Neutron diffraction Navid Qureshi (ILL, Grenoble)

scattering

14th Oxford School on Neutron Scattering

Scope of the lectures

- Diffraction techniques (X-rays, neutrons) are used to investigate crystalline solids, engineering materials, liquids, thin films, ...
- Whatever the technique used (conventional powder or single crystal diffraction, small angle scattering, reflectometry, ...) all of these refer to the coherent elastic scattering of a X-ray or neutron beam
- This lecture will focus on crystallography, i.e. the study of crystalline solids, which are described by infinite translational symmetry
- The scattered X-ray or neutron beams contain information which allow to reveal the 3-dimensional arrangement of atoms (and magnetic moments \longrightarrow Magnetism lecture by Prof. Wildes)

Outline

Today

- Crystallography

Direct lattice, symmetry operations, reciprocal lattice, Miller indices, ...

- Interaction neutron-sample
scattering by a potential, scattering length, form factor, structure factor, Debye Waller factor, ...

- Diffraction condition

Bragg's law, Laue condition

Tomorrow

- Symmetry in reciprocal space

Friedel law, Laue groups, forbidden reflections, Ewald construction

- Basic diffractometer

monochromators, collimators, detectors, ...

- Diffraction techniques

powder diffraction, single crystal diffraction, Laue diffraction,

- Examples

Motivation

When waves (water, light, neutrons, electrons, ...) pass through two slits whose distance is in the order of the wavelength, the scattered waves will interfere.
The interference scheme gives information about the distance of the slits.

Particles like neutrons can be associated with a de Broglie wavelength which is $1.8 \AA$ for thermal neutrons.

Neutrons are ideal to reveal the atomic arrangement in crystalline solids! How to describe a crystalline material?

Direct lattice

An ideal crystal is an infinite sequence of identical structure units in 3D space.
\longrightarrow periodic structure
crystal $=$ lattice + basis
infinite lattice of equivalent points

NaCl structure:

structure unit on each point

$$
\begin{array}{cc}
& \text { OK } \\
\text { lattice vectors } & \text { not OK } \\
\text { centered cell }
\end{array}
$$

Direct lattice

An ideal crystal is an infinite sequence of identical structure units in 3D space.
\longrightarrow periodic structure
crystal $=$ lattice + basis

infinite lattice of equivalent points
structure unit on each point

$$
\begin{array}{lc}
& \text { OK } \\
\text { lattice vectors } & \text { not OK } \\
& \text { centered cell }
\end{array}
$$

NaCl structure:

14th Oxford School on Neutron Scattering | Navid Qureshi | ILL | Neutron diffraction

Direct lattice

Crystal systems

Crystal system	Laue class
triclinic	$a \neq b \neq c, \boldsymbol{\alpha} \neq \boldsymbol{\beta} \neq \boldsymbol{\gamma}$
monoclinic	$a \neq b \neq c, \boldsymbol{\alpha}=\boldsymbol{\gamma}=90^{\circ}, \boldsymbol{\beta} \neq 90^{\circ}$
orthorhombic	$a \neq b \neq c, \boldsymbol{\alpha}=\boldsymbol{\beta}=\boldsymbol{\gamma}=90^{\circ}$
tetragonal	$a=b \neq c, \boldsymbol{\alpha}=\boldsymbol{\beta}=\boldsymbol{\gamma}=90^{\circ}$
trigonal	$a=b=c, \boldsymbol{\alpha}=\boldsymbol{\beta}=\boldsymbol{\gamma} \neq 90^{\circ}$
hexagonal	$a=b \neq c, \boldsymbol{\alpha}=\boldsymbol{\beta}=90^{\circ}, \gamma=120^{\circ}$
cubic	$a=b=c, \boldsymbol{\alpha}=\boldsymbol{\beta}=\boldsymbol{\gamma}=90^{\circ}$

Direct flattice

Centering translations $\rightarrow 14$ Bravais lattices

triclinic

monoclinic

orthorhombic

tetragonal

hexagonal

Centering type	Symbol	Translations
primitive	P	
one-face centered	A	$x, y+1 / 2, z+1 / 2$ $x+1 / 2, y, z+1 / 2$ $x+1 / 2, y+1 / 2, z$
	C	I
body centered	F	$x+1 / 2, y+1 / 2, z+1 / 2$ $x+1 / 2, y, z+1 / 2$ $x+1 / 2, y+1 / 2, z$
face centered	R	$x+2 / 3, y+1 / 3, z+1 / 3$ $x+1 / 3, y+2 / 3, z+2 / 3$
rhombohedrally centered	R	

Direct lattice

Symmetry operations

Rotations (order $n: 2 \pi / n$)

Roto-inversion (\bar{n})

Mirror planes (m)

Screw axes (rot + trans)

Inversion ($\overline{1}$)

Glide planes (mirror + trans)

Direct lattice

Why no 5-fold rotation?

2-fold
4-fold

5-fold

no gapless filling

Direct lattice

Why no 5-fold rotation?

5-fold rotation not compatible with translation symmetry:

Points generated by a rotation axis form a lattice plane. Lattice plane needs to fullfil translation symmetry:

$$
\begin{aligned}
& \overline{A E}=n \cdot \overline{B D} \\
& \overline{A E}=2 r \cdot \sin (2 \varphi)=4 r \sin \varphi \cos \varphi \\
& \overline{B D}=2 r \sin \varphi \\
& 4 r \sin \varphi \cos \varphi=n \cdot 2 r \sin \varphi \Rightarrow \cos \varphi=\frac{n}{2} \\
& n=-2,-1,0,1,2 \Rightarrow \varphi=180^{\circ}, 120^{\circ}, 90^{\circ}, 60^{\circ}, 0^{\circ}
\end{aligned}
$$

Only 1-, 2-, 3-, 4- and 6-fold rotation compatible with translation symmetry

Direct lattice

Symmetry operations

Mathematical description:

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
R_{11} & R_{12} & R_{13} \\
R_{21} & R_{22} & R_{23} \\
R_{31} & R_{32} & R_{33}
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)+\left(\begin{array}{c}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right)
$$

Seitz notation: (R|t)

Symmetry contained in the coordination triplet:
e.g. $2{ }_{1}$ screw axis along $c:-x,-y, z+1 / 2$

Direct fattice

Space groups

http://it.iucr.org/

Combining the 14 Bravais lattices with all symmetry operations leads to 230 space groups.

International Tables for Crystallography
 ISBN: 978-1-4020-4969-9 doi: 10.1107/97809553602060000001

This is the home page for International Tables, the definitive resource and reference work for crystallography. The series consists of the following volumes:

Guided tour

Volume A Space-group symmetry
2006 Edition | Contents | Sample pages | Indexes Volume A1 Symmetry relations between space groups 2011 Edition | Contents | Sample pages | Indexes 2006 Edition | Contents | Sample pages | Indexes
Volume B Reciprocal space
2010 Edition | Contents | Sample pages | Indexes | 2006 Edition | Contents | Sample pages | Indexes
Volume C Mathematical, physical and chemical tables 2006 Edition | Contents | Sample pages | Indexes
Volume D Physical properties of crystals
2013 Edition | Contents | Sample pages | Indexes 2006 Edition | Contents | Sample pages | Indexes Volume E Subperiodic groups

2010 Edition | Contents | Sample pages | Indexes 2006 Edition | Contents | Sample pages | Indexes
Volume F Crystallography of biological macromolecules 2012 Edition | Contents | Sample pages | Indexes 2006 Edition | Contents | Sample pages | Indexes
Volume G Definition and exchange of crystallographic data 2006 Edition | Contents | Sample pages | Indexes
Symmetry database

Direct flattice

Space groups

space group symbol
crystal class
symmetry operations

Origin at -1 on 2_{1}
$0 \leq x \leq 1 ; 0 \leq y \leq 1 / 4 ; 0 \leq z \leq 1$
(2) $2(0,1 / 2,0) 0, y, 0$
(3) $-1 \quad 0,0,0$

