bravais lattice consists of all vectors k for which 

Crystal lattice is periodic        periodic functions to describe it:  (r) = exp(ikr)

 (r) = exp(ikr) =  (r+R) = exp[ik(r+R)]

reciprocal lattice reflects the symmetry of the direct lattice 

Which k-vectors build up the reciprocal space?

Space of wave vectors

R is a direct lattice vector
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Reciprocal lattice
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f(x) =
P
n
�(x� nd) n 2 Z

Every periodic function                       
can be expressed by a Fourier series with

f(x) = f(x+ �)

k = m · 2⇡/�

f(x) =

1P
m=1

cos(m · 2⇡
d · x)

Calculate Fourier coefficients by Fourier transform:

FT [cos(k0x)] = �(k � k0) + �(k + k0)

with

F (k) =

R 1P
m=1

cos(m · 2⇡
d

· x) · e�ikx

=

P
m

�(k �m · 2⇡
d

)

Example: 1D Dirac comb
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Reciprocal lattice
Example: 1D Dirac comb

23

Every periodic function                       
can be expressed by a Fourier series with

f(x) = f(x+ �)

k = m · 2⇡/�

reciprocal lattice of a Dirac comb is a Dirac comb with 2𝜋/d

f(x) =
P
n
�(x� nd) n 2 Z

Calculate Fourier coefficients by Fourier transform:

FT [cos(k0x)] = �(k � k0) + �(k + k0)

with

F (k) =

R 1P
m=1

cos(m · 2⇡
d

· x) · e�ikx

=

P
m

�(k �m · 2⇡
d

)
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Reciprocal lattice

24

 (r) =  (r+R) ) eiGr
= eiG(r+R) ) eiGR

= 1 or GR = n · 2⇡

Set of k-vectors must correspond to reciprocal lattice vectors G, hence …

which is fulfilled for the reciprocal lattice vectors:

ai · a⇤j = 2⇡�ij

Each direct lattice has a reciprocal lattice.  
The reciprocal lattice of a reciprocal lattice is the direct lattice itself.  

Consider a direct lattice L with a 𝛿 function on each lattice point:

L(r) =
P

Rn2R
�3(r�Rn)

Bravais lattice in 3D

a⇤ = 2⇡
b⇥ c

a · (b⇥ c)
b⇤ = 2⇡

c⇥ a

a · (b⇥ c)
c⇤ = 2⇡

a⇥ b

a · (b⇥ c)
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Reciprocal lattice
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Construction of reciprocal lattice       from direct lattice 

The scalar product of any direct lattice 
vector Ri and reciprocal lattice vector Gj is 
an integer (times 2𝜋). 

aia⇤j

A reciprocal lattice vector is expressed by 
the Miller indices hkl.

G = ha⇤ + kb⇤ + lc⇤
1st Brillouin zone
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Reciprocal lattice
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Construction of reciprocal lattice   

The scalar product of any direct lattice 
vector R
an integer (times 2

ai a⇤j

A reciprocal lattice vector is expressed by 
the Miller indices hkl.

G = ha⇤ + kb⇤ + lc⇤

reciprocal integer intersections with main axes: 
a:  -1    b:   1/2   c:   ∞    ⟹   (-1 2 0)

Direct lattice

Every point in reciprocal space represents a set of direct lattice planes. 
               The reciprocal lattice vector is perpendicular to these planes.

1st
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Interaction neutron-sample
Nuclear scattering

27

- mediated by strong force, short ranged (fm = 10-15 m) 

- neutron wavelength much larger (10-10 m)  
      cannot probe internal structure  
      scattering is isotropic 

- the interaction between the neutron and the atomic 
nucleus is represented by the Fermi pseudo-potential, a 
scalar field that is 0 except very close to the nucleus

advantage: neutron senses atomic position and not the electron cloud (bonds)

V (r) =
2⇡~2
mn

b�3(r)
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Scattering by a potential
Scattering cross section
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𝜎 has the unit of a surface 

usually in barns = 10-24 cm2

Number of neutrons n detected in solid angle ⌦

dn|{z}
ns�1

= �|{z}
ncm�2s�1

· d⌦|{z}
1

·�(✓,�)| {z }
cm2
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Scattering by a potential
Nuclear scattering

29

The wave function at a spatial position r = sum of transmitted and scattered spherical wave 
function

Only             depends on the  
scattering potential        .

fk(✓,')

V (r)

vscatk (r) = eikr + fk(✓,')
eikr

r
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Scattering by a potential

30

In the quantum mechanical treatment of scattering by a central potential,  
the stationary states 𝜑(r) verify: 

(�+ k2)'(r) = 2µ
~2 V (r)'(r)

In the integral equation of scattering, the stationary wave-function is written : 

where G+ is the outgoing Green’s function used to solve the differential equation by using:

(�+ k2)G(r) = �(r)

it can be shown that:

