

ersity Tester	Introduction	
The Univ of Manck	 Residual stresses in materials Principles of measuring residual stresses by diffraction Neutron and Synchrotron X-ray diffraction Properties Facilities Case Studies / Questions From Engineering to Physical Metallurgy – Understanding plasticity Conclusions 	
	Oxford School on Neutron Scattering	2

General Overview: Basic Principles MANCHESTER Measured strains have to be converted into $\varepsilon = \frac{a - a_0}{a_0} = \frac{d - d_0}{d_0}$ stresses! (Hooke's law) $\varepsilon_{11} = \frac{1}{E} \left[\sigma_{11} - \upsilon (\sigma_{22} + \sigma_{33}) \right]$ e.g. isotropic triaxial along principal $\varepsilon_{22} = \frac{1}{E} \left[\sigma_{22} - \upsilon (\sigma_{33} + \sigma_{11}) \right]$ directions: $\varepsilon_{33} = \frac{1}{E} \left[\sigma_{33} - \upsilon (\sigma_{11} + \sigma_{22}) \right]$ To calculate a stress direction: $\sigma_{11} = \frac{E}{(1+\nu)(1-2\nu)} [(1-\nu)\varepsilon_{11} + \nu(\varepsilon_{22} + \varepsilon_{33})]$ (Attention: not always this simple!) Oxford School on Neutron Scattering 10

niversity nchester	MA	Modelling deformation	
The UI of Mar		 Dislocations, particles, grain boundaries (grain size) interstitial atoms),
	•	Continuum mechanics: Stresses and strains Intergranular stresses 	
	•	 Polycrystal plasticity Mean field methods, i.e. every grain has the same matrix 	
		 Finite element methods 	
		 Each grain has a characteristic neighbourhood 	
		Predict maximum and minimum stresses? Oxford School on Neutron Scattering	54