Direct lattice

Space groups
space group symbol

crystal class

symmetry operations

$P 2 \mathbf{1}_{1} / m$

No. 11
UNIQUE AXIS \boldsymbol{b}

$P 12 / m 1$

Monoclinic (i)
Patterson symmetry P12/m1

Origin at -1 on 2_{1}
$0 \leq x \leq 1 ; 0 \leq y \leq 1 / 4 ; 0 \leq z \leq 1$

space group symbol

Direct /attice

Space groups
space group symbol
symmetry operations

$P 2_{1} / m$

No. 11
UNIQUE AXIS \boldsymbol{b}

Monoclinic (i)
Patterson symmetry P12/m1

Origin at -1 on 2_{1}
Asymmetric unit
$0 \leq x \leq 1 ; 0 \leq y \leq 1 / 4 ; 0 \leq z \leq$
Symmetry operations
(1)
(2) $2(0,1 / 2,0) 0, y, 0$
(3) $-1 \quad 0,0,0$
(4) $m x, 1 / 4, z$

Direct lattice

Space groups

multiplicity

Wyckoff Ietter
site symmetry
extinction rules

Positions					
Multiplicity, Wyckoff letter, Site symmetry Coordinates					
					General:
4.1	(1) x, y, z	(2) $-x, y+1 / 2,-z$	(3) $-x,-y,-z$	(4) $x,-y+1 / 2, z$	$0 k 0: k=2 n$
					Special: as above, plus
$2 e m$	$x, 1 / 4, z$		-x, 3/4, -z		no extra conditions
$\begin{array}{lll}2 & d & -1\end{array}$	1/2,0, $1 / 2$		1/2, 1/2, 1/2		$h k l: k=2 n$
$\begin{array}{llll}2 & c & -1\end{array}$	0,0,1/2		0, 1/2, 1/2		$h k l: k=2 n$
$\begin{array}{llll}2 & b & -1\end{array}$	1/2,0,0		1/2, 1/2, 0		$h k l: k=2 n$
$\begin{array}{llll}2 & a & -1\end{array}$	0,0,0		0,1/2, 0		$h k l: k=2 n$

Direct lattice

Space groups

multiplicity

Wyckoff letter
site symmetry
extinction rules

Positions					
Multiplicity, Coordinates Wyckoff letter, Reflection conditions Site symmetry					
					General:
(f)	(1) x, y, z	(2) $-x, y+1 / 2,-z$	(3) $-x,-y,-z$	(4) $x,-y+1 / 2, z$	$0 k 0: k=2 n$
					Special: as above, plus
$2 e m$	$x, 1 / 4, z$		$-x, 3 / 4,-z$		no extra conditions
$2 \begin{array}{lll}2 & d & -1\end{array}$	1/2, 0, 1/2		1/2, 1/2, 1/2		$h k l: k=2 n$
$2 \begin{array}{lll}2 & -1\end{array}$	0,0, 1/2		0, 1/2, 1/2		$h k l: k=2 n$
$\begin{array}{llll}2 & b & -1\end{array}$	1/2,0,0		1/2, 1/2, 0		$h k l: k=2 n$
$\begin{array}{llll}2 & a & -1\end{array}$	0, 0, 0		0,1/2, 0		$h k l: k=2 n$

Direct lattice

Space groups

multiplicity

Wyckoff letter
site symmetry
extinction rules

Positions					
Multiplicity, Coordinates Wyckoff letter, Site symmetry Reflection conditions					
					General:
4 , 1	(1) x, y, z	(2) $-x, y+1 / 2,-z$	(3) $-x,-y,-z$	(4) $x,-y+1 / 2, z$	$0 k 0: k=2 n$
					Special: as above, plus
$2 e m$	$x, 1 / 4, z$		$-x, 3 / 4,-z$		no extra conditions
$2 \begin{array}{lll}2 & d & -1\end{array}$	1/2, $0,1 / 2$		1/2, 1/2, 1/2		$h k l: k=2 n$
$2 \begin{array}{lll}2 & -1\end{array}$	0,0, 1/2		0, 1/2, 1/2		$h k l: k=2 n$
$\begin{array}{llll}2 & b & -1\end{array}$	1/2,0,0		1/2, 1/2, 0		$h k l: k=2 n$
$\begin{array}{llll}2 & a & -1\end{array}$	0,0,0		$0,1 / 2,0$		$h k l: k=2 n$

Direct lattice

Space groups

multiplicity

Wyckoff letter
site symmetry
extinction rules

Reciprocal lattice

Space of wave vectors

Crystal lattice is periodic \longrightarrow periodic functions to describe it: $\Psi(\mathbf{r})=\exp (i \mathbf{k r})$

The reciprocal lattice of a Bravais lattice consists of all vectors \mathbf{k} for which

$$
\begin{gathered}
\Psi(\mathbf{r})=\exp (i \mathbf{k r})=\Psi(\mathbf{r}+\mathbf{R})=\exp [i \mathbf{k}(\mathbf{r}+\mathbf{R})] \\
\mathbf{R} \text { is a direct lattice vector }
\end{gathered}
$$

\rightarrow reciprocal lattice reflects the symmetry of the direct lattice

Which k-vectors build up the reciprocal space?

Reciprocal lattice

Example: 1D Dirac comb

Every periodic function $f(x)=f(x+\lambda)$ can be expressed by a Fourier series with

$$
k=m \cdot 2 \pi / \lambda
$$

Calculate Fourier coefficients by Fourier transform:

$$
\begin{gathered}
F(k)=\int \sum_{m=1}^{\infty} \cos \left(m \cdot \frac{2 \pi}{d} \cdot x\right) \cdot e^{-i k x}=\sum_{m} \delta\left(k-m \cdot \frac{2 \pi}{d}\right) \\
\text { with } \\
F T\left[\cos \left(k_{0} x\right)\right]=\delta\left(k-k_{0}\right)+\delta\left(k+k_{0}\right)
\end{gathered}
$$

Reciprocal lattice

Example: 1D Dirac comb

Every periodic function $f(x)=f(x+\lambda)$ can be expressed by a Fourier series with

$$
k=m \cdot 2 \pi / \lambda
$$

Calculate Fourier coefficients by Fourier transform:
$F(k)=\int \sum_{m=1}^{\infty} \cos \left(m \cdot \frac{2 \pi}{d} \cdot x\right) \cdot e^{-i k x}=\sum_{m} \delta\left(k-m \cdot \frac{2 \pi}{d}\right)$
$\stackrel{2 \pi / d}{\longleftrightarrow}$
with

$$
F T\left[\cos \left(k_{0} x\right)\right]=\delta\left(k-k_{0}\right)+\delta\left(k+k_{0}\right)
$$

\rightarrow reciprocal lattice of a Dirac comb is a Dirac comb with $2 \pi / d$

Reciprocal lattice

Bravais lattice in 3D

Consider a direct lattice L with a δ function on each lattice point:

$$
L(\mathbf{r})=\sum_{\mathbf{R}_{n} \in \mathbf{R}} \delta^{3}\left(\mathbf{r}-\mathbf{R}_{n}\right)
$$

Set of k-vectors must correspond to reciprocal lattice vectors \mathbf{G}, hence ...

$$
\Psi(\mathbf{r})=\Psi(\mathbf{r}+\mathbf{R}) \Rightarrow e^{i \mathbf{G r}}=e^{i \mathbf{G}(\mathbf{r}+\mathbf{R})} \Rightarrow e^{i \mathbf{G R}}=1 \text { or } \mathbf{G R}=n \cdot 2 \pi
$$

which is fulfilled for the reciprocal lattice vectors:

$$
\mathbf{a}^{*}=2 \pi \frac{\mathbf{b} \times \mathbf{c}}{\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})} \quad \mathbf{b}^{*}=2 \pi \frac{\mathbf{c} \times \mathbf{a}}{\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})} \quad \mathbf{c}^{*}=2 \pi \frac{\mathbf{a} \times \mathbf{b}}{\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})}
$$

$$
\mathbf{a}_{i} \cdot \mathbf{a}_{j}^{*}=2 \pi \delta_{i j}
$$

Each direct lattice has a reciprocal lattice.
The reciprocal lattice of a reciprocal lattice is the direct lattice itself.