G±(r) = � 1

4⇡

e±ikr

r

vscatk (r) = eikr +
2µ

~2

Z
G+(r� r0)V (r0)vscatk (r0)d3r0

Nuclear scattering

(from Cohen-Tannoudji, 
 Quantum Mechanics, Volume 2 Chapter 8)
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Scattering by a potential
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In the quantum mechanical treatment of scattering by a central potential,  
the stationary states 𝜑(r) verify: 

In the integral equation of scattering, the stationary wave-function is written : 

G±(r) = � 1

4⇡

e±ikr

r asymptotic behaviour r ! 1
|r� r0| ⇡ r � ur0

(�+ k2)'(r) = 2µ
~2 V (r)'(r)

vscatk (r) = eikr +
2µ

~2

Z
G+(r� r0)V (r0)vscatk (r0)d3r0

Nuclear scattering

(from Cohen-Tannoudji, 
 Quantum Mechanics, Volume 2 Chapter 8)
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Scattering by a potential

32

In the quantum mechanical treatment of scattering by a central potential,  
the stationary states 𝜑(r) verify: 

In the integral equation of scattering, the stationary wave-function is written : 

asymptotic behaviour r ! 1

fk(✓,') = � 1

4⇡

2µ

~2

Z
e�ikur0V (r0)vscatk (r0)d3r0

|r� r0| ⇡ r � ur0

vscatk (r) = eikr + fk(✓,')
eikr

r
⇡ eikr � 1

4⇡

eikr

r

2µ

~2

Z
e�ikur0V (r0)vscatk (r0)d3r0

(�+ k2)'(r) = 2µ
~2 V (r)'(r)

vscatk (r) = eikr +
2µ

~2

Z
G+(r� r0)V (r0)vscatk (r0)d3r0

Nuclear scattering

(from Cohen-Tannoudji, 
 Quantum Mechanics, Volume 2 Chapter 8)



14th Oxford School on Neutron Scattering | Navid Qureshi | ILL | Neutron diffraction

Scattering by a potential
Born expansion

33

In the integral equation of scattering, the stationary wave-function is written : 

vscatk (r) = eikr +
2µ

~2

Z
G+(r� r0)V (r0)vscatk (r0)d3r0

Simple change of notation (          and            )  : 

vscatk (r0) = eikr
0
+

2µ

~2

Z
G+(r

0 � r00)V (r00)vscatk (r00)d3r00

r ! r0 r0 ! r00

Born expansion:

vscatk (r) = eikr +
2µ

~2

Z
G+(r� r0)V (r0)eikr

0
(r0)d3r0

+
2µ

~2

Z Z
G+(r� r0)V (r0)G+(r

0 � r00)V (r00)vscatk (r00)



14th Oxford School on Neutron Scattering | Navid Qureshi | ILL | Neutron diffraction 34

Conventions for this lecture

ki

kf

k

G

: initial wavevector

: final wavevector

: momentum transfer, scattering vector

: reciprocal lattice vector

Elastic scattering: |ki| = |kf | = k

Scattering by a potential
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Scattering by a potential
Born approximation

35

Born expansion:

fk(✓,') = � 1

4⇡

2µ

~2

Z
e�ikur0V (r0)vscatk (r0)d3r0

vscatk (r) = eikir +
2µ

~2

Z
G+(r� r0)V (r0)eikir

0
(r0)d3r0

+
2µ

~2

Z Z
G+(r� r0)V (r0)G+(r

0 � r00)V (r00)vscatk (r00)

Inserting this into the scattered amplitude would give the Born expansion of the scattered 
amplitude. If the potential V(r) is weak, we can limit ourselves to the first order of V(r). 
This is the Born approximation. The scattered amplitude therefore becomes:

= � 1

4⇡

2µ

~2

Z
e�ikur0V (r0)eikir

0
d3r0

= � 1

4⇡

2µ

~2

Z
e�i(kf�ki)r

0
V (r0)d3r0 = � 1

4⇡

2µ

~2

Z
e�ikr0V (r0)d3r0

The scattering amplitude is related to the Fourier transform of the potential function.
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Scattering by a potential
Born approximation

36

The scattering amplitude is related to the Fourier transform of the potential function.

With the Fermi pseudo potential for neutron scattering from a nucleus V (r) =
2⇡~2
mn

b�3(r)

|fk(✓,�)| = b

Neutron scattering from a nucleus is isotropic!

fk(✓,�) = � 1

4⇡

2µ

~2

Z
V (r)e�ikrd3r
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Scattering by a potential
Atomic form factor or scattering length
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The amplitude of the scattered wave (the Fourier transform of the potential function) 
is called the atomic form factor f (X-rays) or scattering length b (neutrons).

advantage with neutrons: scattered intensity does not drop with increasing scattering angle

Nucleus 
~10-15 m

Electron shell 
~10-10 m
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Scattering by a potential
Nuclear scattering

38

Scattering lengths (analog to X-ray form factor)

advantages: 
                   

contrast between neighbouring elements 
light elements can be measured easily 
isotope effect (bH=-3.7, bD=6.8)

superposition of resonance scattering 
with slowly increasing potential 
scattering due to atomic weight
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Scattering by a potential
Nuclear scattering

