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Introduction 
§  Residual stresses in materials 
§  Principles of measuring residual stresses by 

diffraction 
§  Neutron and Synchrotron X-ray diffraction 

§  Properties 
§  Facilities 

§  Case Studies / Questions 
§  From Engineering to Physical Metallurgy – 

Understanding plasticity 
§  Conclusions 
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What are residual stresses 

Deformation mismatch 

Example: Welding 
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Residual Stresses 
§  Internal stresses 
§  Caused by misfit 

§  Type I 
 

§  Type II 
§  Type III 

Bent bar: 
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General Overview:  
Diffraction methods available 
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General Overview:  
Basic Principles: diffraction 

§  Diffraction measures elastic lattice strain 
as peak shifts 

§  Uses the poly-crystalline lattice planes 
as internal strain gauges 
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Basic Principle 
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Bragg scattering angle 

wavelength:  

Bragg’s law: 

Scattering Angle 
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General Overview: Basic Principles 
§  Measured strains have to be converted into 

stresses! (Hooke’s law) 
 

€ 

ε =
a− a0
a0

=
d − d0
d0
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General Overview: Basic Principles 
§  Measured strains have to be converted into 

stresses! (Hooke’s law) 
 

e.g. isotropic triaxial 
along principal 
directions: 

(Attention: not always this simple!) 

€ 

ε =
a− a0
a0

=
d − d0
d0
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22
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33
)]

To calculate a stress direction: 
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d0 variation 
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Example of d0 variation across 
a tubular Nickel weld 

The Vegard Law 
Example: Nb in Zr 
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Why do we like neutrons ? 
§  Part of the nucleus 
§  Same mass as protons 
§  Interesting wavelength/mass 

relationship: 

 
§  “Thermal” neutrons: wavelength 

similar to those of X-rays 0.5-5Å 
similar to atomic spacing in solids  

§  Allows cubic gauge volumes! 
§  Relatively divergent beam !! 

Planck 

Mass * Velocity 
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Neutron and Synchrotron Sources 
§  Reactor Sources (Fission) 

•  Constant wavelength/Single Peak 
§  Accelerator Sources (Spallation) 

•  Time-of-flight / Full Spectra / Rietveld 

Grenoble, France Chilton, UK ESRF ILL ISIS Diamond 

Neutron: 

Synchrotron: §  Monochromatic λ and white beam 
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General Overview: Strain Scanning 
Diffracting Gauge Volume: The volume element defined 

by the incident slits and diffraction slits 

2θ
Incident 
Beam 

Slits 
Sample 

Slits 
Direction of 
Strain 
Measured! 

Neutron Diffraction 

Detector 
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Synchrotron Diffraction: Penetration 
depth (monochromatic beam) 
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General Overview: Strain Scanning 
Diffracting Gauge Volume: The volume element defined 

by the incident slits and diffraction slits 

2θ

Incident 
Beam 

Slits Sample 

Slits 

Direction of Strain Measured 

High Energy Synchrotron X-ray Diffraction 

Detector 
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General Overview: 
Diffracting Gauge Volume 

§  Results in averaged d-spacing (powder diffraction - 
many grains) 

§  Defines the minimum spatial resolution of the 
method (around 1mm3 minimum gauge volume 
when using neutron diffraction) 

§  and type of residual stress resolved (macro-stress 
or type-I usually. Type-II for two phase materials). 

§  Use the largest possible gauge volume for your 
specific issue in order to minimise counting time 

Volume element of the material in which the recorded 
scattering takes place 
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Near surface measurements 
Neither peak shift (strain) nor measurement location is 
correct near a surface! 

§  Partial filling of sampling gauge gives a peak shift - need 
to correct peak shift 

§  Translator records centre of gauge which is rarely the 
centre of gravity of diffracting region 

§  need to correct gauge position 
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Neutron Properties 

§  Neutrons are scattered by atomic nuclei (electrons and 

X-rays which are scattered by the electron cloud).   

