

#### Neutron scattering and numerical simulation: a powerful combination providing unique insights into functional molecules and materials (Chemical Applications)



Mark Johnson Computing for Science Institut Laue Langevin Grenoble, France



#### Overview

#### STRUCTURE - DYNAMICS - FUNCTION

- Micelles a new dynamical model
- Endofullerenes quantum mechanics in a nano lab
- Oxide ion conductors
- Thermoelectric materials



#### Micelles - a new dynamical model

Sharma, Mitra & Mukho – BARC, Mumbia, India Bachir Aoun, Eric Pellegrini & Mark Johnson – ILL



#### Structure & dynamics of micelles





### SDS – structural model





## SDS – structural model: 'rough ellipsoid'



## SDS dynamical model







#### SDS – dynamical model





#### SDS - dynamical model



![](_page_9_Picture_0.jpeg)

## Micelle - conclusion

![](_page_9_Figure_2.jpeg)

- Surface is rough and fluctuating
- Tails can move from surface to centre and back in nanoseconds (analysis of radial distance)
- Head groups are more mobile than tails
- Head group motion is mainly tangential about 15% of micelle circumference
- Dynamical model can be tested by...

![](_page_10_Picture_0.jpeg)

#### Quantum mechanics in a nanolaboratory

Salvo Mamone & Tony Horsewill – University of Nottingham Malcolm Levitt & Richard Whitby - University of Southampton Monica Jimenez, Stef Rols, Jacques Ollivier & Mark Johnson – ILL

![](_page_11_Picture_0.jpeg)

## Quantum particle in a 'box'

![](_page_11_Picture_2.jpeg)

## H<sub>2</sub>, HD, D<sub>2</sub>, HF, H<sub>2</sub>O, NH<sub>3</sub>, CH<sub>4</sub>, etc & $H_2@C70$ ...

![](_page_12_Picture_0.jpeg)

## Molecular surgery

![](_page_12_Figure_2.jpeg)

![](_page_13_Figure_0.jpeg)

![](_page_14_Figure_0.jpeg)

![](_page_15_Figure_0.jpeg)

![](_page_15_Figure_1.jpeg)

**INSTITUT MAX VON LAUE - PAUL LANGEVIN** 

![](_page_16_Figure_0.jpeg)

#### Temperature Dependence of transitions

![](_page_16_Figure_2.jpeg)

![](_page_16_Figure_3.jpeg)

MAX VON LAUE - PAUL LANGEVIN

#### Hot neutrons

![](_page_17_Picture_1.jpeg)

![](_page_17_Figure_2.jpeg)

**INSTITUT MAX VON LAUE - PAUL LANGEVIN** 

![](_page_18_Picture_0.jpeg)

![](_page_18_Figure_1.jpeg)

**INSTITUT MAX VON LAUE - PAUL LANGEVIN** 

![](_page_19_Picture_0.jpeg)

# Oxide ion conductors for fuel cell applications

Ivana Evans – University of Durham, UK Chris Ling – University of Sydney, Australia Werner Paulus – University of Montpellier, France

Mark Johnson, Stef Rols, Jacques Ollivier, Helmut Schober Institute Laue Langevin, Grenoble

![](_page_20_Picture_0.jpeg)

## Fuel cell applications

- Clean and efficient energy generation
- Currently used electrolyte: YSZ (σ ~ 10<sup>-2</sup> Scm<sup>-1</sup> at T > 750°C)
- Current obstacles: device cost and reliability

![](_page_20_Figure_5.jpeg)

Aim: lower operating temperature (450-600°C)

## Browmillerites $-M_2Fe_2O_5$ (M = Ca, Sr, ...)

![](_page_21_Picture_1.jpeg)

![](_page_21_Picture_2.jpeg)

JACS (2008)
v130
p16080

## Browmillerites – phonons: INS & DFT

![](_page_22_Figure_1.jpeg)

![](_page_22_Figure_2.jpeg)

![](_page_23_Picture_0.jpeg)

![](_page_23_Figure_1.jpeg)

![](_page_23_Picture_2.jpeg)

## Browmillerites diffusion: QENS

**Chemistry of Materials** • (2013) v25 p3080

![](_page_24_Figure_2.jpeg)

Lorentzian width (meV)

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0

![](_page_25_Figure_0.jpeg)

![](_page_26_Picture_0.jpeg)

#### Bismuth-based conductors

- $\delta$ -Bi<sub>2</sub>O<sub>3</sub> best oxide ion conductor: ~1 Scm<sup>-1</sup>
- 25% O vacancies → vacancy hopping mechanism
- BUT narrow, high temperature stability range
- Dope with e.g. divalent cation to remove O ( $Bi^{3+} \rightarrow Ca^{2+}$ )  $\rightarrow$  create more vacancies
- BUT doping with V<sup>5+</sup> works best:  $\sigma \sim 10^{-1}$  Scm<sup>-1</sup> at T < 500°C
- New conduction mechanism in dual sub-lattice systems: Bi<sub>2</sub>O<sub>3</sub> and VO<sub>n</sub>
  - Dopant cations have variable coordination; 4,5,6
  - Polyhedral rotation creates dynamic disorder
  - Enhanced vacancy population and conduction in Bi<sub>2</sub>O<sub>3</sub> lattice