39

Scattering lengths (analog to X-ray form factor)

superposition of resonance scattering 
with slowly increasing potential 
scattering due to atomic weight

K+

Cl-
Example KCl:

scattering lengths of K and Cl are 
very different        strong contrast 

X-rays would see a primitive cell 
with half the lattice constant

advantages: 
                   

contrast between neighbouring elements 
light elements can be measured easily 
isotope effect (bH=-3.7, bD=6.8)
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Diffraction condition
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lattice planes with Miller indices hkl 
(hkl) intercepts real cell axes at a/h b/k c/l 

d is the distance between the planes

Diffraction can be considered as the  
coherent superposition of scattered waves  

from this set of planes

Bragg’s law

Imagine a crystal with only one atom per unit-cell. For which k is the intensity non-zero? 
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Diffraction condition
Bragg’s law

41

lattice planes by Miller indices hkl 
(hkl) intercepts real cell axes at a/h b/k c/l 

d is the distance between the planes

Path length difference: 
Constructive interference: 
Bragg law:

2d sin ✓
n · �

n� = 2d sin ✓

Imagine a crystal with only one atom per unit-cell. For which k is the intensity non-zero? 
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Diffraction condition
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The path difference is:

Constructive interference for:

With definition of reciprocal lattice                       :

Momentum transfer equal to a lattice vector      Crystal can only provide discrete momentum kicks 

Laue condition (equivalent to Bragg’s law)

Scattering of plane wave exp(ikr) from two lattice points at 0 and R

�s(R) = R · kf

kf
�R · ki

ki

�s = n · � = n · 2⇡
k

G ·R = n · 2⇡

(k = ki = kf )

R R

R

�s · k = R · (kf � ki) = R · k = n · 2⇡ = GR ) k = G
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Scattering from a unit cell
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imagine two scattering potentials (atoms), the first at 0, the second at r

�s(r) = r · kf

kf
� r · ki

ki

The path difference is:

Therefore, the phase difference is:

'(r) = 2⇡�s
� = k�s = (kf � ki) · r = G · r

Sum up phase differences over atoms in unit cell:

Structure factor F(hkl) is the Fourier transform of the unit cell scattering potential.

Structure factor (nuclear scattering)

F (hkl) =

P
j
bj exp(iGrj) =

P
j
bj exp[2⇡i(hxj + kyj + lzj)]
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Scattering from a unit cell

44

The phase problem

F (hkl) =

P
j
bj exp(iGrj) =

P
j
bj exp[2⇡i(hxj + kyj + lzj)]

Now we know how to calculate the structure factor:

BUT… a diffraction experiment yields the intensity of the scattered wave:

I ⇠ F 2

Important information is lost as only the amplitude can be recovered.  
This is known as the phase problem in crystallography. 

Consequence: The scattering potential cannot be determined without a model.
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Scattering from a unit cell

45

The phase problem

James Chadwick

f(x, y)

F (u, v) = M(u, v)ei�

F

T

[f(x,
y

)] FT [F (u, v)]

f

0(x, y)

Consequence: The scattering potential cannot be determined without a model.

M

F
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Scattering from a unit cell

46

Debye-Waller factor

Until now our derivation of the structure factor is only valid for fixed atomic positions, i.e. T = 0 K.  

One has to consider the atomic displacement due to thermal motion!  
Atoms may have very large displacements with respect to the Fermi length (up to 10% of atomic distance). 

Atomic position can be separated into an equilibrium position and a time-dependent displacement: 

For small displacements:

hexp[iGuj(t)]i ⇡ 1+ihGuj(t)i| {z }
0

� 1

2

h[Guj(t)| {z }
hcos ✓i=0

]

2i = 1� 1

2

G2hu2

j (t)i ⇡ exp[� 1

2

G2hu2

j (t)i]

F =

X

j

exp(iGr) =
X

j

exp[iG(rj,0+uj(t))] =
X

j

exp(iGrj,0)hexp[iGuj(t)]i

Debye-Waller factor
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Scattering from a unit cell

47

Debye-Waller factor

Until now our derivation of the structure factor is only valid for fixed atomic positions, i.e. T = 0 K.  

One has to consider the atomic displacement due to thermal motion!  
Atoms may have very large displacements with respect to the Fermi length (up to 10% of atomic distance) 

Atomic position can be separated into an equilibrium position and a time-dependent displacement: 

Debye-Waller factorFor small displacements:

hexp[iGuj(t)]i ⇡ 1+ihGuj(t)i| {z }
0

� 1

2

h[Guj(t)| {z }
hcos ✓i=1

]

2i = 1� 1

2

G2hu2

j (t)i ⇡ exp[� 1

2

G2hu2

j (t)i]

F =

X

j

exp(iGr) =
X

j

exp[iG(rj,0+uj(t))] =
X

j

exp(iGrj,0)hexp[iGuj(t)]i
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Scattering from a unit cell

48

Debye-Waller factor

Until now our derivation of the structure factor is only valid for fixed atomic positions, i.e. T = 0 K.  