§  Since the scattering is nuclear process, scattering 

amplitude varies greatly for different isotopes of same 

element and in a unpredictable manner from element to 

element. X-ray and electron scattering increase 

monotonically with atomic number 
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Neutron Properties 
§  Random Scattering length  
§  Penetration depth independent of energy/wavelength 
§  Electrically neutral 
§  Great penetration 
§  Low flux/intensity 

Economic 
Depth 

Al Steel Cu Ti Ni SiC 

mm 250 37 40 27 24 200 
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Neutron Scattering 

Coherent  XS~ Signal 
Incoherent XS~ Background 
Absorption XS~1/Intensity 

Coherent XS: 

Penetration depth~  
1/Sum of Scatt XS 
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Research Reactors 

§  Fission in Reactor Core 
• Moderated neutrons  
• Monochromators in guide 

§  “Constant Wavelength”
§  Many Facilities in Europe: 

§  ILL, SINQ, FRM-2 (G), Petten (NL), …  
§  Generally low flux except ILL and FRM-2 
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Single Wavelength at Reactor 
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Single-wavelength instrument: D1A at the ILL 
New instrument at ILL: SALSA 
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Which peak gives us the pure 
macrostress response ? 

In-situ Loading on a neutron diffraction beam line 
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SALSA, ILL 
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Typical Diffractometer at Synchrotron 
(here ID31 at the ESRF) 

Sample 
Stage 

Detector 
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Diamond gauge volume 

Two orthogonal 
strain components 
sample different 
material volume 

Normal 

In-plane 

Analyser crystal  
for partly filled 
Gauge volume 
necessary! 
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Time of flight method 
§  Sharp pulse leaves source 
§  High energy neutrons (short λ) travel faster and 

arrive first, low energy (long λ) last λ   =   ht/ml      
where l is the path length and t time of flight 

§  a single stationary detector records whole 
diffraction spectrum as a function of time of flight 

§  neutrons travel at ~100m/s (speed of sound) 
 λ = 2d sin θ with θ fixed, i.e. λ proportional to d 
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Spallation Sources: 
Time of Flight 

Detector 

Sample 

Fast neutrons arrive earlier  
at detector! 

Flight path L 

Neutron  
Pulse 

Time-of-Flight: 
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ENGIN-X, ISIS 
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Example of TOF: Rietveld Refinement 

TOF: More  
Information! 
 
Rietveld: Fewer 
Parameters! 

(111) 
(200) 

(220) (311) 

Difference 

Data 
Fitting  

long λ 

long times 
short λ 

short times 
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Spallation Sources:  
Measurement of Strain 

Time-of-Flight: 

Strain: 

Fixed ENGIN-X at ISIS 

Cubic gauge 
volume ! 
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Rietveld vs Single reflection 
In-situ Loading on a neutron diffraction beam line 

Rietveld analysis 
generally provides 
linear stress-
strain response 
with elastic 
constant equal 
Young’s Modulus 
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Case Study: Inertia Friction Welding 

Solid state joining of compressor, turbine discs and shafts 
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Case Study: Inertia Friction Welding 
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How would you measure such a sample ? 

HOOP 

AXIAL (z) 

RADIAL (R) 

143mm diameter test inertia friction welds 
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Hoop stresses in IFW’d nickel-base 
superalloy 

As-welded Conventional 

PWHT 
Modified  

PWHT 

All stress units are in MPa 

Residual stress measurements were used to develop a 
new PWHT 
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Railway Rails 

-400 0 -300 -200 -100 100 200 300 400 

Stress (MPa) 

• Slices were cut 
from the rail to 
measure the 
horizontal and 
vertical stresses. 
Longitudinal 
stresses were lost 

• Measurements were 
carried out by using 
neutron and 
synchrotron x-ray 
diffraction 
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Case Study:  
Strain Mapping of a TIG weld 

8mm wide Tig Weld in 
Aluminium Plate 

2D Map of Residual Strain about the End of a TIG 
Weld at 100µm Resolution 

This map include 20,00 measurements and took 8 hours to acquire 
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From Engineering to Physical/Mechanical 
Metallurgy 

Single Crystal Anisotropy 

Al, fcc Single Crystal deformation 
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What do we know ? 
§  Deformation of metallic materials 

happens along most densely packed 
plane in most densely packed direction 
§  For example: in fcc it is the (111) plane 

and the <110> direction 
§  Relatively good understanding what 

happen when a single crystal is 
deformed 

Oxford School on Neutron Scattering 41 

What we struggle with 
§  How does deformation work in a 

polycrystalline aggregate 

Oxford School on Neutron Scattering 42 

β phase IPF colour key 
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Deformation heterogeneity 