Reciprocal lattice

Construction of reciprocal lattice \mathbf{a}_{j}^{*} from direct lattice \mathbf{a}_{i}

The scalar product of any direct lattice vector R_{i} and reciprocal lattice vector G_{j} is an integer (times 2π).

A reciprocal lattice vector is expressed by the Miller indices hkl.

$$
\mathbf{G}=h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}
$$

Reciprocal lattice

The scalar product of any direct lattice vector R
 an integer (times 2

A reciprocal lattice vector is expressed by the Miller indices hkl.

$$
\mathbf{G}=h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}
$$

reciprocal integer intersections with main axes:

$$
\text { a: -1 b: } 1 / 2 \quad c: \infty \quad \Rightarrow \quad\left(\begin{array}{lll}
-1 & 2 & 0
\end{array}\right)
$$

Every point in reciprocal space represents a set of direct lattice planes.

The reciprocal lattice vector is perpendicular to these planes.

Interaction neutron-samplè

Nuclear scattering

- mediated by strong force, short ranged ($\mathrm{fm}=10^{-15} \mathrm{~m}$)
- neutron wavelength much larger ($10^{-10} \mathrm{~m}$)
\longrightarrow cannot probe internal structure
\longrightarrow scattering is isotropic
- the interaction between the neutron and the atomic nucleus is represented by the Fermi pseudo-potential, a scalar field that is 0 except very close to the nucleus

advantage: neutron senses atomic position and not the electron cloud (bonds)

Scattering by a potential

Scattering cross section

Number of neutrons n detected in solid angle Ω

$$
\underbrace{d n}_{\mathrm{ns} \mathrm{~s}^{-1}}=\underbrace{\Phi}_{\mathrm{ncm} m^{-2} \mathrm{~s}^{-1}} \cdot \underbrace{d \Omega}_{1} \cdot \underbrace{\sigma(\theta, \phi)}_{\mathrm{cm}{ }^{2}}
$$

σ has the unit of a surface
usually in barns $=10^{-24} \mathrm{~cm}^{2}$

Scattering by a potential

Nuclear scattering

The wave function at a spatial position $r=$ sum of transmitted and scattered spherical wave function

$$
v_{k}^{s c a t}(\mathbf{r})=e^{i \mathbf{k r}}+f_{k}(\theta, \varphi) \frac{e^{i k r}}{r}
$$

Only $f_{k}(\theta, \varphi)$ depends on the scattering potential $V(\mathbf{r})$.

Scattering by a potential

Nuclear scattering

In the quantum mechanical treatment of scattering by a central potential, the stationary states $\varphi(\mathbf{r})$ verify:

$$
\left(\Delta+k^{2}\right) \varphi(\mathbf{r})=\frac{2 \mu}{\hbar^{2}} V(\mathbf{r}) \varphi(\mathbf{r})
$$

In the integral equation of scattering, the stationary wave-function is written :

$$
v_{k}^{s c a t}(\mathbf{r})=e^{i \mathbf{k r}}+\frac{2 \mu}{\hbar^{2}} \int G_{+}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) V\left(\mathbf{r}^{\prime}\right) v_{k}^{s c a t}\left(\mathbf{r}^{\prime}\right) d^{3} r^{\prime}
$$

where G_{+}is the outgoing Green's function used to solve the differential equation by using:

$$
\left(\Delta+k^{2}\right) G(\mathbf{r})=\delta(\mathbf{r})
$$

it can be shown that:

$$
G_{ \pm}(\mathbf{r})=-\frac{1}{4 \pi} \frac{e^{ \pm i \mathbf{k r}}}{r}
$$

Scattering by a potential

Nuclear scattering

In the quantum mechanical treatment of scattering by a central potential, the stationary states $\varphi(\mathbf{r})$ verify:

$$
\left(\Delta+k^{2}\right) \varphi(\mathbf{r})=\frac{2 \mu}{\hbar^{2}} V(\mathbf{r}) \varphi(\mathbf{r})
$$

(from Cohen-Tannoudji,
Quantum Mechanics, Volume 2 Chapter 8)

In the integral equation of scattering, the stationary wave-function is written :

$$
v_{k}^{s c a t}(\mathbf{r})=e^{i \mathbf{k r}}+\frac{2 \mu}{\hbar^{2}} \int G_{+}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) V\left(\mathbf{r}^{\prime}\right) v_{k}^{s c a t}\left(\mathbf{r}^{\prime}\right) d^{3} r^{\prime}
$$

$$
G_{ \pm}(\mathbf{r})=-\frac{1}{4 \pi} \frac{e^{ \pm i \mathbf{k r}}}{r}
$$

asymptotic behaviour $r \rightarrow \infty$

$$
\left|\mathbf{r}-\mathbf{r}^{\prime}\right| \approx r-\mathbf{u r}^{\prime}
$$

Scattering by a potential

Nuclear scattering

In the quantum mechanical treatment of scattering by a central potential, the stationary states $\varphi(\mathbf{r})$ verify:

$$
\left(\Delta+k^{2}\right) \varphi(\mathbf{r})=\frac{2 \mu}{\hbar^{2}} V(\mathbf{r}) \varphi(\mathbf{r})
$$

(from Cohen-Tannoudji,
Quantum Mechanics, Volume 2 Chapter 8)

In the integral equation of scattering, the stationary wave-function is written :

$$
v_{k}^{s c a t}(\mathbf{r})=e^{i \mathbf{k r}}+\frac{2 \mu}{\hbar^{2}} \int G_{+}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) V\left(\mathbf{r}^{\prime}\right) v_{k}^{s c a t}\left(\mathbf{r}^{\prime}\right) d^{3} r^{\prime}
$$

$v_{k}^{s c a t}(\mathbf{r})=e^{i \mathbf{k r}}+f_{k}(\theta, \varphi) \frac{e^{i k r}}{r} \approx e^{i \mathbf{k r}}-\frac{1}{4 \pi} \frac{e^{i k r}}{r} \frac{2 \mu}{\hbar^{2}} \int e^{-i k \mathbf{u r} \mathbf{r}^{\prime}} V\left(\mathbf{r}^{\prime}\right) v_{k}^{s c a t}\left(\mathbf{r}^{\prime}\right) d^{3} r^{\prime}$

$$
f_{k}(\theta, \varphi)=-\frac{1}{4 \pi} \frac{2 \mu}{\hbar^{2}} \int e^{-i k \mathbf{u r}^{\prime}} V\left(\mathbf{r}^{\prime}\right) v_{k}^{s c a t}\left(\mathbf{r}^{\prime}\right) d^{3} r^{\prime}
$$

asymptotic behaviour $r \rightarrow \infty$

$$
\left|\mathbf{r}-\mathbf{r}^{\prime}\right| \approx r-\mathbf{u r}^{\prime}
$$

Scattering by a potential

Born expansion

In the integral equation of scattering, the stationary wave-function is written :

$$
v_{k}^{s c a t}(\mathbf{r})=e^{i \mathbf{k r}}+\frac{2 \mu}{\hbar^{2}} \int G_{+}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) V\left(\mathbf{r}^{\prime}\right) v_{k}^{s c a t}\left(\mathbf{r}^{\prime}\right) d^{3} r^{\prime}
$$

