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 Neutrons and atomistic simulations – why ? 

 Potential Energy – how to calculate it 

 Potential Energy Surface (PES) – how to 
explore it 

 Single point energy (SPE) calculations 

 Geometry optimisation (GO) 

 Lattice dynamics (LD) 

 Molecular dynamics (MD) 



 Short range interaction with nuclei  no 
atomic form factor, quantified by scattering 
length b 

 Neutron energy (E): 1 – 1000 meV 

 Neutron wavelength (): 0.5 – 25 Å (E81/ 2) 

 Neutron magnetic moment probes magnetic 
structure and excitations of unpaired electrons 
in matter 



 Elastic scattering: ki=kf, (k=2p/λ), Ei=Ef 

 Quasielastic scattering : ki ≈ kf, Ei ≈ Ef 

 Inelastic scattering : ki<>kf, Ei<>Ef 

sample 
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kf Q=kf-ki 

2θ 



r(t): atom trajectories  from Molecular Dynamics 



d

wj and ej from Lattice Dynamics 



• Probe nuclear (not electron) positions 

• In Q and w (or t) space 

• Time (<1ms) and length (<100nm) scales 

• Measure ‘directly’ structure, diffusion and 

excitations 

• No selection rules (cf. IR/Raman) 

• Neutron magnetic moment probes magnetic order 

and excitations 



• Can simulate nuclei and electrons or just nuclei 

• In real space (r, t): FT → (Q, w) 

• Time (<1ms) and length (<100nm) scales match 

NS experiments 

• Calculate structure, diffusion and excitations 

• Electronic calculations probe magnetic order and 

excitations 





Ab initio;  

<10 atoms 

DFT;  

<103 atoms 

Force fields;  

< 106 atoms 

Mesoscale; 

 >106 atoms 

precision 

cpu time, #atoms 

(#parameters/approx.) 

Nobel prizes for DFT (1998) and classical MD (2013) 



 Density Functional Theory (Hohenberg, Kohn, Sham) 

 Eks[r(x)] = T[r(x)] + Ees[r(x)] + Eext[r(x)] + Exc[r(x)] 

 where r(x) =( *) is position-dependent, electron 

density ( linear scaling) 

 r(x) constructed from localised orbitals (H-atom or 
Gaussian) or plane waves for periodic systems  

 But Exc unknown - LDA, GGA functionals 

 Corrections for long-range dispersive (VDW) interactions 

 Scaling: N (linear)  N2 - N3 

 

 Practical limits:  

 ~500 atoms for one calculation, 200-300 atoms if many 
calculations have to be performed 

 Timescale: ~50 ps from ~20 000 simulation steps 

 



Practical limits: 

< 106 atoms 

depending on 

number of 

simulations  

(composition, P, 

T, ...) 

Timescale: 100 

ns on 105 atoms + - 

E= 

Ks(l-l0) + 

Kb( -0) +  

Kt(w -w0) + 

(cross terms +) 

a/r12-b/r6 + 

qiqj/Dr (+ 

hydrogen bonds etc) 







 Energy calculations and mapping 
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Spin density of LiFePO4 in the a-c 
plane 





 Stable & metastable structures – finding 
them 

E 

X 

+ 
+ 



 Energy  minimum 

 Forces  0 (±d) 

 Determines crystal structure if starting model 
is ‘good’ 

 May need to explore PES more 
thoroughly/widely using eg. MD or Monte 
Carlo methods to find global minimum 

 Removes ‘close contacts’ before a MD 
simulation 



Ideal structure; 

lattice parameters and Bi, Nb 
positions from X-ray 
diffraction,  

oxygen positions to be 
obtained from neutron 
diffraction 

Initial structure has 
undistorted oxygen lattice 

Primitive cell contains 174 
atoms (~2500Å3), 25 
inequivalent O atoms 

But … 

Rietveld refinement does not work starting 
From ideal structure 



VASP-optimised structure gives better starting  
structure for refinement Only 3 cycles of Rietveld refinement are required! 