§  Polycrystalline deformation is 
heterogeneous 

§  Single crystal elastic and plastic 
anisotropy 

§  Grain incompatibility during 
deformation results in intergranular 
stresses 

Why do we care ? 
§  Deformation mechanisms play a crucial 

role when material is processed as it 
affects the microstructure and hence 
performance of the material that is 
generated 
§  exactly the same alloy can have a strength 

of 300 or 1000 MPa just by changing the 
microstructure 

Oxford School on Neutron Scattering 44 
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Why do we care ? 
§  Understanding 

deformation mechanisms 
is crucial in order to 
develop a more physical 
understanding of how 
materials perform 

§  Such knowledge is 
required to predict 
accurately the life of 
engineering components 

§  Particularly important for 
safety critical components 

Oxford School on Neutron Scattering 45 
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In-situ loading experiments 
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Experimental Methodologies 
•  Use of neutron diffraction and high energy synchrotron x-ray 

diffraction characterising residual stresses, intergranular 
strains and phase transformation 

longitudinal
direction

transverse
direction

Case Study – Ni base Superalloy 
•  Use of neutron diffraction and high energy synchrotron x-ray 

diffraction characterising residual stresses, intergranular 
strains and phase transformation 
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Example – Ni base Superalloy 
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Case Study – Ni base Superalloy 
•  Use of neutron diffraction and high energy synchrotron x-ray 

diffraction characterising residual stresses, intergranular 
strains and phase transformation 
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Case Study – hcp metal 
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Effect of Sn on twinning in  Zr 
alloys 

•  Twin nucleation criteria unknown 
•  Role of alloying elements on twinning unknown 
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Critical stress and strain for twinning  
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Modelling deformation 
§  Micromechanics 

§  Dislocations, particles, grain boundaries (grain size), 
interstitial atoms 

§  Continuum mechanics: 
§  Stresses and strains 
§  Intergranular stresses 

§  Polycrystal plasticity 
§  Mean field methods, i.e. every grain has the same 

matrix 
§  Finite element methods 

•  Each grain has a characteristic neighbourhood 
•  Predict maximum and minimum stresses ? 
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EPSC Modelling 
§  The elasto-plastic self-consistent 

model (EPSC), is based on the 
Eshelby-Hill formulation. 

§  An elliptical inclusion in an infinite 
medium. 

§  The surrounding medium is the 
average of all orientations. 

§  The inclusion has uniform stress and 
anisotropic properties i.e. different 
orientations have different elastic 
moduli and plastic deformation is 
only allowed on specified slip planes. 

§  The model is capable of simulating 
multiple thermo-mechanical 
processes. 

Oxford School on Neutron Scattering 

infinite 
medium 

inclusion 

CPFEM 
§  CPFEM is more computer intensive than EPSC modelling, 

however, it enables the simulation of specified grain structures. 
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Plasticity Modelling (CPFEM) 
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Attempted General Guidelines: 
Neutrons 

Neutrons:  
•  Non-destructive, full stress analysis because of cubic 

Gauge Volume (think three directions) 
•  Good penetration depth due to neutrality 
•  Big bulky sample with low stress gradients 
•  Reasonable spatial resolution independent of atomic 

number 
•  Steels, aluminium, nickel, copper zinc or related 
•  Sample in harsh environment: furnace, cryo. etc. 
•  Phase analysis with Rietveld analysis 

Not-so good: near surface or thin materials, titanium, boron 
cadmium, fast, high-spatial resolution, high instrumental 
resolution, hydrogenous materials  
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Attempted General Guidelines: 
Synchrotrons 

Synchrotrons:  
•  Non-destructive, fast strain mapping, mostly 

single peak 
•  Light alloys (small atomic number) 
•  High spatial resolution  aluminium-titanium (think 

microns) 
•  High instrumental resolution (small peak width) 
•  Near surface measurement because of analyser 

crystal 
•  Bulk materials / larger atomic number with 

energy-dispersive method 
•  Polymers  
Not so good at: Steels and higher, big bulky samples, harsh 
environments, diamond shaped GV 