Simple change of notation ($r \rightarrow r^{\prime}$ and $r^{\prime} \rightarrow r^{\prime \prime}$) :

$$
v_{k}^{s c a t}\left(\mathbf{r}^{\prime}\right)=e^{i \mathbf{k} \mathbf{r}^{\prime}}+\frac{2 \mu}{\hbar^{2}} \int G_{+}\left(\mathbf{r}^{\prime}-\mathbf{r}^{\prime \prime}\right) V\left(\mathbf{r}^{\prime \prime}\right) v_{k}^{s c a t}\left(\mathbf{r}^{\prime \prime}\right) d^{3} r^{\prime \prime}
$$

Born expansion:

$$
\begin{aligned}
v_{k}^{s c a t}(\mathbf{r})=e^{i \mathbf{k r}} & +\frac{2 \mu}{\hbar^{2}} \int G_{+}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) V\left(\mathbf{r}^{\prime}\right) e^{i \mathbf{k r}}\left(\mathbf{r}^{\prime}\right) d^{3} r^{\prime} \\
& +\frac{2 \mu}{\hbar^{2}} \iint G_{+}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) V\left(\mathbf{r}^{\prime}\right) G_{+}\left(\mathbf{r}^{\prime}-\mathbf{r}^{\prime \prime}\right) V\left(\mathbf{r}^{\prime \prime}\right) v_{k}^{s c a t}\left(\mathbf{r}^{\prime \prime}\right)
\end{aligned}
$$

Scattering by a potential

Conventions for this lecture

\mathbf{k}_{i} : initial wavevector
\mathbf{k}_{f} : final wavevector
\mathbf{k} : momentum transfer, scattering vector
G : reciprocal lattice vector

Elastic scattering: $\quad\left|\mathbf{k}_{i}\right|=\left|\mathbf{k}_{f}\right|=k$

Scattering by a potential

Born approximation

Born expansion:

$$
\begin{aligned}
v_{k}^{s c a t}(\mathbf{r})=e^{i \mathbf{k}_{i} \mathbf{r}} & +\frac{2 \mu}{\hbar^{2}} \int G_{+}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) V\left(\mathbf{r}^{\prime}\right) e^{i \mathbf{k}_{i} \mathbf{r}^{\prime}}\left(\mathbf{r}^{\prime}\right) d^{3} r^{\prime} \\
& +\frac{2 \mu}{\hbar^{2}} \iint G_{+}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) V\left(\mathbf{r}^{\prime}\right) G_{+}\left(\mathbf{r}^{\prime}-\mathbf{r}^{\prime \prime}\right) V\left(\mathbf{r}^{\prime \prime}\right) v_{k}^{s c a t}\left(\mathbf{r}^{\prime \prime}\right)
\end{aligned}
$$

Inserting this into the scattered amplitude would give the Born expansion of the scattered amplitude. If the potential $\mathrm{V}(\mathbf{r})$ is weak, we can limit ourselves to the first order of $\mathrm{V}(\mathbf{r})$. This is the Born approximation. The scattered amplitude therefore becomes:

$$
\begin{aligned}
f_{k}(\theta, \varphi) & =-\frac{1}{4 \pi} \frac{2 \mu}{\hbar^{2}} \int e^{-i k \mathbf{u r}^{\prime}} V\left(\mathbf{r}^{\prime}\right) v_{k}^{s c a t}\left(\mathbf{r}^{\prime}\right) d^{3} r^{\prime}=-\frac{1}{4 \pi} \frac{2 \mu}{\hbar^{2}} \int e^{-i k \mathbf{u r}} V\left(\mathbf{r}^{\prime}\right) e^{i \mathbf{k}_{i} \mathbf{r}^{\prime}} d^{3} r^{\prime} \\
& =-\frac{1}{4 \pi} \frac{2 \mu}{\hbar^{2}} \int e^{-i\left(\mathbf{k}_{f}-\mathbf{k}_{i}\right) \mathbf{r}^{\prime}} V\left(\mathbf{r}^{\prime}\right) d^{3} r^{\prime}=-\frac{1}{4 \pi} \frac{2 \mu}{\hbar^{2}} \int e^{-i \mathbf{k} \mathbf{r}^{\prime}} V\left(\mathbf{r}^{\prime}\right) d^{3} r^{\prime}
\end{aligned}
$$

The scattering amplitude is related to the Fourier transform of the potential function.

Scattering by a potential

Born approximation

The scattering amplitude is related to the Fourier transform of the potential function.

$$
f_{k}(\theta, \phi)=-\frac{1}{4 \pi} \frac{2 \mu}{\hbar^{2}} \int V(\mathbf{r}) e^{-i \mathbf{k} \mathbf{r}} d^{3} r
$$

With the Fermi pseudo potential for neutron scattering from a nucleus $V(\mathbf{r})=\frac{2 \pi \hbar^{2}}{m_{n}} b \delta^{3}(\mathbf{r})$

$$
\left|f_{k}(\theta, \phi)\right|=b
$$

Neutron scattering from a nucleus is isotropic!

Scattering by a potential

Atomic form factor or scattering length

The amplitude of the scattered wave (the Fourier transform of the potential function) is called the atomic form factor f (X-rays) or scattering length b (neutrons).

advantage with neutrons: scattered intensity does not drop with increasing scattering angle

NHOCHOM

Scattering by a potential

Nuclear scattering

Scattering lengths (analog to X-ray form factor)

superposition of resonance scattering with slowly increasing potential scattering due to atomic weight

advantages: contrast between neighbouring elements light elements can be measured easily isotope effect ($b_{H}=-3.7, b_{D}=6.8$)

Scattering by a potential

Nuclear scattering

Scattering lengths (analog to X-ray form factor)

superposition of resonance scattering with slowly increasing potential scattering due to atomic weight

Example KCl :
scattering lengths of K and Cl are very different \longrightarrow strong contrast

X-rays would see a primitive cell with half the lattice constant

advantages: contrast between neighbouring elements light elements can be measured easily isotope effect ($\mathrm{b}_{\boldsymbol{H}}=-3.7, \mathrm{~b}_{\mathrm{D}}=6.8$)

Diffraction condition

Bragg's law

Imagine a crystal with only one atom per unit-cell. For which \mathbf{k} is the intensity non-zero?

lattice planes with Miller indices hkl (hkl) intercepts real cell axes at a/h b/k c/l d is the distance between the planes

Diffraction can be considered as the coherent superposition of scattered waves from this set of planes

Diffraction condition

Bragg's law

Imagine a crystal with only one atom per unit-cell. For which \mathbf{k} is the intensity non-zero?

lattice planes by Miller indices hkl (hkl) intercepts real cell axes at a/h b/k c/l d is the distance between the planes

Path length difference: $2 d \sin \theta$ Constructive interference: $n \cdot \lambda$
Bragg law: $\quad n \lambda=2 d \sin \theta$

Diffraction condition

Laue condition (equivalent to Bragg's law)

Scattering of plane wave exp(ikr) from two lattice points at 0 and \mathbf{R}

The path difference is:

$$
\Delta s(\mathbf{R})=\mathbf{R} \cdot \frac{\mathbf{k}_{f}}{k_{f}}-\mathbf{R} \cdot \frac{\mathbf{k}_{i}}{k_{i}}
$$

Constructive interference for:

$$
\Delta s=n \cdot \lambda=n \cdot \frac{2 \pi}{k} \quad\left(k=k_{i}=k_{f}\right)
$$

With definition of reciprocal lattice $\mathbf{G} \cdot \mathbf{R}=n \cdot 2 \pi$:

$$
\Delta s \cdot k=\mathbf{R} \cdot\left(\mathbf{k}_{f}-\mathbf{k}_{i}\right)=\mathbf{R} \cdot \mathbf{k}=n \cdot 2 \pi=\mathbf{G R} \Rightarrow \mathbf{k}=\mathbf{G}
$$

Momentum transfer equal to a lattice vector \longrightarrow Crystal can only provide discrete momentum kicks

Scattering from a unit cell

Structure factor (nuclear scattering)

imagine two scattering potentials (atoms), the first at 0 , the second at \mathbf{r}

The path difference is:

$$
\Delta s(\mathbf{r})=\mathbf{r} \cdot \frac{\mathbf{k}_{f}}{k_{f}}-\mathbf{r} \cdot \frac{\mathbf{k}_{i}}{k_{i}}
$$

Therefore, the phase difference is:

$$
\varphi(\mathbf{r})=2 \pi \frac{\Delta s}{\lambda}=k \Delta s=\left(\mathbf{k}_{f}-\mathbf{k}_{i}\right) \cdot \mathbf{r}=\mathbf{G} \cdot \mathbf{r}
$$

Sum up phase differences over atoms in unit cell:

$$
F(h k l)=\sum_{j} b_{j} \exp \left(i \mathbf{G r}_{j}\right)=\sum_{j} b_{j} \exp \left[2 \pi i\left(h x_{j}+k y_{j}+l z_{j}\right)\right]-\mathbf{r} \cdot \frac{\mathbf{k}_{i}}{k_{i}} \mathbf{r} \cdot \frac{\mathbf{k}_{f}}{k_{f}}
$$

Structure factor $F(h k l)$ is the Fourier transform of the unit cell scattering potential.