Small amplitude vibrations  

E 

X 



 Small amplitude dynamics (vibrations) about 
minima of the potential energy surface 

 Hessian is matrix of inter-atomic force constants 
(FC) 

 Dynamical matrix introduces atomic masses (m) 
and wavevector (Q) – it is a generalisation of 
solving the equations of motion for a monatomic 
chain 

 DMij(Q) = FCij.exp[iQ(ri-rj)]/√(mimj) 

 Eigenvalues and eigenvectors of DM give Q-
dependent vibration frequencies (squared) and 
displacement vectors 





 Strong Ga 
displace-
ment 

 But Kagome 
triangles 
rock and 
drive 
relaxation 

 Contrast 
with G point 
modes 



 Kinetic energy to explore all (thermally 
accessible) degrees of freedom 

kT 

X 



 Exploring small and large amplitude motions 
in the PES 

 Simple equations intelligently implemented 

 F  a=F/m  r’=r+v.dt & v’=v+a.dt  

 Initial velocities from requested temperature 

 Smv2/2=3kT/2 

 Total time = n.dt 

 Potential & kinetic energy will exchange 
resulting in a new temperature 

 Thermostat: NVE  NVT 

 Barostat:     NVT  NPT 



Temperature 



 Time-averaged structure – S(Q,w=0), S(Q)=I(Q,t=0) 

 Vibrational density-of-states – FT of the velocity auto-
correlation function 

 I(Q,t) & S(Q, w): coherent and incoherent 

 Intensity-weighted dispersion relations from supercell 
simulations – excitations must be commensurate with 
simulation box 

 Diffusion constants 

 Disorder: dynamic or static? 

 Normal modes from principle component analysis 

 … 





LD – DFT, ~100 atoms, 

harmonic approx. 
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c) 

c = 14.458 Å 

b = 12.342 Å 



MD – FF, 106 atoms, 

anharmonic and T effects 
LD – DFT, ~100 atoms, 

harmonic approx. 
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 Monte Carlo methods 
may be better for 
exploring the PES 

 Random displacement 

 ACCEPT if DE <= 0 

 P=exp(-DE/kT) if DE > 
0, then ACCEPT if P > 
random no. 

 

E 

X 







 DFT is much more accurate (unless FF is 
determined from DFT specifically for a 
composition/T/P/etc) and transferable than 
FF methods 

 DFT  determines electronic & spin structure 

 DFT  allows  bond breaking/formation – 
chemical reactions 

 DFT is 106 (103 in space & 103 in time) times 
‘slower’ than FF methods 



 Both DFT and FF can be used – the choice 
depends on the size of the system and what 
is of interest 

 SPE: Mapping 

 GO: Find minima – (meta-) stable structures 

 LD: Lattice dynamics (vibrations) – harmonic 
approximation (minimise + mapping) 

 MD: Molecular dynamics – anharmonic 
contributions and temperature 

 



 Ground state structures including magnetic 

 Time averaged, liquid-like structures – S(Q) 

 Relaxation processes via QENS – S(Q,w) or 
I(Q,t) 

 Quantum excitations from PES & solving 
Schroedinger’s equation 

 Vibrational density of states 

 Dispersion relations (LD) and phonon lifetimes 
(MD) 



 More accurate electronic methods for 
magnetic systems 

 Approximate electronic methods to bridge 
the gap in time and length scales between 
DFT and FF methods 

 Coarse grain (mesoscale) methods to explore 
comformation space of large (polymer, 
membrane, protein,…) systems 

 Refining potentials against experimental data 



PES near Grenoble  



Further reading… 

Presentations from MDANSE schools at ILL in 2012 & 2014 

http://www.ill.eu/en/html/instruments-support/computing-for-science/modelling/mdanse-2012/ 

http://www.ill.eu/en/html/instruments-support/computing-for-science/modelling/mdanse-2014/ 

 

Proceedings of SFN French Neutron School 2010 on simulations: 

http://www.neutron-
sciences.org/index.php?option=com_toc&url=/articles/sfn/abs/2011/01/contents/contents.html 