One has to consider the atomic displacement due to thermal motion!  
Atoms may have very large displacements with respect to the Fermi length (up to 10% of atomic distance) 

Atomic position can be separated into an equilibrium position and a time-dependent displacement: 

Debye-Waller factorFor small displacements:

With                  :G = 4⇡ sin ✓
�

F =

P
j
exp(iGrj,0) exp(�8⇡2hu2

j i sin
2 ✓

�2 ) =

P
j
exp(iGrj,0) exp(�Bj

sin2 ✓
�2 )

with the isotropic displacement parameter: Bj = 8⇡2hu2
j i

hexp[iGuj(t)]i ⇡ 1+ihGuj(t)i| {z }
0

� 1

2

h[Guj(t)| {z }
hcos ✓i=1

]

2i = 1� 1

2

G2hu2

j (t)i ⇡ exp[� 1

2

G2hu2

j (t)i]

F =

X

j

exp(iGr) =
X

j

exp[iG(rj,0+uj(t))] =
X

j

exp(iGrj,0)hexp[iGuj(t)]i
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Scattering from a unit cell
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Debye-Waller factor

sin ✓
�

reduction of F(hkl) for B = 1 Å

reduction of |F(hkl)|2 for B = 1 Å

Scattering function is damped at high momentum transfer

Effect on measured peaks: 

Intensity is reduced, but the peak width  
and the position stay the same!
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Scattering from a unit cell

50

Anisotropic displacement parameters

The Atomic Displacement parameter can be 
anisotropic, in which case a trivariate 
Gaussian is assumed. 
  
In the most general case (no constraint from 
point symmetry of the site), there are 6 
independent uij displacement parameter 
(second rank tensor).

F (hkl) =
X

j

exp(iGrj,0) exp[�2⇡2h(uG)

2i]

0

@
u11 u12 u13

u12 u22 u23

u13 u23 u33

1

A
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Summary
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What have we learned so far?

Crystals have a 3D periodicity and further symmetry properties.  
Classification into crystal systems, Bravais lattices and space groups.

Every direct lattice has a reciprocal lattice. It consists of the k vectors of the scattered waves. 
a* is perpendicular to b and c, b* is perpendicular to c and a, …

The scattering length is the Fourier transform of the potential function. 
The structure factor is the Fourier transform of the unit cell potential functions.

Atomic displacements reduce the scattered intensity due to the Debye-Waller factor. 
Crystal structures need to be solved using models (phase problem).
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Outline
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・Crystallography 
Direct lattice, symmetry operations,  
reciprocal lattice, Miller indices, ... 

・Interaction neutron-sample 
scattering by a potential, scattering length, form 
factor, structure factor, Debye Waller factor, …  

・Diffraction condition 
Bragg’s law, Laue condition

Yesterday Today

・Symmetry in reciprocal space 
Friedel law, Laue groups, forbidden reflections,  
Ewald construction 

・Basic diffractometer 
monochromators, collimators, detectors, …  

・Diffraction techniques  
powder diffraction, single crystal diffraction, Laue 
diffraction, … 

・Examples
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Symmetry in reciprocal space
Friedel law

53

… relates inverse Q points and stems from the 
property of Fourier transforms of real functions:

if bj is real then:

since the scattered intensity is proportional to FF*

scattered intensities of Friedel pairs are equal if bj are real 
reciprocal space has inversion symmetry even if the real space has not 

F (k) =
X

j

bj exp(ikrj)

F (�k) =
X

j

bj exp(�ikrj) = F ⇤
(k)

I(k) = F (k)F ⇤(k) = F ⇤(�k)F (�k) = I(�k)
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Symmetry in reciprocal space
Friedel law

54

… is violated when the neutron energy is close to a resonance of the scatterer, in which  
case the anomalous scattering length b = b’ + ib’’ has to be considered 

Without inversion symmetry in real lattice: 

This property can be used to determine the absolute 
handedness of chiral crystals for example.  
(Most commonly X-ray anomalous scattering is used.)

F (�k) =
X

j

bj exp(�ikrj) 6= F ⇤
(k)
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Symmetry in reciprocal space
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- Friedel law holds almost all of the time  
(especially in neutron scattering unless very high incident energies are used) 

- Symmetries in real space are also valid in reciprocal space (without the translation) 
- Combining the two above       11 Laue groups 

Crystal system Laue class

triclinic -1

monoclinic 2/m

orthorhombic mmm

tetragonal 4/m; 4/mmm

trigonal -3; -3/m

hexagonal 6/m; 6/mmm

cubic m3; m3m

crystal system can only be determined by the 
Laue symmetry (symmetry of intensities) 