Scattering from a unit cell

The phase problem

Now we know how to calculate the structure factor:

$$
F(h k l)=\sum_{j} b_{j} \exp \left(i \mathbf{G r}_{j}\right)=\sum_{j} b_{j} \exp \left[2 \pi i\left(h x_{j}+k y_{j}+l z_{j}\right)\right]
$$

BUT... a diffraction experiment yields the intensity of the scattered wave:

$$
I \sim F^{2}
$$

Important information is lost as only the amplitude can be recovered.
This is known as the phase problem in crystallography.

Consequence: The scattering potential cannot be determined without a model.

Scattering from a unit cell

The phase problem

$$
F(u, v)=M(u, v) e^{i \phi}
$$

Consequence: The scattering potential cannot be determined without a model.

Scattering from a unit cell

Debye-Waller factor

Until now our derivation of the structure factor is only valid for fixed atomic positions, i.e. $\mathrm{T}=0 \mathrm{~K}$.
One has to consider the atomic displacement due to thermal motion!
Atoms may have very large displacements with respect to the Fermi length (up to 10% of atomic distance).
Atomic position can be separated into an equilibrium position and a time-dependent displacement:

$$
F=\sum_{j} \exp (i \mathbf{G r})=\sum_{j} \exp \left[i \mathbf{G}\left(\mathbf{r}_{j, 0}+\mathbf{u}_{j}(t)\right)\right]=\sum_{j} \exp \left(i \mathbf{G r}_{j, 0}\right)\left\langle\exp \left[i \mathbf{G} \mathbf{u}_{j}(t)\right]\right\rangle
$$

For small displacements:

$$
\left\langle\exp \left[i \mathbf{G} \mathbf{u}_{j}(t)\right]\right\rangle \approx 1+i\left\langle\mathbf{G} \mathbf{u}_{j}(t)\right\rangle-\frac{1}{2}\left\langle\left[\mathbf{G} \mathbf{u}_{j}(t)\right]^{2}\right\rangle
$$

Scattering from a unit cell

Debye-Waller factor

Until now our derivation of the structure factor is only valid for fixed atomic positions, i.e. $\mathrm{T}=0 \mathrm{~K}$.
One has to consider the atomic displacement due to thermal motion!
Atoms may have very large displacements with respect to the Fermi length (up to 10% of atomic distance)
Atomic position can be separated into an equilibrium position and a time-dependent displacement:

$$
\begin{aligned}
& F=\sum_{j} \exp (i \mathbf{G r})=\sum_{j} \exp \left[i \mathbf{G}\left(\mathbf{r}_{j, 0}+\mathbf{u}_{j}(t)\right)\right]=\sum_{j} \exp \left(i \mathbf{G} \mathbf{r}_{j, 0}\right)\left\langle\exp \left[i \mathbf{G} \mathbf{u}_{j}(t)\right]\right\rangle \\
& \text { all displacements: }
\end{aligned}
$$

For small displacements:

$$
\left\langle\exp \left[i \mathbf{G} \mathbf{u}_{j}(t)\right]\right\rangle \approx 1+\underbrace{i\left\langle\mathbf{G} \mathbf{u}_{j}(t)\right\rangle}_{0}-\frac{1}{2}\langle[\underbrace{\mathbf{G} \mathbf{u}_{j}(t)}_{\langle\cos \theta\rangle=1}]^{2}\rangle=1-\frac{1}{2} G^{2}\left\langle u_{j}^{2}(t)\right\rangle \approx \exp \left[-\frac{1}{2} G^{2}\left\langle u_{j}^{2}(t)\right\rangle\right]
$$

Scattering from a unit cell

Debye-Waller factor

Until now our derivation of the structure factor is only valid for fixed atomic positions, i.e. $\mathrm{T}=0 \mathrm{~K}$.
One has to consider the atomic displacement due to thermal motion!
Atoms may have very large displacements with respect to the Fermi length (up to 10% of atomic distance)
Atomic position can be separated into an equilibrium position and a time-dependent displacement:

$$
\begin{aligned}
& \qquad F=\sum_{j} \exp (i \mathbf{G r})=\sum_{j} \exp \left[i \mathbf{G}\left(\mathbf{r}_{j, 0}+\mathbf{u}_{j}(t)\right)\right]=\sum_{j} \exp \left(i \mathbf{G r}_{j, 0}\right)\left\langle\exp \left[i \mathbf{G} \mathbf{u}_{j}(t)\right]\right\rangle \\
& \text { For small displacements: }
\end{aligned}
$$

$$
\left\langle\exp \left[i \mathbf{G} \mathbf{u}_{j}(t)\right]\right\rangle \approx 1+\underbrace{i\left\langle\mathbf{G} \mathbf{u}_{j}(t)\right\rangle}_{0}-\frac{1}{2}\langle[\underbrace{\mathbf{G} \mathbf{u}_{j}(t)}_{\langle\cos \theta\rangle=1}]^{2}\rangle=1-\frac{1}{2} G^{2}\left\langle u_{j}^{2}(t)\right\rangle \approx \exp \left[-\frac{1}{2} G^{2}\left\langle u_{j}^{2}(t)\right\rangle\right]
$$

With $G=\frac{4 \pi \sin \theta}{\lambda}$:

$$
F=\sum_{j} \exp \left(i \mathbf{G} \mathbf{r}_{j, 0}\right) \exp \left(-8 \pi^{2}\left\langle u_{j}^{2}\right\rangle \frac{\sin ^{2} \theta}{\lambda^{2}}\right)=\sum_{j} \exp \left(i \mathbf{G r}_{j, 0}\right) \exp \left(-B_{j} \frac{\sin ^{2} \theta}{\lambda^{2}}\right)
$$ with the isotropic displacement parameter: $B_{j}=8 \pi^{2}\left\langle u_{j}^{2}\right\rangle$

Scattering from a unit cell

Debye-Waller factor

Scattering function is damped at high momentum transfer

Effect on measured peaks:

Intensity is reduced, but the peak width and the position stay the same!

Scattering from a unit cell

Anisotropic displacement parameters

The Atomic Displacement parameter can be anisotropic, in which case a trivariate Gaussian is assumed.

In the most general case (no constraint from point symmetry of the site), there are 6 independent u_{ij} displacement parameter (second rank tensor).

$$
\begin{gathered}
\left(\begin{array}{lll}
u_{11} & u_{12} & u_{13} \\
u_{12} & u_{22} & u_{23} \\
u_{13} & u_{23} & u_{33}
\end{array}\right) \\
F(h k l)=\sum_{j} \exp \left(i \mathbf{G r}_{j, 0}\right) \exp \left[-2 \pi^{2}\left\langle(\mathbf{u G})^{2}\right\rangle\right]
\end{gathered}
$$

Summary

What have we learned so far?