![](_page_27_Picture_0.jpeg)

## Vanadate – Bi<sub>16</sub>V<sub>2</sub>O<sub>29</sub> β-form, C2/m

![](_page_27_Figure_2.jpeg)

 Angewandte Chimie Int (2012) v51 p690

![](_page_27_Picture_4.jpeg)

![](_page_28_Picture_0.jpeg)

![](_page_28_Figure_1.jpeg)

Chemistry of Materials (2012) v24 p4607

![](_page_29_Picture_0.jpeg)

#### Oxide ion conductors – conclusion

- Low frequency vibrations trigger diffusion
- Some structural disorder is essential
  - Variable coordination cations and mixed sublattices help
- QENS experiments to go to longer times
  - Measure microscopic diffusion
  - Compare with macroscopic conductivity measurements

![](_page_30_Picture_0.jpeg)

# Thermoelectric materials: heat $\rightarrow$ electricity

**Pierre-Francois Lory**, Marek Koza, Helmut Schober, *Institute Laue Langevin,Grenoble* 

Marc de Boissieu – University of Grenoble, France Marek Mihalkovic – Bratislava, Slovakia

![](_page_31_Picture_0.jpeg)

## Thermoelectric materials

![](_page_31_Picture_2.jpeg)

http://www.mpoweruk.com/thermoelectricity.htm

![](_page_31_Figure_4.jpeg)

![](_page_31_Picture_5.jpeg)

#### Kerosene Lamp Powers Radio

**R**EMOTE areas of Siberia and China use thermoelectric generators like the one shown here to convert heat from a kerosene lamp into electricity for radios.

The 20-lb. device is being studied by scientists at the Martin Co., Baltimore, Md., where similar direct conversion principles have been applied to nuclear heat sources. They paid \$56 for the Russian-built device.

A series of thermocouples is arranged around the upper portion of the lamp. As each set of elements is heated at one end by the lamp, a small amount of electricity flows through the pair. Metallic fins remove the excess heat.

![](_page_32_Figure_0.jpeg)

![](_page_32_Figure_1.jpeg)

C

0

d

1

![](_page_32_Figure_4.jpeg)

![](_page_32_Figure_5.jpeg)

 $\omega_1 = \omega_2 = \omega_3$ 

![](_page_32_Picture_7.jpeg)

![](_page_32_Figure_8.jpeg)

![](_page_32_Picture_9.jpeg)

![](_page_32_Picture_10.jpeg)

Skutterudites:
Cage
compounds

![](_page_32_Picture_12.jpeg)

![](_page_33_Picture_0.jpeg)

#### Skutterudites – Vibrational density of states

![](_page_33_Figure_2.jpeg)

# - S(Q,w) from powder-averaged lattice

![](_page_34_Picture_1.jpeg)

![](_page_35_Picture_0.jpeg)

#### Complex Metallic Alloy – Al<sub>13</sub>Co<sub>4</sub> Quasicrystal approximant

![](_page_35_Picture_2.jpeg)

001

![](_page_36_Picture_0.jpeg)

#### Measuring phonon widths - TAS 500 $q = 0.30 \text{ Å}^{-1}$ (3.82 0 -0.6) $q = 0.15 Å^{-1}$ (3.91 0 -0.3) Ь e 400 300 INS HH LD 200 100 0 1,200 400 $q = 0.20 Å^{-1}$ (3.88 0 -0.4) a 16 🖵 q = 0.34 Å<sup>-1</sup> ΒZ (3.79 0 -0.7) 16 300 14 14 200 12 12 100 10 ق 8 10 8 300 q = 0.25 Å<sup>-1</sup> (3.85 0 -0.5) q = 0.35 Å<sup>-1</sup> (3.75 0 -0.75) g <del>ا</del> آ 6 200 4 4 2 2 100 0 0 0.3 0.1 0.2 0.4 0.5 0.6 0 q (Å<sup>-1</sup>) 6 8 10 12 6 8 10 12 2 14 16 (meV) En (meV)

#### Simulating phonon linewidths - MD

![](_page_37_Figure_1.jpeg)

![](_page_37_Figure_2.jpeg)

![](_page_38_Picture_0.jpeg)

In the time domain...

![](_page_38_Figure_2.jpeg)

![](_page_39_Figure_0.jpeg)

![](_page_40_Figure_0.jpeg)

![](_page_41_Picture_0.jpeg)

#### **CONCLUSION - THERMOELECTRICS**

- Phonon-phonon scattering processes are responsible for reduced phonon lifetimes and low thermal conductivity in Skutterudites.
- Phonon lifetimes in QC approximant are weakly T dependent → defects/disorder is limiting factor

Enjoy exploring potential energy surfaces S