Example: lattice parameters nearly orthorhombic

c = 18.123 Åa = 10.097 Å b = 13.978 Å
↵ = 90.00� � = 90.10� � = 90.00�

2/m: (h k l) = (-h -k -l) = (h -k l) = (-h k -l)

mmm: (h k l) = (-h -k -l) = (h -k l) = (-h k -l) 
       = (-h k l) = (h -k -l) = (-h -k l) = (h k -l)
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Symmetry in reciprocal space
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- Friedel law holds almost all of the time  
(especially in neutron scattering unless very high incident energies are used) 

- Symmetries in real space are also valid in reciprocal space (without the translation) 
- Combining the two above       11 Laue groups 

crystal system can only be determined by the 
Laue symmetry (symmetry of intensities) 

Example: lattice parameters nearly orthorhombic

c = 18.123 Åa = 10.097 Å b = 13.978 Å
↵ = 90.00� � = 90.10� � = 90.00�

2/m: (h k l) = (-h -k -l) = (h -k l) = (-h k -l)

mmm: (h k l) = (-h -k -l) = (h -k l) = (-h k -l) 
       = (-h k l) = (h -k -l) = (-h -k l) = (h k -l)

systematic absences



14th Oxford School on Neutron Scattering | Navid Qureshi | ILL | Neutron diffraction

Symmetry in reciprocal space

57

Systematic absences

Systematic lack of scattered intensity due to translational crystal symmetry:

- lattice centering 
- screw axes 
- glide planes

Direct consequence of exact cancellation of structure factors. Example C-centering:

F (hkl) = b[e2⇡i(hx+ky+lz) + e2⇡i[h(x+1/2)+k(y+1/2)+lz])

= be2⇡i(hx+ky+lz) · (1 + e⇡i(h+k))

=

⇢
2b , if h+ k = 2n
0 , if h+ k = 2n+ 1
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Symmetry in reciprocal space

58

Systematic absences

Direct consequence of exact cancellation of structure factors. Example screw axis:

F (hkl) = b[e2⇡i(hx+ky+lz) + e2⇡i[�hx�ky+l(z+1/2)]]

(for h=k=0)

) only (00l) reflections with l = even

Systematic lack of scattered intensity due to translational crystal symmetry:

- lattice centering 
- screw axes 
- glide planes

= be2⇡ilz · (1 + e⇡il)
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Ewald construction

59

Monochromatic source

- simple method to find out which scattered kf are possible 
- the idea of P. P. Ewald was to decouple real and reciprocal lattice 
- use incident wave number 

- draw a sphere of radius 

- origin of reciprocal space is at extreme  
point of s 

- reflection condition fulfilled for reciprocal  
space points lying on the surface of the  
Ewald sphere 

si = ki/2⇡

s = 2⇡/�
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Ewald construction
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Monochromatic source

- simple method to find out which scattered kf are possible 
- the idea of P. P. Ewald was to decouple real and reciprocal lattice 
- use incident wave number 

- draw a sphere of radius 

- origin of reciprocal space is at extreme  
point of s 

- reflection condition fulfilled for reciprocal  
space points lying on the surface of the  
Ewald sphere 

si = ki/2⇡

𝜔 scan

s = 2⇡/�
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Ewald construction
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Polychromatic source (Laue method)

- simple method to find out which scattered kf are possible 
- the idea of P. P. Ewald was to decouple real and reciprocal lattice 
- use incident wave number 

- draw two spheres of radius 

- origin of reciprocal space is at extreme  
point of s 

- reflection condition fulfilled for reciprocal  
space points lying between the two  
Ewald spheres 

si = ki/2⇡

s2 = 1/�
max

s1 = 2⇡/�min
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Ewald construction
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Monochromatic source (Powder method)

- simple method to find out which scattered kf are possible 
- the idea of P. P. Ewald was to decouple real and reciprocal lattice 
- use incident wave number 

- draw a sphere of radius 

- origin of reciprocal space is at extreme  
point of s 

- reflection condition fulfilled for the inter-  
section of the Ewald sphere with spheres  
around 0 with radii Q(hkl) 

si = ki/2⇡

s = 2⇡/�
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The basic diffractometer

63

Constant wavelength (reactor source)
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The basic diffractometer

64

collimator 

defines the beam shape and divergence 
Soller collimators, slits

Constant wavelength (reactor source)
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The basic diffractometer
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monochromator 

(assembly of) high quality single crystals 
choice of wavelength 

choice of resolution (take-off angle) 
typically Cu, Ge, HOPG, Si 

diffracts also higher harmonics 𝜆/2, 𝜆/3, …
n� = 2d sin ✓

Constant wavelength (reactor source)
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The basic diffractometer
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filter 

diffracts shorter 𝜆 out of the beam 
𝜆/2dFilter>1 

typically PG, Be 
no 𝜆/2 filter needed for Si, Ge 

(111) is used, because (222) is forbidden

Constant wavelength (reactor source)
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The basic diffractometer
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sample environment 

cryostat, cryomagnet,  
furnace, pressure cell, CryoPAD

Constant wavelength (reactor source)
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The basic diffractometer