Crystals have a 3D periodicity and further symmetry properties. Classification into crystal systems, Bravais lattices and space groups.

Every direct lattice has a reciprocal lattice. It consists of the \mathbf{k} vectors of the scattered waves. a^{*} is perpendicular to b and c, b^{*} is perpendicular to c and a, \ldots

The scattering length is the Fourier transform of the potential function.
The structure factor is the Fourier transform of the unit cell potential functions.

Atomic displacements reduce the scattered intensity due to the Debye-Waller factor. Crystal structures need to be solved using models (phase problem).

Outline

Yesterday

- Crystallography

Direct lattice, symmetry operations, reciprocal lattice, Miller indices, ...

- Interaction neutron-sample

scattering by a potential, scattering length, form factor, structure factor, Debye Waller factor, ...

- Diffraction condition

Bragg's law, Laue condition

Today

- Symmetry in reciprocal space

Friedel law, Laue groups, forbidden reflections, Ewald construction

- Basic diffractometer

monochromators, collimators, detectors, ...

- Diffraction techniques
powder diffraction, single crystal diffraction, Laue diffraction,
- Examples

Symmetry in reciprocal space

Friedel law

... relates inverse Q points and stems from the property of Fourier transforms of real functions:

$$
F(\mathbf{k})=\sum_{j} b_{j} \exp \left(i \mathbf{k r}_{j}\right)
$$

if b_{j} is real then:

$$
F(-\mathbf{k})=\sum_{j} b_{j} \exp \left(-i \mathbf{k r}_{j}\right)=F^{*}(\mathbf{k})
$$

since the scattered intensity is proportional to $F F^{*}$

$$
I(\mathbf{k})=F(\mathbf{k}) F^{*}(\mathbf{k})=F^{*}(-\mathbf{k}) F(-\mathbf{k})=I(-\mathbf{k})
$$

\rightarrow scattered intensities of Friedel pairs are equal if b_{j} are real reciprocal space has inversion symmetry even if the real space has not

Symmetry in reciprocal space

Friedel law

... is violated when the neutron energy is close to a resonance of the scatterer, in which case the anomalous scattering length $b=b^{\prime}+i b^{\prime \prime}$ has to be considered

Without inversion symmetry in real lattice:

$$
F(-\mathbf{k})=\sum_{j} b_{j} \exp \left(-i \mathbf{k} \mathbf{r}_{j}\right) \neq F^{*}(\mathbf{k})
$$

This property can be used to determine the absolute handedness of chiral crystals for example.
(Most commonly X-ray anomalous scattering is used.)

Symmetry in reciprocal space

- Friedel law holds almost all of the time (especially in neutron scattering unless very high incident energies are used)
- Symmetries in real space are also valid in reciprocal space (without the translation)
- Combining the two above $\longrightarrow 11$ Laue groups

Crystal system	Laue class
triclinic	-1
monoclinic	$2 / m$
orthorhombic	$m m m$
tetragonal	$4 / m ; 4 / m m m$
trigonal	$-3 ;-3 / m$
hexagonal	$6 / m ; 6 / m m m$
cubic	$m 3 ; m 3 m$

crystal system can only be determined by the Laue symmetry (symmetry of intensities)

Example: lattice parameters nearly orthorhombic

$$
\begin{array}{ccc}
a=10.097 \AA & b=13.978 \AA & c=18.123 \AA \\
\alpha=90.00^{\circ} & \beta=90.10^{\circ} & \gamma=90.00^{\circ}
\end{array}
$$

$$
\begin{aligned}
& \text { 2/m: }(\mathrm{hkl})=(-\mathrm{h}-\mathrm{k}-\mathrm{l})=(\mathrm{h}-\mathrm{k} \mathrm{I})=(-\mathrm{h} k-\mathrm{l}) \\
& \text { mmm: }(\mathrm{h} \mathrm{k} \mathrm{I})=(-\mathrm{h}-\mathrm{k}-\mathrm{I})=(\mathrm{h}-\mathrm{k} \mathrm{I})=(-\mathrm{h} k-\mathrm{I}) \\
& =(-h k I)=(h-k-I)=(-h-k I)=(h k-I)
\end{aligned}
$$

Symmetry in reciprocal space

- Friedel law holds almost all of the time
(especially in neutron scattering unless very high incident energies are used)
- Symmetries in real space are also valid in reciprocal space (without the translation)
- Combining the two above $\longrightarrow 11$ Laue groups

crystal system can only be determined by the Laue symmetry (symmetry of intensities)

Example: Iattice parameters nearly orthorhombic

$$
\begin{array}{ccc}
a=10.097 \AA & b=13.978 \AA & c=18.123 \AA \\
\alpha=90.00^{\circ} & \beta=90.10^{\circ} & \gamma=90.00^{\circ}
\end{array}
$$

2/m: $(\mathrm{hkl})=(-\mathrm{h}-\mathrm{k}-\mathrm{I})=(\mathrm{h}-\mathrm{k} \mathrm{I})=(-\mathrm{h} \mathrm{k}-\mathrm{l})$
mmm: $(\mathrm{h} k \mathrm{I})=(-\mathrm{h}-\mathrm{k}-\mathrm{I})=(\mathrm{h}-\mathrm{kI})=(-\mathrm{h} k-\mathrm{I})$

$$
=(-h k l)=(h-k-l)=(-h-k l)=(h k-l)
$$

Symmetry in reciprocal space

Systematic absences

Systematic lack of scattered intensity due to translational crystal symmetry:

- lattice centering
- screw axes
- glide planes

Direct consequence of exact cancellation of structure factors. Example C-centering:

$$
\begin{aligned}
F(h k l) & =b\left[e^{2 \pi i(h x+k y+l z)}+e^{2 \pi i[h(x+1 / 2)+k(y+1 / 2)+l z]}\right) \\
& =b e^{2 \pi i(h x+k y+l z)} \cdot\left(1+e^{\pi i(h+k)}\right) \\
& =\left\{\begin{array}{lll}
2 b & , \text { if } & h+k=2 n \\
0 & , \text { if } & h+k=2 n+1
\end{array}\right.
\end{aligned}
$$

Hundrath

Symmetry in reciprocal space

Systematic absences

Systematic lack of scattered intensity due to translational crystal symmetry:

- lattice centering
- screw axes
- glide planes

Direct consequence of exact cancellation of structure factors. Example screw axis:

$$
\begin{aligned}
F(h k l) & =b\left[e^{2 \pi i(h x+k y+l z)}+e^{2 \pi i[-h x-k y+l(z+1 / 2)]}\right] \\
& =b e^{2 \pi i l z} \cdot\left(1+e^{\pi i l}\right) \quad(\text { for } h=k=0)
\end{aligned}
$$

\Rightarrow only (00l) reflections with $l=$ even

Ewald construction

Monochromatic source

- simple method to find out which scattered \mathbf{k}_{f} are possible
- the idea of P. P. Ewald was to decouple real and reciprocal lattice
- use incident wave number

$$
s_{i}=k_{i} / 2 \pi
$$

- draw a sphere of radius

$$
s=2 \pi / \lambda
$$

- origin of reciprocal space is at extreme point of s
- reflection condition fulfilled for reciprocal space points lying on the surface of the Ewald sphere

Ewald construction

Monochromatic source

- simple method to find out which scattered \mathbf{k}_{f} are possible
- the idea of P. P. Ewald was to decouple real and reciprocal lattice
- use incident wave number

$$
s_{i}=k_{i} / 2 \pi
$$

- draw a sphere of radius

$$
s=2 \pi / \lambda
$$

- origin of reciprocal space is at extreme point of s
- reflection condition fulfilled for reciprocal space points lying on the surface of the Ewald sphere

ω scan

Ewald construction

Polychromatic source (Laue method)