68

collimator 

e.g. radial oscillating collimator 
reduces background from  

sample environment 

or another Soller collimator to  
increase resolution

Constant wavelength (reactor source)
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The basic diffractometer

69

detector 

gas cells in which an incoming neutron  
triggers a nuclear reaction producing a  
charged particle which then is detected 

typically 3He or B3F 

save time by large-area detectors 
(153.6° on D20)

Constant wavelength (reactor source)
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Time-of-flight diffractometer
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Polychromatic (spallation source)

chopper 

defines the wavelength band 
avoids frame overlap



14th Oxford School on Neutron Scattering | Navid Qureshi | ILL | Neutron diffraction

Time-of-flight diffractometer

71

Polychromatic (spallation source)

t =
mn

h
�L

time of flight of the neutrons is 
related to the their wavelength

diffraction pattern is recorded 
at constant scattering angle 
(close to 180° for best 
resolution, small Δt/t)

��

�
= �✓M cot ✓M
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Diffraction techniques
Powder diffraction

72

D20 (high flux)

sample in a vanadium container 
V scatters only incoherently
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Diffraction techniques
Powder diffraction

73
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Diffraction techniques
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Result: Diffraction pattern
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Useful information lies in the 

- position (or t.o.f)  
- the intensity 
- the shape and width 

of the reflections.

Powder diffraction
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Diffraction techniques

75

n� = 2d sin ✓
d =

✓
h2

a2 sin2 �
+

k2

b2
+

l2

c2 sin2 �
� 2hl cos�

ac sin2 �

◆� 1
2

d =

✓
h2

a2
+

k2

b2
+

l2

c2

◆� 1
2

1. Position (or t.o.f)

Bragg’s law

monoclinic

orthorhombic

cubic

with 𝜃 and 𝜆 known → able to obtain lattice parameters

Powder diffraction

d = a(h2 + k2 + l2)�
1
2
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Diffraction techniques

76

2. Intensity I ⇠ F 2

nuclear structure factor 
(interaction between neutron and core potential of nuclei)

magnetic structure factor 
(interaction between neutron and electron’s magnetic field)

0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4

0.6

0.8

1

sinθ/λ

f

magnetic form factor

Powder diffraction

FN (k) =
P
j
bj exp(ikrj) exp(�Bj

sin2 ✓
�2 )

f(k) =

1Z

�1

⇢mag(r) exp(ikr)dr

FM (k) =
X

j

µjfj(k) exp(ikrj) exp

✓
�Bj

sin

2 ✓

�2

◆
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Diffraction techniques
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3. Peak width and shape

Powder diffraction

2θM 2θM 2θM

source, monochromator, slits, collimators,  
sample strain, stress, etc. have an influence on the  
peak shape and the peak width

Caglioti formula

FWHM2 = u tan2 ✓ + v tan ✓ + w

resolution function minimum at the take-off angle 2𝜃M 

(focussing effect)

T.O.F.: The resolution function is a constant for a given scattering angle
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Diffraction techniques

78

Powder diffraction - Corrections

0 → 2𝜃

Lorentz factor 
Asymmetry

Plane multiplicity

example:

F(200) = F(220) = F(222)

4I(200) = 2I(220) = I(222)

(200)

(2̄00)

(220)

(2̄20)
(22̄0)
(2̄2̄0) (2̄2̄2)

(22̄2)
(2̄22)

(222)(222̄)
(2̄22̄)

(2̄2̄2̄)
(22̄2̄)

Preferred orientation

needles, platelets, etc.  
tend to have a preferred 

orientation

no statistical orientation 
of crystallites

some (hkl) families 
like e.g. (hk0), (00l), 

etc. might be favoured

Absorption

sample absorption 
is angle dependent
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Diffraction techniques
Which powder diffractometer? Example: LaO1-xFxFeAs 

79

orthorhombic distortion as seen by the 
splitting of the (220)T into the (400)O  

and (040)O reflections 

high resolution needed

weak magnetic reflections at low 2𝜃 angles 
compared to strong nuclear reflections. 

high flux needed
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Diffraction techniques
High resolution vs. high flux (reactor source)

80

High-resolution diffractometer (e.g. D2B) 

- large take-off angle → resolution minimum at high 2𝜃, small 𝛥𝜆/𝜆 

- Soller collimators to decrease (𝛼1, 𝛼2, 𝛼3) divergence 

- bigger sample does not influence resolution

High-flux diffractometer (e.g. D20) 

- low take-off angle → resolution minimum at low 2𝜃, high 𝛥𝜆/𝜆 

- large focusing monochromator with large mosaic spread  

- no collimation 

- monochromator reflectivity increases with 𝜆3 

- increasing sample size → more intensity → less resolution 2θM 2θM 2θM

��

�
= �✓M cot ✓M



14th Oxford School on Neutron Scattering | Navid Qureshi | ILL | Neutron diffraction

Diffraction techniques
Powder diffraction

81

Thermodiffraction

Collection of diffraction patterns as a function of temperature.  
Clearly reveals structural and magnetic phase transitions.
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Diffraction techniques
Single crystal diffraction 

82

・single crystal experiments take 3-10 days 

・only if neutron powder and X-ray single crystal experiments fail 

・lattice parameters and rough orientation need to be known (not for Laue) 

・different techniques: normal beam, 4 circle, Laue, … 
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Diffraction techniques

83

Single crystal diffraction - 4 circle mode

by adjusting 2𝜃, 𝜔, 𝜒 and 𝜙  
the sample is put in reflection 

position 

D10 (ILL)
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Diffraction techniques
Single crystal diffraction - Normal beam mode

84

cryostats, cryomagnets, … 
 cannot be tilted much 

→ confined to the scattering plane 
e.g. only (hk0) reflections 

→ lifting counter 
able to reach l=1, 2…
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Diffraction techniques
Single crystal diffraction - experimental procedure

85

- mount the sample 

- align it in the center of the Eulerian cradle 

- find the first reflection and index it correctly 

- find the second reflection and index it correctly 

- calculate a rough UB matrix  

- measure more reflections and refine the UB matrix 

- set the temperature, magnetic field, pressure etc. 

- collect many reflections at constant conditions  

- integrate the measured reflections 

- merge and average symmetry-equivalent reflections 

- make necessary corrections  

- refine a (magnetic) structure model 

single crystal glued on  
an aluminium sample holder
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Diffraction techniques

86

Single crystal diffraction - experimental procedure

- mount the sample 

- align it in the center of the Eulerian cradle 

- find the first reflection and index it correctly 

- find the second reflection and index it correctly 

- calculate a rough UB matrix  

- measure more reflections and refine the UB matrix 

- set the temperature, magnetic field, pressure etc. 

- collect many reflections at constant conditions  

- integrate the measured reflections 

- merge and average symmetry-equivalent reflections 

- make necessary corrections  

- refine a (magnetic) structure model 



14th Oxford School on Neutron Scattering | Navid Qureshi | ILL | Neutron diffraction

Diffraction techniques

87

set 2𝜃 and adjust 𝜒, 𝜙

Single crystal diffraction - experimental procedure

- mount the sample 

- align it in the center of the Eulerian cradle 

- find the first reflection and index it correctly 

- find the second reflection and index it correctly 

- calculate a rough UB matrix  

- measure more reflections and refine the UB matrix 

- set the temperature, magnetic field, pressure etc. 

- collect many reflections at constant conditions  

- integrate the measured reflections 

- merge and average symmetry-equivalent reflections 

- make necessary corrections  

- refine a (magnetic) structure model 
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Diffraction techniques
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set 2𝜃 and adjust 𝜒, 𝜙

Single crystal diffraction - experimental procedure

- mount the sample 

- align it in the center of the Eulerian cradle 

- find the first reflection and index it correctly 

- find the second reflection and index it correctly 

- calculate a rough UB matrix  

- measure more reflections and refine the UB matrix 

- set the temperature, magnetic field, pressure etc. 

- collect many reflections at constant conditions  

- integrate the measured reflections 

- merge and average symmetry-equivalent reflections 

- make necessary corrections  

- refine a (magnetic) structure model 
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Diffraction techniques
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set 2𝜃 and adjust 𝜒, 𝜙

Single crystal diffraction - experimental procedure

- mount the sample 

- align it in the center of the Eulerian cradle 

- find the first reflection and index it correctly 

- find the second reflection and index it correctly 

- calculate a rough UB matrix  

- measure more reflections and refine the UB matrix 

- set the temperature, magnetic field, pressure etc. 

- collect many reflections at constant conditions  

- integrate the measured reflections 

- merge and average symmetry-equivalent reflections 

- make necessary corrections  

- refine a (magnetic) structure model 
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Diffraction techniques
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set 2𝜃 and adjust 𝜒, 𝜙

Single crystal diffraction - experimental procedure

- mount the sample 

- align it in the center of the Eulerian cradle 

- find the first reflection and index it correctly 

- find the second reflection and index it correctly 

- calculate a rough UB matrix  

- measure more reflections and refine the UB matrix 

- set the temperature, magnetic field, pressure etc. 

- collect many reflections at constant conditions  

- integrate the measured reflections 

- merge and average symmetry-equivalent reflections 

- make necessary corrections  

- refine a (magnetic) structure model 
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Diffraction techniques
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phase diagram of CuO 
Villareal et al., PRL 109 167206 (2012)

Single crystal diffraction - experimental procedure

- mount the sample 

- align it in the center of the Eulerian cradle 

- find the first reflection and index it correctly 

- find the second reflection and index it correctly 

- calculate a rough UB matrix  

- measure more reflections and refine the UB matrix 

- set the temperature, magnetic field, pressure etc. 

- collect many reflections at constant conditions  

- integrate the measured reflections 

- merge and average symmetry-equivalent reflections 

- make necessary corrections  

- refine a (magnetic) structure model 
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Diffraction techniques

92

Single crystal diffraction - experimental procedure

- mount the sample 

- align it in the center of the Eulerian cradle 

- find the first reflection and index it correctly 

- find the second reflection and index it correctly 

- calculate a rough UB matrix  

- measure more reflections and refine the UB matrix 

- set the temperature, magnetic field, pressure etc. 