- simple method to find out which scattered \mathbf{k}_{f} are possible
- the idea of P. P. Ewald was to decouple real and reciprocal lattice
- use incident wave number

$$
s_{i}=k_{i} / 2 \pi
$$

- draw two spheres of radius

$$
s_{1}=2 \pi / \lambda_{\min } \quad s_{2}=1 / \lambda_{\max }
$$

- origin of reciprocal space is at extreme point of s
- reflection condition fulfilled for reciprocal space points lying between the two
 Ewald spheres

Ewald construction

Monochromatic source (Powder method)

- simple method to find out which scattered \mathbf{k}_{f} are possible
- the idea of P. P. Ewald was to decouple real and reciprocal lattice
- use incident wave number

$$
s_{i}=k_{i} / 2 \pi
$$

- draw a sphere of radius

$$
s=2 \pi / \lambda
$$

- origin of reciprocal space is at extreme point of s
- reflection condition fulfilled for the intersection of the Ewald sphere with spheres
 around 0 with radii $Q(h k l)$

The basic diffractometer

Constant wavelength (reactor source)

The basic diffractometer

Constant wavelength (reactor source)

The basic diffractometer

Constant wavelength (reactor source)

monochromator

> I

The basic diffractometer

Constant wavelength (reactor source)

filter
diffracts shorter λ out of the beam
$\lambda / 2 d_{\text {filter }}>1$
typically PG, Be
no $\lambda / 2$ filter needed for Si , Ge
(111) is used, because (222) is forbidden

The basic diffractometer

Constant wavelength (reactor source)

sample environment
cryostat, cryomagnet, furnace, pressure cell, CryoPAD

Homer

The basic diffractometer

Constant wavelength (reactor source)

collimator
e.g. radial oscillating collimator reduces background from sample environment
or another Soller collimator to increase resolution

The basic diffractometer

Constant wavelength (reactor source)

detector

> I $+$

Time-offlight diffractometer

Polychromatic (spallation source)

target $=\sim$

chopper
defines the wavelength band avoids frame overlap

Time-offlight diffractometer

Polychromatic (spallation source)

Diffraction techniques

Powder diffraction

D20 (high flux)

sample in a vanadium container V scatters only incoherently

Diffraction techniques

Powder diffraction

Diffraction techniques

Powder diffraction

Result: Diffraction pattern

Useful information lies in the

- position (or t.o.f)
- the intensity
- the shape and width
of the reflections.

Diffraction techniques

Powder diffraction

1. Position (or t.o.f)

Bragg's law $\quad n \lambda=2 d \sin \theta$
monoclinic

$$
d=\left(\frac{h^{2}}{a^{2} \sin ^{2} \beta}+\frac{k^{2}}{b^{2}}+\frac{l^{2}}{c^{2} \sin ^{2} \beta}-\frac{2 h l \cos \beta}{a c \sin ^{2} \beta}\right)^{-\frac{1}{2}}
$$

orthorhombic

$$
\begin{gathered}
d=\left(\frac{h^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}+\frac{l^{2}}{c^{2}}\right)^{-\frac{1}{2}} \\
\text { cubic } \\
d=a\left(h^{2}+k^{2}+l^{2}\right)^{-\frac{1}{2}}
\end{gathered}
$$

with θ and λ known \rightarrow able to obtain lattice parameters

Diffraction techniques

Powder diffraction

2. Intensity $I \sim F^{2}$

nuclear structure factor
(interaction between neutron and core potential of nuclei)

$$
F_{N}(\mathbf{k})=\sum_{j} b_{j} \exp \left(i \mathbf{k r}_{j}\right) \exp \left(-B_{j} \frac{\sin ^{2} \theta}{\lambda^{2}}\right)
$$

magnetic structure factor
(interaction between neutron and electron's magnetic field)

$$
\mathbf{F}_{M}(\mathbf{k})=\sum_{j} \boldsymbol{\mu}_{j} f_{j}(\mathbf{k}) \exp \left(i \mathbf{k r}_{j}\right) \exp \left(-B_{j} \frac{\sin ^{2} \theta}{\lambda^{2}}\right)
$$

$$
f(\mathbf{k})=\int_{-\infty}^{\infty} \rho_{\text {mag }}(\mathbf{r}) \exp (i \mathbf{k r}) d \mathbf{r}
$$

Diffraction techniques

Powder diffraction

3. Peak width and shape

source, monochromator, slits, collimators, sample strain, stress, etc. have an influence on the peak shape and the peak width

Caglioti formula

$$
F W H M^{2}=u \tan ^{2} \theta+v \tan \theta+w
$$

resolution function minimum at the take-off angle $2 \theta \mathrm{~m}$ (focussing effect)

T.O.F.: The resolution function is a constant for a given scattering angle

Diffraction techniques

Powder diffraction - Corrections

Lorentz factor
 Asymmetry

Preferred orientation Absorption
needles, platelets, etc. sample absorption tend to have a preferred is angle dependent orientation
no statistical orientation of crystallites
some (hkl) families like e.g. (hk0), (00l), etc. might be favoured

Diffraction techniques

Which powder diffractometer? Example: $\mathrm{LaO}_{1-\mathrm{x}} \mathrm{F}_{\mathrm{X}} \mathrm{Fe} \mathrm{As}$

orthorhombic distortion as seen by the splitting of the (220) ${ }_{\mathrm{T}}$ into the (400) o and (040)o reflections

high resolution needed
weak magnetic reflections at low 2θ angles compared to strong nuclear reflections.

high flux needed

Diffraction techniques

High resolution vs. high flux (reactor source)

$$
\frac{\Delta \lambda}{\lambda}=\Delta \theta_{M} \cot \theta_{M}
$$

High-resolution diffractometer (e.g. D2B)

- large take-off angle \rightarrow resolution minimum at high 2θ, small $\Delta \lambda / \lambda$
- Soller collimators to decrease ($\alpha_{1}, \alpha_{2}, \alpha_{3}$) divergence
- bigger sample does not influence resolution

High-flux diffractometer (e.g. D20)

- Iow take-off angle \rightarrow resolution minimum at low 2θ, high $\Delta \lambda / \lambda$
- large focusing monochromator with large mosaic spread
- no collimation
- monochromator reflectivity increases with λ^{3}
- increasing sample size \rightarrow more intensity \rightarrow less resolution

Diffraction techniques

Powder diffraction

Thermodiffraction

Collection of diffraction patterns as a function of temperature.
Clearly reveals structural and magnetic phase transitions.

Diffraction techniques

Single crystal diffraction

- single crystal experiments take 3-10 days
- only if neutron powder and X-ray single crystal experiments fail
- Iattice parameters and rough orientation need to be known (not for Laue)
- different techniques: normal beam, 4 circle, Laue, ...

Diffraction techniques

Single crystal diffraction - 4 circle mode

Diffraction techniques

Single crystal diffraction - Normal beam mode

cryostats, cryomagnets, ... cannot be tilted much
\rightarrow confined to the scattering plane e.g. only (hk0) reflections
\rightarrow lifting counter able to reach $/=1,2 \ldots$

Diffraction techniques

Single crystal diffraction - experimental procedure

- mount the sample

- align it in the center of the Eulerian cradle
- find the first reflection and index it correctly
- find the second reflection and index it correctly
- calculate a rough UB matrix
- measure more reflections and refine the UB matrix
- set the temperature, magnetic field, pressure etc.
- collect many reflections at constant conditions
- integrate the measured reflections
- merge and average symmetry-equivalent reflections
- make necessary corrections

single crystal glued on an aluminium sample holder
- refine a (magnetic) structure model

Diffraction techniques

Single crystal diffraction - experimental procedure

- mount the sample

- align it in the center of the Eulerian cradle
- find the first reflection and index it correctly
- find the second reflection and index it correctly
- calculate a rough UB matrix
- measure more reflections and refine the UB matrix
- set the temperature, magnetic field, pressure etc.
- collect many reflections at constant conditions
- integrate the measured reflections