- collect many reflections at constant conditions  

- integrate the measured reflections 

- merge and average symmetry-equivalent reflections 

- make necessary corrections  

- refine a (magnetic) structure model 
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move crystal through reflection  
position by scanning 𝜔  

(or 𝜔-x𝜃)
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Diffraction techniques

93

Single crystal diffraction - experimental procedure

- mount the sample 

- align it in the center of the Eulerian cradle 

- find the first reflection and index it correctly 

- find the second reflection and index it correctly 

- calculate a rough UB matrix  

- measure more reflections and refine the UB matrix 

- set the temperature, magnetic field, pressure etc. 

- collect many reflections at constant conditions  

- integrate the measured reflections 

- merge and average symmetry-equivalent reflections 

- make necessary corrections  

- refine a (magnetic) structure model 
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sophisticated fitting routines  
e.g. COLL5, RACER
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Diffraction techniques
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Single crystal diffraction - experimental procedure

- mount the sample 

- align it in the center of the Eulerian cradle 

- find the first reflection and index it correctly 

- find the second reflection and index it correctly 

- calculate a rough UB matrix  

- measure more reflections and refine the UB matrix 

- set the temperature, magnetic field, pressure etc. 

- collect many reflections at constant conditions  

- integrate the measured reflections 

- merge and average symmetry-equivalent reflections 

- make necessary corrections  

- refine a (magnetic) structure model 

(120) (12̄0)

(1̄2̄0)(1̄20)

(120)
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Diffraction techniques
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Single crystal diffraction - experimental procedure

- mount the sample 

- align it in the center of the Eulerian cradle 

- find the first reflection and index it correctly 

- find the second reflection and index it correctly 

- calculate a rough UB matrix  

- measure more reflections and refine the UB matrix 

- set the temperature, magnetic field, pressure etc. 

- collect many reflections at constant conditions  

- integrate the measured reflections 

- merge and average symmetry-equivalent reflections 

- make necessary corrections  

- refine a (magnetic) structure model 

Extinction

Absorption

Multiple scattering
(h2 � h1 k2 � k1 l2 � l1)

Lorentz factor
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Diffraction techniques
Single crystal diffraction - experimental procedure
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- mount the sample 

- align it in the center of the Eulerian cradle 

- find the first reflection and index it correctly 

- find the second reflection and index it correctly 

- calculate a rough UB matrix  

- measure more reflections and refine the UB matrix 

- set the temperature, magnetic field, pressure etc. 

- collect many reflections at constant conditions  

- integrate the measured reflections 

- merge and average symmetry-equivalent reflections 

- make necessary corrections  

- refine a (magnetic) structure model 
magnetic structure of (Co0.1Ni0.9)3V2O8
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Diffraction techniques
Single crystal diffraction - other types of experiments
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phase transitions as function of T, H, p 
propagation vectors

volumetric mapping 
diffuse/weak scattering 

superlatice/satellite reflections

study of individual  
reflection profiles
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Diffraction techniques
Single crystal diffraction - Laue method

98

polychromatic beam → every accessible hkl plane is in reflection position  
     for a particular wavelength
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Diffraction techniques
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- quickly orient single crystals 

- observe phase transitions 

- magnetic satellites 

- find propagation vectors

Single crystal diffraction - Laue method
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Examples
Antiferromagnetism in MnO
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Additional peaks in the neutron 
diffraction pattern confirm Louis Néel’s 
suggestion of an antiferromagnetic 
state (1932).
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Examples
Crystal structure in HT superconductors
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X-rays neutrons

CuO6 octahedra were at the heart of 
Bednorz and Müller’s idea for HT 
superconductors in 1986. 

X-rays indeed yield an octahedral 
coordination, but X-rays are mainly 
scattered by heavy elements. 

Neutron diffraction yields the widely-
accepted structure with oxygen squares 
and CuO5 pyramids. 
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Examples
Li batteries
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X-rays have a poor sensibility for Li

Knowing exactly what the Li does while 
charging and operating the battery is 
crucial to relate the Li concentration with 
the electrochemical features

key importance for understanding and 
improving Li-ion batteries

M. Bianchini and E. Suard, ILL Annual report 2014, p. 16
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Summary
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Diffraction yields structural information: lattice constants, atomic positions, atomic 
displacement factors, occupations, space group 
symmetry, stress and strain, magnetic structures

Advantages of neutrons with respect to X-rays: sensitive to the nuclei position, contrast of 
scattering lengths, isotope effect, isotropic 
scattering, sensitive to magnetic moment

The structure factor is the Fourier transform of the unit cell scattering potential functions.

The scattering length/form factor is the Fourier transform of the atomic scattering potential 
function.

We measure I ⇠ F 2 phase information is lost models necessary