- merge and average symmetry-equivalent reflections

Diffraction techniques

Single crystal diffraction - experimental procedure

- mount the sample
- align it in the center of the Eulerian cradle
- find the first reflection and index it correctly
- find the second reflection and index it correctly
- calculate a rough UB matrix
- measure more reflections and refine the UB matrix
- set the temperature, magnetic field, pressure etc.
- collect many reflections at constant conditions
- integrate the measured reflections
- merge and average symmetry-equivalent reflections
- make necessary corrections
- refine a (magnetic) structure model

set 2θ and adjust χ, ϕ

Diffraction techniques

Single crystal diffraction - experimental procedure

- mount the sample
- align it in the center of the Eulerian cradle
- find the first reflection and index it correctly
- find the second reflection and index it correctly
- calculate a rough UB matrix
- measure more reflections and refine the UB matrix
- set the temperature, magnetic field, pressure etc.
- collect many reflections at constant conditions
- integrate the measured reflections
- merge and average symmetry-equivalent reflections
- make necessary corrections

set 2θ and adjust χ, ϕ
- refine a (magnetic) structure model

Diffraction techniques

Single crystal diffraction - experimental procedure

- mount the sample
- align it in the center of the Eulerian cradle
- find the first reflection and index it correctly
- find the second reflection and index it correctly
- calculate a rough UB matrix
- measure more reflections and refine the UB matrix
- set the temperature, magnetic field, pressure etc.
- collect many reflections at constant conditions
- integrate the measured reflections
- merge and average symmetry-equivalent reflections
- make necessary corrections

set 2θ and adjust χ, ϕ
- refine a (magnetic) structure model

Diffraction techniques

Single crystal diffraction - experimental procedure

- mount the sample
- align it in the center of the Eulerian cradle
- find the first reflection and index it correctly
- find the second reflection and index it correctly
- calculate a rough UB matrix
- measure more reflections and refine the UB matrix
- set the temperature, magnetic field, pressure etc.
- collect many reflections at constant conditions
- integrate the measured reflections
- merge and average symmetry-equivalent reflections
- make necessary corrections

set 2θ and adjust χ, ϕ
- refine a (magnetic) structure model

Diffraction techniques

Single crystal diffraction - experimental procedure

- mount the sample

- align it in the center of the Eulerian cradle
- find the first reflection and index it correctly
- find the second reflection and index it correctly
- calculate a rough UB matrix
- measure more reflections and refine the UB matrix
- set the temperature, magnetic field, pressure etc.
- collect many reflections at constant conditions
- integrate the measured reflections
- merge and average symmetry-equivalent reflections
- make necessary corrections

phase diagram of CuO Villareal et al., PRL 109167206 (2012)
- refine a (magnetic) structure model

Diffraction techniques

Single crystal diffraction - experimental procedure

- mount the sample

- align it in the center of the Eulerian cradle
- find the first reflection and index it correctly
- find the second reflection and index it correctly
- calculate a rough UB matrix
- measure more reflections and refine the UB matrix
- set the temperature, magnetic field, pressure etc.
- collect many reflections at constant conditions
- integrate the measured reflections
- merge and average symmetry-equivalent reflections
- make necessary corrections
- refine a (magnetic) structure model

move crystal through reflection position by scanning ω (or $\omega-x \theta$)

Diffraction techniques

Single crystal diffraction - experimental procedure

- mount the sample

- align it in the center of the Eulerian cradle
- find the first reflection and index it correctly
- find the second reflection and index it correctly
- calculate a rough UB matrix
- measure more reflections and refine the UB matrix
- set the temperature, magnetic field, pressure etc.
- collect many reflections at constant conditions
- integrate the measured reflections
- merge and average symmetry-equivalent reflections

sophisticated fitting routines e.g. COLL5, RACER
- make necessary corrections
- refine a (magnetic) structure model

Diffraction techniques

Single crystal diffraction - experimental procedure

 -

- mount the sample
- align it in the center of the Eulerian cradle
- find the first reflection and index it correctly
- find the second reflection and index it correctly
- calculate a rough UB matrix
- measure more reflections and refine the UB matrix
- set the temperature, magnetic field, pressure etc.
(120) (12̄0)
($\overline{1} 20$) ($\overline{1} \overline{2} 0)$

- integrate the measured reflections
- merge and average symmetry-equivalent reflections
- make necessary corrections
- refine a (magnetic) structure model
- collect many reflections at constant conditions

Diffraction techniques

Single crystal diffraction - experimental procedure

- mount the sample
- align it in the center of the Eulerian cradle
- find the first reflection and index it correctly
- find the second reflection and index it correctly
- calculate a rough UB matrix
- measure more reflections and refine the UB matrix
- set the temperature, magnetic field, pressure etc.
- collect many reflections at constant conditions
- integrate the measured reflections
- merge and average symmetry-equivalent reflections
- make necessary corrections
- refine a (magnetic) structure model

Lorentz factor

Extinction

Absorption

Multiple scattering $\left(h_{2}-h_{1} \quad k_{2}-k_{1} \quad l_{2}-l_{1}\right)$

Diffraction techniques

Single crystal diffraction - experimental procedure

- mount the sample
- align it in the center of the Eulerian cradle
- find the first reflection and index it correctly
- find the second reflection and index it correctly
- calculate a rough UB matrix
- measure more reflections and refine the UB matrix
- set the temperature, magnetic field, pressure etc.
- collect many reflections at constant conditions
- integrate the measured reflections
- merge and average symmetry-equivalent reflections
- make necessary corrections

magnetic structure of $\left(\mathrm{Co}_{0.1} \mathrm{Ni}_{0.9}\right){ }_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$
- refine a (magnetic) structure model

Diffraction techniques

Single crystal diffraction - other types of experiments
phase transitions as function of $\mathrm{T}, \mathrm{H}, \mathrm{p}$ propagation vectors

volumetric mapping
diffuse/weak scattering superlatice/satellite reflections
study of individual reflection profiles

Diffraction techniques

Single crystal diffraction - Laue method

polychromatic beam

\rightarrow every accessible hkl plane is in reflection position for a particular wavelength

Diffraction techniques

Single crystal diffraction - Laue method

- quickly orient single crystals
- observe phase transitions
- magnetic satellites
- find propagation vectors

Examples

Antiferromagnetism in MnO

Detection of Antiferromagnetism by Neutron Diffraction*

C. G. Shull

Oak Ridge National Laboratory, Oak Ridge, Tennessee

AND

J. Samuel Smart

Naval Ordnance Laboratory, White Oak, Silver Spring, Maryland August 29, 1949

Additional peaks in the neutron diffraction pattern confirm Louis Néel's suggestion of an antiferromagnetic state (1932).

Examples

Crystal structure in HT superconductors
X-rays
CuO_{6} octahedra were at the heart of Bednorz and Müller's idea for HT superconductors in 1986.

X-rays indeed yield an octahedral coordination, but X-rays are mainly scattered by heavy elements.

Neutron diffraction yields the widelyaccepted structure with oxygen squares and CuO_{5} pyramids.

Examples

Li batteries

X-rays have a poor sensibility for Li

Knowing exactly what the Li does while charging and operating the battery is crucial to relate the Li concentration with the electrochemical features
key importance for understanding and improving Li-ion batteries

M. Bianchini and E. Suard, ILL Annual report 2014, p. 16

Summary

Diffraction yields structural information: lattice constants, atomic positions, atomic displacement factors, occupations, space group symmetry, stress and strain, magnetic structures

Advantages of neutrons with respect to X-rays: sensitive to the nuclei position, contrast of scattering lengths, isotope effect, isotropic scattering, sensitive to magnetic moment

The scattering length/form factor is the Fourier transform of the atomic scattering potential function.

The structure factor is the Fourier transform of the unit cell scattering potential functions.

We measure $I \sim F^{2} \longrightarrow$ phase information is lost \longrightarrow models necessary

